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Abstract. In this work we study string kernel methods for sequence analysis and focus on the prob-
lem of species-level identification based on short DNA fragments known as barcodes. We introduce
efficient sorting-based algorithms for exact string k-mer kernels and then describe a divide-and-conquer
technique for kernels with mismatches. Our algorithm for the mismatch kernel matrix computation
improves currently known time bounds for these computations. We then address the fast kernel vec-
tor evaluation problem during SVM testing. Finally, we introduce the mismatch kernel problem with
feature selection, and present efficient algorithms for it. Our experimental results show that, for string
kernels with mismatches, kernel matrices can be computed 100-200 times faster. Evaluations of kernel
vectors on new sequences using new techniques also require far less time than the standard approaches.
In experiments with several DNA barcode datasets, k-mer string kernels also considerably improve
identification accuracy compared to prior results. String kernels with feature selection demonstrate
enhanced or similar classification performance with substantially fewer computations than full feature
kernels.

1 Introduction

Biological species identification through DNA barcodes has been proposed recently in [1]. In the DNA
barcoding setting, DNA sequencing of the mitochondrial region is used to obtain a relatively short sequence
or DNA barcode that is subsequently used as a marker for identification and classification of the species.
This approach to species identification contrasts traditional identification methods that rely on markers
from multiple genomic locations. DNA barcoding has shown great promise due to increased adaptability,
robustness, and predictive value for rapid and accurate identification of species. For instance, barcoding
analysis via cox1 gene of moth and fly specimens intercepted at New Zealand’s borders resulted in improved
correct placement of previously unknown species or increased resolution of specimens [2].

Reliance of DNA barcoding on a single fragment of DNA sequence necessitates new computational methods
to deal efficiently with this single sequence-based assignment. Several methods, based on pairwise alignments
[3] or statistical approaches using evolutionary distances [4], have been applied to the tasks of identification
and analysis of the DNA barcode data. However, a number of challenges remain to be addressed, including
the accuracy of identification [5, 6, 4, 3] as well as the efficiency and scalability of computational methods.

In this study we investigate kernel classification methods for the DNA barcoding. Kernel-based classifica-
tion demonstrated strong performance in many related tasks of biological sequence analysis, such as protein
classification and remote homology detection [7–10]. Kernel methods approach classification by mapping
original data into a set of points in the feature space that potentially makes it easier to detect complex rela-
tionship in the data. This, in turn, leads to learning algorithms that can exhibit higher classification accuracy
and robustness. In our approach, species identification is performed by first transforming sequences (poten-
tially of varying length) into fixed-length representations (string spectra) and then classifying sequences into
one of many established species classes. For classification, we use Support Vector Machine (SVM) classifiers
[11, 12]. As a result, the string kernel-based identification of species sequences for the DNA barcoding in our
study demonstrates high accuracy and improved classification performance compared to previously employed
methods.

The improved accuracy of kernel-based classification methods in the sequence domain is typically chal-
lenged by their computational complexity. To address the computational aspects of the method, we propose
novel and efficient algorithms for solving the string kernel-based learning problems and introduce string ker-
nels with feature selection which perform as well as the methods based on the full feature sets while having
significantly lower computation cost.
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There are several types of kernels for the biological sequences, including kernels derived from probabilistic
models [13], k-mer string kernels [7, 8], and weighted-decomposition kernels [14]. In this work we focus on
recently proposed k-mer string kernels. The use of the string kernels can be expensive and requires efficient
ways to compute kernel matrices that are used during training, as well as kernel vectors (dot-products) for
the prediction (testing on new sequences). We address computation complexity of the string kernels and
show how to efficiently compute kernel matrices and kernel vectors therefore improving training speed and
testing (prediction) times.

Our experimental results show that, for the string kernel with mismatches, kernel matrices can be com-
puted by factors of 100-200 times faster depending on the size of dataset. The evaluation of the kernel vector
on new sequences using new techniques also requires far less time compared to the standard approaches.
We also observe that the k-mer string kernels considerably improve identification accuracy compared to the
previously reported results on several barcode datasets. The string kernels with feature selection demonstrate
enhanced or similar classification performance, however require substantially less amount of the computations
compared to the full feature kernels.

This paper is organized as follows. We start by introducing efficient sorting-based algorithms for the exact
string k-mer kernels (Section 3) . In Section 4 we describe a divide-and-conquer technique for the exact k-
spectrum kernels and k-mer kernels with m mismatches which combined with the sorting improves currently
known time bounds for the mismatch kernel computations. We proceed by addressing the problem of the fast
evaluation of the kernel vector during testing (or training). We also introduce the mismatch kernel problem
with feature selection and present algorithms for the efficient computation of the string kernels with feature
selection (Section 5). A comparison of our kernel method with a baseline computational approach is discussed
in Section 6. In Section 7 we consider a way to introduce positional information into the traditionally position-
free spectrum kernels. Finally, we evaluate several feature spaces and provide comparative analysis of the
performance of our method on three publicly available barcode datasets in Section 9.

2 Species identification problem in the DNA barcoding setting

Species identification problem can be described in the following way: given an unlabeled sample (specimen)
X and a set SP of known species represented by their reference barcode sequences or models, the task is
to assign the given sample to one of the known species (or decide that this sample does not belong to any
of the known categories). We solve this global multiclass problem by dividing it into a collection of binary
membership problems. In a binary membership problem, the task is to decide whether an input sequence
belongs to a particular class. To solve each membership problem we build a kernel-based binary classifier.

Kernel-based classification methods [12, 11] provide a general paradigm for the design of classifiers with
well studied theoretical properties and computational formalisms. The paradigm relies on the existence of
positive-definite kernels, defined as inner products in feature spaces, that naturally induce similarity metrics
among data points.

Kernel-based methods have been successfully applied to the domain of biological sequences. In particular,
string kernels have been shown to achieve good performance on protein classification and homology detection
tasks. The class of string kernels introduced recently includes the exact spectrum kernel [7], mismatch kernel
[8], and profile kernel [9]. All the kernels have general form of

k(x, y) =
∑

i

φi(x)φi(y)

where φi(x), i = 1...|Φ(x)| are components of the feature vector Φ(x) that defines mapping of the input string
x to the feature space. Both spectrum and mismatch kernels, as well as profiles kernel, project sequences into
a feature space indexed by all k-length substrings (k-mers, k-tuples) for some fixed and a-priori chosen k.
Projection in case of spectrum kernel is based on the set of explicit features that appear in the sequences. In
the case of (k, m)-mismatch kernel, projection of a sequence x will include not only substrings that appear
explicitly in the sequence, but also substrings that are in the (k, m)-neighborhoods of substrings that are
present in x, where (k, m)-neighborhood of k-length substring s is defined as all substrings of length k



that differ from s in no more than m positions. In the case of the profile kernel, sequence is modeled by a
profile [15] where each position is described by a symbol emission probability distribution. A neighborhood
is then defined probabilistically and feature is included in the projection if its probability of being generated
from profile is greater than some fixed threshold. An alternative approach based on Fisher kernels [13] defines
a similar feature mapping based on the profile models.

We apply the kernel-based formalism to design of classifiers for binary species identification. Given a
training set of species barcodes SP and their corresponding species labels S, a sequence kernel is used in a
SVM setting to learn a species classifier for new sequences:

species(x = s) =

{

yes,
∑

i∈M αi,sks(x, xi) > 0
no, otherwise

where αi,s and M ⊆ SP are estimated in the learning process using standard SVM methods [12].
A critical point in this formalism, when applied to the domain of sequences, is the complexity of kernel

computations. ([7, 8]) proposed an efficient algorithm using suffix-trees to address this problem. We next
describe an alternative algorithm for sequence kernels that exhibits improved performance both in time and
in space, compared to the traditional approach. The proposed algorithm can further incorporate feature
selection to reduce dimensionality of the problems. Selection of a small subset of features not only implies
computationally more efficient procedures, but also is biologically interesting since selected features can
facilitate understanding of the species identity.

2.1 Barcode data representation

For the purpose of this study, a DNA barcode sequence Xj is a sequence (x1, . . . , xnj
) where each xi stands

for one of the four nucleotides A, T, C, or G. Since sequences have variable lengths, to perform classification,
we represent each sequence as a fixed-length vector of features, hence embedding the sequences into a space
of fixed dimensionality. In our studies, we use two feature spaces: feature space indexed by k-length strings
over alphabet Σ and feature space indexed by (state, symbol) tuples where state corresponds to the match
state of a profile model.

3 Counting-sort formalism for string kernel algorithms

In this section we introduce sorting-based algorithms to more efficiently compute string k-mer kernels.
Counting-sort based framework leads to fast and scalable practical algorithms for string kernels suitable for
large k and m. In a counting-sort framework each substring of length k (k-mer) is considered as a k-digit
integer number base |Σ|. A list of n integer k-digit numbers where each digit is from integer alphabet 1 . . . |Σ|
can be sorted in Θ(kn) time using k passes of counting sort. Space complexity of this approach is Θ(n) since
we can reuse space and store only the current column to be sorted. Given n integers in a sorted order, one
pass over the list is sufficient to output for each distinct element in the list frequency of its occurrence. Then
the exact k-spectrum kernel for the two sequences can be computed in time Θ(kn) linear in the length n of
sequences.

Given a set of N sequences, exact spectrum kernel matrix KN×N = [k(x, y)] can be computed in linear
O(nN) space and O(knN + min(u, n) · N 2) time where last term reflects complexity of updating the kernel
matrix 1 and u is a number of unique features (k-mers) in the set (u is bounded above by min(nN, |Σ|k)).
The proposed algorithm improves the time bounds compared to the suffix tree algorithms that have higher
O(N2kn) complexity, and is simpler and easy to implement. In summary, our counting sort based algorithm
for the exact spectrum kernel performs the following steps:

1 It is easy to see that the complexity of updating the matrix is min(u, n)N 2. Consider the u-by-N matrix C = [ci,j ]
of k-mer counts, where ci,j is the number of times k-mer i occurs in the jth sequence. Since there are no more than
min(u, n)N non-zero elements in C, the update complexity kernel matrix is min(u, n)N 2.



Step 1. Extract k-length substrings from each input sequence x and store them in an array L, O(knN)2.
Step 2. Sort list L using counting sort, O(knN).
Step 3. Read off feature counts from sorted list by scanning and simultaneously update kernel matrix on
each change in the feature value, O(knN + u · N 2).

For each unique feature f (there are u of them), in step 3 kernel matrix is updated as follows:

K(updf , updf ) = K(updf , updf ) + cf cT
f (1)

where updf = {i : f is in xi} is a set of input sequences that contain f and cf = [nxi
]i∈updf

is a |updf | × 1
vector of feature counts for each input sequence from updf .

In the case of (k, m)-mismatch kernel when up to m mismatches are allowed, a set of unique features u that
are present in the dataset can be extracted first using the above algorithm and then used in computations
instead of the original redundant set. This preprocessing step takes O(knN) time, however, since nN (number
of features collected from all the input sequences) is much larger than u in the case of DNA sequences over
4-symbol alphabet, this preprocessing step results in the improved performance of the algorithm.

4 Divide-and-conquer algorithms for exact and mismatch string kernels

While the sorting formalism results in an improved computational method for kernel evaluation it is also
possible to gain further reduction in computational complexity. The efficient computation is achieved by using
linear time character-based clustering to divide the problem into subproblems and the merging procedure
that updates the kernel matrix.

Using a divide-and-conquer technique, the exact and mismatch kernel problems can be solved recursively
as follows:

Step 1: Original set L of features composed of all k-mers extracted from N input sequences is divided
into subsets L1, . . . , L|Σ| using character-based clustering.
Step 2: The same procedure (Divide step) is applied to each of the subsets L1, . . . , L|Σ| recursively. The
depth of recursion is bounded by k (since clustering continues until there is no substrings left or depth
k reached). Each node at depth k corresponds to some feature f and stores counts nxi

(f) (number of
times f appears in xi) for all the sequences that contain f , these counts are used to update kernel matrix
as in (1).

The procedure above builds one recursion tree for all input sequences. At each level l = 1 . . . k of the
recursion tree there are |Σ|l clusters, each of the l-level cluster corresponds to a distinct substring of length
l. Each cluster C consists of a number of subclusters SC where each subcluster is formed by k-mers from
one particular sequence. At level k of the recursion tree, each node contains a collection of subclusters where
each subcluster corresponds to a set of substrings from one particular sequence that are in the neighborhood
of node feature, i.e., each node points to all the substrings that are in the neighborhood of the base string
(node feature). The recursion procedure above results in an incremental algorithm for the mismatch kernel
computation.

4.1 Analysis of incremental mismatch kernel algorithm

The time complexity of the incremental mismatch kernel algorithm can be expressed as

u ·

k
∑

l=1

min(m,l)
∑

i=0

(

l

i

)

(Σ − 1)i + u · N2

2 Complexity of the feature extraction step can be reduced if k-mers are stored as integers (e.g. 32-bit word can
store k-mers with value of k up to 16 when |Σ| = 4) Features then can be extracted from all the input sequences
in O(N(n + k)) time since feature i can be computed from feature i − 1 in O(1) time and it takes O(k) time to
compute the first feature. Extracted features then can be sorted in Θ(knN) time and Θ(nN) space



At each level l algorithm gives solution for the (l, min(m, l))-mismatch problem. Last term in the expression
for the time complexity reflects complexity of computing kernel matrix using N -length vectors of counts
where each vector component nxi

(f) is the number of times k-mer f appears in the string xi. For small
values of m (m � k) complexity of processing each k-mer can be approximated as km|Σ|m. As m grows,

time complexity approaches limit of |Σ| |Σ|k−1|
|Σ|−1 , i.e. O(u · |Σ|k)3. Incremental mismatch kernel algorithm and

recursive exact spectrum kernel algorithm are very similar with the only difference being that at each step
of clustering some of the features that do not match base character may remain in the subset provided that
number of mismatches is no more than m. Number of mismatches can be tracked using an indicator array
that is initialized with k. At each step indicator value is reduced by 1 for those features that match base
character, then at step l all the features for which indicator value is greater than k − l + m are removed.
The filtering step takes linear time. From implementation point of view, exact spectrum and incremental
mismatch algorithms utilizing character-based clustering are the same except the filtering step.

4.2 Evaluation of the kernel vector

In the sections above we considered ways to compute efficiently the full kernel matrix. Similar approach
can be followed in addressing the problem of computing a kernel vector for sequence s and N sequences
s1, . . . , sN of length n. This type of the kernel computation is required for evaluation of a new sequence s
during testing (prediction). Computation of the kernel vector is also a part of the SVM training if kernel
caching is not used or cannot be used due to the size of the problem.

Evaluation of the new sequence s requires computation of the N kernel values k(s, si), i = 1, . . . , N ,
where N is the number of the support vectors. This evaluation can be done faster using sorting as an initial
preprocessing step. Sorting and extracting unique k-mers from the support vectors takes linear O(Nkn)
time. Then the kernel vector k(s, si) can be computed in O(uvk + u′N) time (compared to O(Nnvk + u′N)
time when no preprocessing is done), where v is the size of the (k, m)-neighborhood. Since u � Nn kernel
vector can be evaluated considerably faster.

5 Kernels with feature selection

A common approach to feature selection relies on the filtering paradigm. The set A of all possible features
is reduced to the subset F of the most informative features prior to applying any training methods. In our
experiments we used term-frequency tf as our feature selection criteria:

tfc(fi) =
numc(fi)

num(fi)

where c is the class number, numc(fi) is the number of times term fi occurs in class c, num(fi) is the total
number of times term fi appears in all classes. We characterize utility of each feature fi using maximum value
tfmax(fi) = maxc tfc(fi). Features are then selected globally according to the maximum of log tfmax(fi).
The criteria above is similar to the mutual information when all classes are equally likely. The criteria above
is also suitable for imbalanced data sets when number of sequences per class varies substantially. Given a set

F = {fi}
|F |
i=1 of features and a set S = {xi}

N
i=1 of sequences with typical length n, mismatch kernel can be

computed in O(|F |(k · u + N2) + knN) time (number of features |F | in a typical setting is much less than
total number of features u). Similarly, exact k-spectrum kernel with feature selection can be computed in
O(knN + |F |N2) time.

5.1 Mismatch algorithm with feature selection

Brute force algorithms for exact spectrum and mismatch kernels with feature selection have the same time
complexity of O(|F |(knN + N2)). Using counting-sort formalism (section 3) exact matching kernel with

3 It should be noted, however, that m = k represents a special case that essentially takes into account only sequence
lengths and kernel matrix can be computed in O(N 2) time as |Σ|klen · len′, where len is N × 1 vector of sequence
lengths.



feature selection can be computed in O(knN + |F |N 2) time and linear Θ(nN) space. Counting-sort based
mismatch kernel with feature selection has time complexity of O(|F |(k·u+N 2)+knN), where u is the number
of unique features and is bounded above by min(|Σ|k, nN). In case of DNA sequences, when |Σ| = 4, for
typical values of k, n and N , maximum number of features |Σ|k � nN , i.e. u � nN , which gives substantial
performance improvement.

Mismatch kernel problem with feature selection can be solved in linear time if we allow to use additional
space. The idea is to build a suffix tree for the expanded feature set (selected features augmented by their
neighbors) which needs O(|F |vk) operations, where v is the size of the mismatch neighborhood. After the
tree is built, we can traverse a tree in linear O(Nkn) time. The complexity of the kernel matrix computation
for the mismatch kernel with feature selection is then O(Nkn + |F |N 2) (after construction of the tree).
Alternative solution is to add selected features and their neighbors to the set of features extracted from
the input sequences and sort the resulting set in O(Nkn + |F |vk) time. After sorting feature counts can
be computed in the traverse of the sorted array in linear time. The overall complexity of this approach is
O(Nkn + |F |vk + |F |N2).

6 Comparison with baseline mismatch kernel algorithms

In this section we discuss and compare baseline methods for computing mismatch kernel matrices and kernel
vectors, as well as ways to compute kernels with feature selection and their complexity.

6.1 Mismatch kernel

Explicit map algorithm. Each input sequence is mapped explicitly to the vector of size |Σ|k indexed by all
substrings of length k. It takes O(Nnvk) time to map all N sequences and O(|Σ|kN) space. The kernel
matrix is then computed in O(|Σk |N2) time by computing pairwise dot-products between the spectrum
representations. Although this method is well suited for the exact spectrum kernel (for small k and |Σ|)
where mapping can be done in constant time, in the case of the mismatch kernel mapping operation for each
k-mer can no longer be done in the constant time since each k-mer is now mapped to its v neighbors, where
v is the size of the (k, m)-neighborhood, i.e. one needs to generate a set of v indices for each k-mer which is
an expensive operation.

Explicit map with presorting. The explicit map algorithm can be accelerated by first sorting k-mers and
extracting a set of u unique k-mers (this step takes linear time). Then only these unique k-mers are mapped
in O(uvk) time. The overall speed improvement can be substantial since u � nN and mapping step can be
performed O(nN/u) times faster.

6.2 Mismatch kernel with feature selection

In case of the feature selection, a small subset of k-mers is preselected and only the selected features will
contribute to the kernel value. Since we allow up to m mismatches, the target feature f is said to be present
in the input sequences if there is a k-mer in the input which neighborhood contains f . We now briefly discuss
two simple algorithms for the mismatch kernel with feature selection.

A straightforward algorithm. The straightforward algorithm for the mismatch kernel with feature selection
is to count separately for each of the selected features number of times it appears in the input in a simple
scan of the input. The complexity of this approach is O(|F |Nkn + |F |N 2), where |F | is the number of the
features selected.

Explicit mapping algorithm. Explicit mapping algorithm for the mismatch kernel computation can be
extended to incorporate feature selection by using only the selected positions in the sequence spectrum
representations to compute kernel instead of all the positions (i.e. use reduced spectrum representations
instead of full representations).

Table 1 summarizes complexity of the different algorithms for the kernel matrix computation. Complexity
of the kernel vector computations is summarized in Table 2. Table 3 compares complexity of the different
algorithms for the mismatch kernel with feature selection. It should be noted that the explicit map approaches
require larger storage O(N |Σ|k) compared to the linear space required by our divide-and-conquer approaches.



Table 1. Complexity of the mismatch kernel matrix computation

EM Nnvk + |Σ|kN2

EM+Sort Nnk + uvk + uvN + |Σ|kN2

DC Nnvk + u′N2

DC+Sort Nkn + uvk + u′N2

EM=Explicit map, EM+Sort=EM with presorting, DC=divide and conquer, v=size of the (k, m)-neighborhood,
u=number of different k-mers in the input sequences, u′ is the total number of different k-mers in the input

sequences including neighbors

Table 2. Complexity of the mismatch kernel vector com-
putation

EM Nnvk + |Σ|kN

EM+Sort Nnk + uvk + uvN + |Σ|kN

DC Nnvk + u′N

DC+Sort Nkn + uvk + u′N

Table 3. Complexity of the mismatch kernel with feature
selection. Kernel matrix computation

brute force |F |Nkn + |F |N2

EM Nnvk + |F |N2

EM+Sort Nkn + uvk + uvN + |F |N2

DC Nn|F |k + |F |N2

DC+Sort Nkn + uk|F | + |F |N2

7 Kernels with position information

Position of features in the original sequences can play a key role in interpretability of the resulting model
when feature selection is used. However, string kernels inherently contain no positional information. One way
to induce position information is via context-specific kernels. Context-specific kernels take into consideration
information about similarity of the contexts where matches occur in the form of different weights depending
on the degree of context similarity. Matches in highly dissimilar environments induce low weights, whereas
in the case of highly similar contexts there is no penalty and the weight value is high. Percentage of matches
wm (2) between the two contexts c1 and c2 and context composition-based measures wc (3) were used in our
experiments as measures of context similarity.

wm(c1, c2) =
|{i : c1(i) = c2(i)}|

context length
(2)

wc(c1, c2) = exp(−
(cc1 − cc2)

′(cc1 − cc2)

2
) (3)

where cc1 (cc2) is |Σ| × 1 vector of character frequencies.

8 Related work

Traditional algorithms for computing string kernels [7, 8, 16] rely on suffix trees and arrays. Exact matching
k-spectrum kernel Kk(x, y) for two sequences x and y of length n can be computed in O(kn) time using suffix
trees. All-substrings kernel problem [16] has also been solved in the time linear in the length of sequences
using suffix trees along with matching statistics. However, it is not necessary to build suffix trees in order
to obtain a kernel. Commonly used linear time suffix tree construction algorithms (e.g., Ukkonen algorithm
[17]) have large running time constants and large memory requirements. Moreover, in many applications
algorithms make no use of suffix links after construction of a tree.

In our framework, the exact k-spectrum kernel Kk(x, y) can be computed in time Θ(kn) linear in the length
of sequences x and y, however proposed counting sort formalism provides a much simpler and more efficient
implementation, as well as minimal memory requirements. Also, in our framework, the k-mer spectrum
kernel can be efficiently computed for N sequences of length n in O(Nnk) time and linear space using
sorting, resulting in the elimination of the large storage overhead and time constants associated with the
suffix-tree based algorithms [7].

Mismatch kernel over a set S of N sequences each of length n reported in [8, 18] to have complexity
of O(N2nkm+1|Σ|m). Our divide-and-conquer algorithm for mismatch kernel computation improves this



bound and has running time of O(u · km+1|Σ|m + u · N2) where u is the number of different k-mers in the
input sequences. In [8] mismatch algorithm considers (k, m)-neighborhood of each k-mer. The size of the
neighborhood is shown to be O(km|Σ|m). It should be noted that in this case the total number of features
that is considered by algorithm can exceed the natural upper bound 4 of |Σ|k. In our divide-and-conquer
algorithm for mismatch kernel we take different approach: our algorithm clusters features of S and naturally
finds groups of features that are (k, m)-neighbors, size of the resulting clusters (subclusters that correspond
to different input strings) gives desired counts of number of times features occur in the input strings.

9 Experiments and results

In our experiments we use three data sets of DNA barcodes. Fish larvae5 dataset contains barcodes for 7
species and consists of 56 sequences. The second data set Astraptes.Fulgerator6 contains 466 barcodes from
12 species. The number of sequences per species class in the second dataset varies substantially from as
few as 3 barcodes to as many as 100 barcodes. Substantial variations in the lengths of the barcodes within
classes as well as across classes are also present. Finally, a large Hesperiidae dataset contains more than 2185
sequences and 355 classes.

9.1 Classification performance

We evaluate performance of all methods using the ROC50 score [20] as well as the cross-validation error. In
case of Fisher kernel, profile HMM models were estimated from multiple alignment of sequences from one
species class and then used as feature extractors to map barcode sequences to the space of fixed dimension-
ality. The classifier that we used is the SVM with RBF kernel normalized by the distance to the nearest
neighbor. For SVM classifiers, we use existing implementation of SVM from a machine-learning package
Spider 7. In the experiments with feature selection, a small subset of k-mers is preselected before learning a
classifier using filtering approach.

We compare the performance of the full feature kernels and kernels based on the reduced feature set in
Fig. 1. Dimensionality of the full feature space is 500× 4 in our experiments. Dimensionality of the reduced
feature set varies from 2 to 50 dimensions. Fig. 1 compares performance of the kernels on the basis of the
number of families with the score higher than corresponding ROC50 score (an ideal method should result in
a plot where for any ROC50 score the number of families that achieve that score is equal to the total number
of families). ROC50 plots for the Fisher kernel clearly demonstrate that the kernel with feature selection
achieves higher performance compared with the full feature set kernel. Fisher kernel with feature selection
has performed as well as the mismatch kernel with feature selection, however Fisher kernel offers position
information and can therefore facilitates interpretation of the resulting model.

Table 4 displays performance results (crossvalidation error rates) of all eight methods on the A.fulgerator

dataset for each of the classes. Similar validations are provided in Table 5 for the fish larvae dataset. The
results indicate that the performance of the kernels with feature selection (SFK, SSK, SMK, SCON) on
both datasets is, at worst, indistinguishable from that of kernels based on full feature sets (FK, SK, MK,
CON). In some cases, as with the Fisher kernel, the feature reduction has resulted in significant improve-
ment (on A.fulgerator dataset, SFK is better than FK with a p-value of 0.0063 as measured by a two-
tailed signed rank test ([21]) ).

Figure 2 shows performance on the Hesperiidae dataset. The results indicate that the string kernels with
feature selection performed extremely well on this dataset obtaining perfect results in more than 94% test
cases. Feature selection results in improved performance for the exact spectrum kernel. In the case of the

4 For example, one of our datasets contains N=466 DNA sequences of length n = 600, for |Σ| = 4, k = 5, m = 1, u

is bounded by |Σ|k = 1024, N2nkm+1|Σ|m is 1.3e+10, u(km+1|Σ|m + N2) = 2.2e+08 which is approximately 50
times less.

5 See [3] for the details on dataset.
6 From Barcode of Life Data Systems (BOLD) collection www.barcodinglife.org. see [19] for detailed description of

the dataset.
7 Available from http://www.kyb.mpg.de/bs/people/spider/.
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Fig. 2. Comparison of performance of string kernels with
and without feature selection. Number of families with the
ROC-50 score greater than threshold vs. ROC-50 score
(Hesperiidae dataset). Reducing the number of features
correlates mostly positively with the identification perfor-
mance.

Table 4. Cross-validation error rates (%) for A.fulgerator
species.

class FK SK MK CON SFK SSK SMK SCON

BYTTNER 0.43 0 0 0 0 0 0 0.21

CELT 1.07 0 0 0 0 0 0 0

FABOV 1.29 0 0 0 0 0.21 0.21 0.21

HIHAMP 0.86 0 0 0 0 0 0 0

INGCUP 1.30 0 0.64 0 0.22 0.64 0.64 0.21

LOHAMP 1.30 0 0 0 0 0 0 0

LONCHO 1.06 0 0 0 0 0.21 0 0.43

MYST 0.64 0.64 0.85 0.64 1.07 1.28 0.64 0.85

NUMT 0.22 0 0 0 0 0 0 0

SENNOV 2.57 1.07 0.86 1.29 1.71 1.07 1.29 1.5

TRIGO 0.86 0 0 0 0 0 0 0

YESENN 3.86 0.43 0.43 0.43 1.29 0.86 0.43 0.43

number of features for SSK, SMK and SCON is 100,
for SFK number of features is class-specific:
5, 2, 5, 30, 10, 10, 5, 5, 50, 5, 5, and 50, respectively

Table 5. Cross-validation error rates (%) for Fish larvae
species.

class SK MK CON SSK SMK SCON

Perca 1.66 1.66 1.66 0 1.66 1.66

Rutilus 3.33 0.05 3.33 5.0 3.33 0.09

Gasterosteus 0 0 0 1.66 0 0

Barbatula 0 1.66 0 0 0 0

Lota 3.33 3.33 3.33 3.66 3.33 3.33

Anguilla 0 0 0 0 0 0

Phoxinus 3.09 3.09 3.09 3.66 5.33 3.66

FK = SVM-Fisher, SK = 5-spectrum kernel,
MK = (5,1)-mismatch kernel,
CON = (5, 10)-context-specific kernel,
S = with feature selection

Table 6. Comparison of the identification accuracy (avg.error/s.d.)

method Astraptes species Fish species Hesperiidae species

svm w/ linear kernel (one-vs-rest) 0.0074/0.0092 0.1342/0.1358 0.0132/0.0022
svm + pca 0.0067/0.0074 0.1692/0.0707 0.0168/0.0038
nearest neighbor 0.0251/0.0304 0.1552/0.0893 0.1038/0.0130
ridge regression (one-vs-rest) 0.0215/0.0207 0.3077/0.1203 0.1121/0.0165
nearest neighbor + pca 0.0300/0.0271 0.1521/0.1387 0.0895/0.0153

PSI-BLAST 0.0963/0.0658 0.1615/0.0765 0.0160/0.0042
Fisher kernel 0.0415/0.0182 0.1245/0.0903 -



mismatch kernel the reduced set of features provides performance very similar to the full feature mismatch
kernel. However the cost of computation for the mismatch kernel with reduced feature set is significantly
lower than that of the full feature kernel, as shown in Sec. 5. Average cross-validation error rates on the
Hesperiidae dataset are 3.7 ·10−4 (maximum 1.5 ·10−2) and 3.5 ·10−4 (maximum 1.5 ·10−2) for the spectrum
and mismatch kernels, respectively.

The use of feature selection for the string kernels has resulted in a substantial reduction in the number
of features (only 10% of features were selected) for all our test data sets, whereas performance has remained
the same or improved. Feature selection in case of the Fisher kernel resulted not only in the improved
performance, but also in even more dramatic decrease in the number of features (see Table 4).

9.2 Comparison to other methods

We compared performance of the string kernel-based method using SVM as a base learner with a number
of other classification methods. In particular, we evaluated Fisher kernel method [13], PSI-BLAST, ridge
regression and nearest neighbor methods. In the Fisher kernel approach we have built profile HMM models
for each sequence class. All sequences are mapped to the space of fixed dimensionality M · |Σ|, where M
denotes the profile length. We used recursive feature elimination technique [22] where fj is the output of jth
binary classifier.

Table 6 displays classification performance results (accuracy of identification) for the methods tested on
the three barcode datasets (note that the complexity of estimating Fisher kernel is very high and the results
are not included for the large Hesperiidae set). We observe that k-mer string kernels considerably improve
identification accuracy compared to previously reported results of [5, 4] (for example, on Astraptes dataset
[19], the test error rate of multi-class SVM is only 0.67% compared to 9% in [5] or 20% in [4]).

9.3 Running time analysis

We performed running time analysis of our algorithms to demonstrate the behavior of the proposed algorithms
under variety of circumstances, including various feature filtering levels, mismatch factors, and sequence
feature lengths. We implemented and tested our algorithms in MATLAB. On a 2.8Ghz machine with 1GB
RAM (MATLAB v.7.0.4.352), running time of our mismatch kernel algorithm on Astraptes.fulgerator data
set (N = 466, n = 600) is 16.92 seconds and 240.36 seconds on a larger Hesperiidae dataset (N=2185,
n=600) (to compute full (N × N)-kernel matrix, k = 5, m = 1). It takes about 2820 seconds and about
20 hours, respectively, to compute the same matrices when we used publicly available string kernel package
that implements the state-of-art method for spectrum/mismatch kernel8. Our experiments show order of
magnitude running time improvement (Table 7) for the k-mer kernel with m mismatches (by factors of
100-200 times depending on the dataset size)9. We also observe that our extension of the explicit map
(EM) algorithm that uses sorting as an initial preprocessing time results in significant speed improvements,
however the explicit map algorithm requires much larger storage (exponential in |Σ| and k) compared to
the divide-and-conquer algorithm. Table 8 shows running times for the mismatch kernel matrix computation
in the case when feature selection was used (filtering level in the table indicates percentage of the features
filtered out). As we can see from the results, explicit map algorithms do not not scale with the number of
the selected features, whereas divide-and-conquer approach scales almost linearly with the number of the
selected features. The running times for the mismatch kernel vector computation are listed in Table 9. We
observe that in case of the kernel vector evaluation, divide-and-conquer approach outperforms in many cases
explicit mapping with sorting, especially for larger k and m (note that the for large k, explicit map algorithm
have exceeded memory capacity), which makes our algorithms also particularly suited for the fast evaluation
of new sequences during testing.

8 From http://www1.cs.columbia.edu/compbio/string-kernels/
9 This improvement is especially significant in light of the differences in the two implementations: MATLAB is an

interpretive language while the competing package is implemented in C.



Table 7. Running time comparison. Mismatch kernel matrix computation

data set K EM EM+Sort D&C
String kernel
package

Astraptes 5 202.11 3.14 16.92 2820
Hesperiidae 5 938.79 14.73 240.36 75219

EM=Explicit map, EM+Sort = EM with presorting, D&C=divide and conquer

Table 8. Mismatch kernel with feature selection. Compu-
tation of the kernel matrix (running time, s)

Astraptes data Hesperiidae data
filtering
level

EM
EM+
Sort

D&C EM
EM+
Sort

D&C

0.1 212.23 4.03 12.91 961.94 17.75 163.80
0.2 212.01 3.62 11.43 964.55 19.83 144.61
0.3 185.62 3.88 10.41 982.72 17.20 122.34
0.4 193.08 3.76 9.51 974.43 18.73 113.83
0.5 193.74 2.31 8.54 989.4 18.56 89.25
0.6 196.87 2.30 7.47 969.48 17.37 78.12
0.7 192.54 2.51 6.31 977.07 14.85 52.32
0.8 200.59 2.51 5.18 964.67 10.73 39.18
0.9 184.75 3.60 3.74 966.68 10.57 23.92

EM=Explicit map, EM+Sort = EM with presorting,
DC=divide and conquer

Table 9. Mismatch kernel. Computation of the kernel vec-
tor k(s, si), i = 1, . . . , N(running time, s)

k m Astraptes data Hesperiidae data

D&C DC+Sort
EM+
Sort

D&C
D&C+
Sort

EM+
Sort

5 1 9.25 3.25 3.06 53.36 14.44 13.70
6 1 12.64 4.95 3.92 70.70 12.31 18.74
7 1 18.01 9.15 5.84 78.39 16.35 48.62
8 1 26.58 20.37 9.99 113.46 29.57 -
9 1 39.88 42.70 - 200.62 99.37 -
5 2 33.28 3.9 5.30 197.34 26.23 20.03
6 2 53.09 5.71 8.28 354.11 34.92 35.60
7 2 80.65 10.14 12.50 537.61 49.31 75.63
8 2 121.02 23.79 20.00 797.65 82.53 -
9 2 192.04 70.88 - 1166.6 173.9 -

EM=Explicit map, EM+Sort = EM with presorting,
DC=divide and conquer

10 Conclusions

In this paper we present a kernel classification based approach to the DNA barcoding problem that resulted
in substantially improved identification accuracy compared to traditional approaches. We also present a
framework for efficient computation of the string kernels that results in substantial speed improvements. We
introduce string kernels with feature selection which have lower computational cost and, at the same time,
comparable or better classification performance. The presented algorithmic approaches to implementing
string kernels are general and can be applied to many other problems of biological sequence analysis.

We have presented a counting-sort formalism for the exact spectrum kernel and divide-and-conquer tech-
nique for the string kernels on DNA barcode data that provides a fast and scalable solution for many string
kernel computation problems. In particular, for an input set S of N sequences over alphabet Σ with each
sequence of typical length n we developed:

An Θ(knN + min(u, n) · N2) time and O(nN) space algorithm based on counting sort for the exact
k-spectrum kernel

An O(ukm+1|Σ|m + u · N2) time divide-and-conquer algorithm for the (k, m)-mismatch kernel
An improved O(uvk + u′N) time algorithm for the mismatch kernel vector evaluation during testing

An O(Nkn + |F |N2) mismatch algorithm with feature selection for the kernel matrix computation

The main idea behind our first result is to consider k-mers as numbers base |Σ|; in contrast, previous
algorithms for spectrum kernels consider k-mers as strings and build suffix trees to compute kernel. Our first
result leads to a simple and easy to implement algorithm for exact k-spectrum kernel that matches bound
for suffix-tree based algorithms. The main idea underlying our result for the mismatch kernel with improved
running time is that of character-based clustering of k-mers and the use of divide-and-conquer technique.
We present a divide-and-conquer algorithm for the (k, m)-mismatch kernel that improves previously known
bound on running time and is more memory efficient and easy to implement. The algorithms were successfully
applied for computation of string kernels for sequence classification in the DNA barcoding task.



We have demonstrated that the use of feature selection applied to the high dimensional space of string
sequence features can often result in dramatic reduction in the number of features and may be of particular
interest in the DNA barcoding setting. Reduced set of features implies that not only more effective compu-
tations become possible (as we have demonstrated), but can also facilitate biological interpretability of the
resulting models, a task that is being addressed in our ongoing work.
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