Final
C440, Fall 2003
Thistest is closed book, closed notes, no calculators. You have 3:00 hours to answer the questions. If you think a

problem is ambiguously stated, state your assumptions and solve the problem under those assumptions. You can use
both sides of the test book to write your answers.

Name:

Problem | Score | Max. score
1 21
2 21
3 28
4 16
5 14
Total 100




1 Bayesian networks

Consider the Bayesian network shown in Figure 1. Assume all random variables are binary. Nodes A, B, and C have

Figure 1: Bayesian network for Problem 1.
the same prior distribution, P(A = 0) = P(C = 0) = P(E = 0) = 0.7. Node B has a conditional Bernoulli

(binomial) distribution P(B = i|A,C) = 91"470(1 — 04,0)t " with parameters§ 4—j =, = 0.2 j + 0.4 k. Node D
aso has a conditional Bernoulli distribution but with parameters c—; p—r = 0.4 j + 0.2 k.

1. [3pts] Writethe expression for the joint distribution defined by this network.

P(A,B,C,D,E) = P(A)P(C)P(E)P(B|A,C)P(D|C,E)
2. [3pts] List the nodesthat belong to Markov blankets of nodes A, C and E.

Node Markov blanket

A B, C
c A B/ Dl E
E c, D

3. [3pts WhatisP(A=1,B=1,C=1,D =1, E = 1)? Show your work.

P(A=1,B=1,C=1,D=1,E=1)

P(A=1)P(C =1)P(E=1)
xP(B=1A=1,C=1)P(D=1|/C=1,E=1)
= 0.3°x0.6 x0.6.

4. [4pts] Whatis P(A = 1|E = 0)? Show your work.

P(A=1|E=0)=P(A=1)=0.3 because A isindependent of E when the other nodes are not instantiated.
5. [3pts] Whatis P(E = 1|D = 1,C = 1)? Show your work.

Nodes A and B can be eliminated without affecting the rest of the network. Then

P(E=1D=1,C=1)
P(E=1,D=1,C=1) PE=1,D=1,C=1)

P(D=1,C=1) S, P(ED=1C=1)
P(D=1/C=1,E=1)P(E=1)P(C =1)
POD=1C=LE=O)PE=1)PC=1)+P(D=1C=1LE=0PE=0P(C=1)

0.320.6 018 9
0.3206+030704 0.18+028 25




6. [5pts] A child node, F, isadded to node B. It has aconditional distribution definedby P(F = 1|B =1) = 0.5
and P(F = 0|B = 0) = 0.5. Compute P(C = 0|F = 1, A = 0). Show your work.

Ordinarily, when F' isinstantiated C' would become conditionally dependent on A (converging arcson B and F
an instantiated child node of B). However, because F' is completely uninformative (0.5 conditional probabilities
for all possible combinations of B and F) it effectively has no influence on the rest of the network. Hence,

P(C=0F=1,A=0)=P(C=0)=07



2 Dynamic models and statistical learning

John works in awine cellar where he needs to implement a system for monitoring the levels of sugar in the wine. He
purchased two sensors that return three discrete measurement corresponding to low, normal, and high levels of sugar
and can be used to detect whether the grape mix isin normal or abnormal condition. However, the sensors are not
perfect. The specification lists the following sensor characteristics:

P(sensor = l|grape_condition) | normal abnormal
low 0.1 04
normal 0.8 0.1
high 0.1 0.5

1. [5 pts] John took a pair of measurements with the two sensors, at five different times. They were Sensor; =
{N,N,N,L,L} and Sensor, = {N,N,H,L,L}. He knew nothing about what condition the mix was in
before the measurementswere taken. What is his best guess about the state of the mix during the measurements
if he assumes that all of the measurements were taken independently? Show the work that justifies your answer.

One can describe the problem using a Naive Bayes model with a root node dedicated to the state of the mix and
ten leaf nodes corresponding to the two sets of sensor measurements.

Prior mix probabilities are uninformative, P(normal) = P(abnormal) = 0.5. Hence,

P(normal|measurements) ~ P(measurements|normal)P(normal)

(
= P(Sensori|normal)P(Sensors|normal)P(normal)
P(N,N,N, L, Linormal)P(N, N, H, L, Linormal) P(normal)
P(N|normal)® P(L|normal)*P(H|normal) P(normal)
= 0.8°0.10.10.5.

Smilarly,
P(abnormal|measurements) = 0.1° 0.4* 0.5 0.5.
Since
P(normal|measurements) _ 0.8°0.1°0.5 _ 2*8 >1
P(abnormal|measurements)  0.150.440.52 5

the best guessisthe mix isin normal condition.

2. [6pts] John's boss told him he should not really make a global decision like that. Rather, he should decide the
condition of the mix for each pair of measurements with the two sensors (i.e., John would have to make five
decisions), after all the measurements were taken. But the boss also realized that the condition of the mix does
not change abruptly after each pair of measurementsis taken. Since he did not know any better he told John to
assume the following sets of probabilitiesthat relate the mix state at two consecutive times:

P(normal at ¢jnormal at ¢ — 1) = 0.5, P(normad at t|abnormal at ¢t — 1) = 0.5.
What are the five decisions that John would make under these assumptions? Show your work.

This situation can be modeled as a hidden Markov model shown in Figure 2. One would make the decisions by
finding the sequence of decisions that maximize the posterior probability of decisions, given the measurements

arg max  P(mixo,. .., mixs|measurements).
mizxg,...,mita

This can, of course, be done using the Viterbi algorithm.

However, the fact that the boss gave John essentially no information about how the mix condition changesin
time means that, effectively, all the temporal arcs between the nodes (e.g, mizg — miz;) can be dropped.
Decisions can now be made independently for the five pairs of measurements.



Figure 2: Problem 2.

The decisions for cases where two measurementswere N, N are, e.g.,

P(mizy = normal|measurements) ~ P(N,N|mizo = normal)P(mizy = normal)
= P(N|mizo = normal)P(N|mizo = normal)P(mizy, = normal)
= 0.8%5
P(mizo = abnormal|measurements) ~ 0.120.5 < 0.8%0.5
Thus, mizy = miz; = normal.
For miz- the decision is made using
P(mizs = normal|measurements) ~ 0.80.10.5

P(mizy = abnormal|measurements) ~ 0.10.50.5,

hence, mixzs = normal ismorelikely that mixzs = abnormal.
Finally, for the two cases when the measurements are all L, the decision is made by comparing, e.g.,

P(miz4 = normal|measurements) ~ 0.120.5

P(mizy = abnormal|measurements) ~ 0.420.5,

and leads to miz3 = mizy = abnormal.

. [5 pts] After seeing the results of John’swork, his boss told him he should come up with better estimates of the
transition probabilities. How could John do that?

Having computed the five decisions
mizy, ..., mizy = {normal, normal, normal, abnormal, abnormal}

John can estimate the transition parameters using the maximum likelihood method. Essentially, he should count
how frequently one of the four possible transitions occurs in the sequence of those five decisions. That leadsto
the following transition probability table

P(miz¢miz,—y) | normal  abnormal
normal 2/3 0
abnormal 1/3 1

. [5 pts] How would John use those new estimates to make better future decisions?

He could make decisions using the Viterbi algorithm with these new transition probabilities. Then, the decisions
across different time instances would depend on each other.

However, one problem would be the 0 probability of the transitions from abnormal to normal which would
preclude any return from abnormal to normal state. One way to avid this would be to give some small non-zero
probability to this transition, even though it was not seen in the five original samples.



3 Decision making

Consider three ways of computing the final score on an exam that consists of N questions. One way is to average
scores of al NV questions. Another one is to drop the lowest of IV scores and then compute the average of scores of
the other N — 1 questions. Finally, one can assume that one of the questions will be counted towards extra credit and
the score will be computed by adding all the question scores and dividingthesumby N — 1.

All problemsare equally hard and it would take you an equal amount of timeto solve each of them. The probability
of correctly solving each of the N problemsis p.

1. [4 pts] Assume the problems are independent and the probability of solving each individual problem does not
depend on how many other problems you can solve. What is the probability of correctly solving & out of N
problems? How many such events k are there? Write the expression for this probability in terms of p, N and k.

There are N + 1 possible events: solve no problems correctly, solve one problem correctly, ..., solve all N
problems correctly. The probability of correctly solving & particular problems (and not solving the other N — k
problems) is

P(k|particular_set_of problems) = p*(1 — p)N =*.

There are (JZ ) ways to choose k problems, hence the probability of correctly solving any & problemsis

N _
P = () ) -m .
Thisisabinomial distribution of IV trials.

2. [4pts] Assume thetotal score for the set of V problemsis 7'. Each problem will be given the following score
(reward, utility):

e Grading scheme 1 (GS1): T'/N if you solveit correctly and 0 if you do not.
e Grading scheme 2 (GS2): T'//(N — 1) if you solveit correctly, 0 if you do not.
e Grading scheme 3 (GS3): T'/(N — 1) if you solveit correctly, 0 if you do not.

What are the scores (utilities) of the three ways of grading? Explain your work.

We need to define scores for each of V + 1 possible events that can occur in the three grading schemes. The
table below shows these scores.

# Problems solved Total score Total score Total score
under GS1 (TSL) under G (TS2) under GS3 (TSI)
0 0 0 0
1 T T T
J\jfﬂ Ni“l Ni“l
2 25 281 25—
K kL b F
N-1 N-DF  -Dy (VoD
N N% (N -1z Ny

Essentially, we multiply the individual problem score by the number of correctly solved problems, except in the
case k = N for G2 where we drop the score of one of the problems. (We drop onein all other cases aswell but
this has no effect on the total score because the score of the dropped problemis0.)

3. [6pts] What are your expected scores under these three grading schemes? Show your work. You may want to
use the fact that the expected value of the binomial distribution of L trials with trial probability 6 is6L.



The expected scores (utilities) of the three grading schemes are be computed as

N

EUgsi = Y P(k)TS1(k)
N

EUgsy = Y P(k)TS2(k)

N
EUgss = Y P(k)TS3(k)

To compute these expected scores we need to deal with the quantity

N
> kP(k)
k=0

This quantity can be interpreted as the average number of problems one can correctly solve. It can be shown
that this valueis (see the hint)

N
ka Zk( ) —p)NF =pN.
k=0 k=0
For example, for GS1 the expected scoreis

al al T T T
EUcsi =y p(k)TS1(k) =Y P3G = 5 D Pk = 5pN = pT.

k=0 k=0

For GS1 and GS3, the expected scores can be interpreted as the average number of problems one can solve
correctly multiplied by the score of one problem. For GS2, the expected score is the same as that of GS3 except
that it is reduced by the non-zero score of that dropped problem multiplied by the probability that we had to
drop one problem with non-zero score, which is P(N) = p?V. Hence, the expected scores for the three grading
schemes are:

EUgs1 = Tp
N prl
EUgsy = Tp|——o—
Ucs: p{N—l N1
N
EU, = T .
GS3 PN

. [3 pts] Which grading scheme one should choose? Justify your answer.

From the solution of Problem 3 it isobviousthat EUgs1 < EUgs2 < EUgss. One should choose the grading
scheme with the highest expected score (maximum expected utility), which is EU ¢ s3. It gives the highest extra
score to those who can solve the problems with the highest probability (i.e., good students.)

[6 pts] What are the maximum differences between the expected scores of grading schemes GS2-GS1 and
GS3-GS2 and when do they occur? Write your resultsin terms of NV, p.

The difference between EUgs> and EUgs 1S

N—1

1-p
Ay = EUgss — EUgs1 = Tp———.
21 GS2 GS1 P71



To find where the maximum occurs (p*) we can take the first derivative with respect to p and set it to 0:

8A21 _T< 1 N p*N_1> -0 :>p* _ 1
- —1 N TN
p

Op

N-1 N N
This leads to the maximal value of the difference

Tp*
Ay = — = .
21 N NNI\il

N~

To find the maximal difference of expected scores EU 53 and EU¢ g2 We note that

N

Asy = EUgss — EUgsy = T2

N—1>0

and is monotonically increasing in p. Hence, the maximal difference occursat p = 1 andis

N T
A32 = m

. [5 pts] Analyze how the maximal differences depend on the student’s ability to solve the problems (probability
p) and the number of problems V.

The maximal difference between scores GS2 and GSL occurs at p* = —L— and is proportional to p*/N.

N-1

N
Hence, the more problems there are the smaller the difference. For alarge N, A%, — 0. Also, as NV increases
p* movesfrom O to 1. It starts by benefiting not-so-good students (low p) and ends up benefiting better students
(higher p) but with smaller and smaller benefits.

Themaximal difference between expected scores GS3 and GS2 occursfor the best students (p = 1) but its benefit
quickly approaches 0 as the number of problemsincreases.



4 Miscellaneous questions

1. [5pts] On your way out of the hit feature To Build a Decision Tree, you are surprised to find out the movie
theater is giving away prizes. You watch the people ahead of you choose their prize either from behind Door #1
or Door #2. Of those who chose Door #1, half received $6, 1% got a new bike worth $1000, and the rest got a
worthless movie poster. Everyonewho chose Door #2 got $13.

Assuming you want to maximize the likely dollar value of your prize, what door should you choose? Why?

Expected monetary values of prizesfor thetwo doorsare EMV (D1) = 0.01x$1000+.50x $64-0.49x0 = $13
and EMV(D2) = 1.00 x $13 = $13. Because EMV (D1) = EMV (D2) you can choose either of the two
doors.

2. Consider the joint probability distribution given by the table below

A B C

False False False
False False True .16
False True False .03

P(A, B, C)
0
0
0
False True True 0.25
0
0
0
0

.05

True False False .15
True False True .02
True True False .11
True True True .23

e [3pts] What is P(A = T'rue)? Show your work.
P(A=True)=Y»_> P(A,B,C) =0.15+0.02+0.11 + 0.23 = 0.51
B C

e [3pts] What is P(B = False|A = True)? Show your work.

P(B = false|]A=True) = P(A=True,B = False)/P(A=True)
> P(A=True, B= False,C)
N P(A =True)
0.15+0.02
i oar
= 631__1/&

3. [5 pts] Consider this formulation of the N-input, 1-output perceptron learning problem. Assume we want to
devise alearning rule that does the following:
(8 Activation function g(in) isthe (hard) threshold function.
(b) Assume (incorrectly) g'(in) = 1, for al in.

Derive a gradient learning rule that minimizes the sum of square errors E(w) = 1/2 Z,{;l (yr, — g(ing))>.

Discuss how this learning rule updates the network weights and how it is different from the general gradient
learning rule with the sigmoid activation function (assume that after we train the network weights using the rule
you just derived, we add back the threshold function so that the network output once again becomes0 or 1.)



The perceptron with NV inputs (including offset) and one output is defined by the foll owing input-output rel ation-

ship
N
y=9 <Z wiﬂfi) :
i=1

The gradient learning ruleis

w® = _ a@E(w)'
a’LUi
Inthis case the gradient 0 E(w) /0w is
OFE(w s . dg(in
615] ) = = Z(y(k) - g(lnk)) %(inkk)xi’k
! k=1 3
K
= = > (k) — glink)) L
k=1
K
= - Z err(k)i k-
k=1

Thisis the error correction learning rule: the weights are updated when a sample is incorrectly classified. It
differs from the sigmoid gradient rulein that it equally weighs the error of all samples.

10



5

I mportant concepts

Briefly describe the following concepts.

1. [2ptg] Classification margin.

Classification margin is the largest minimal distance between two sets of points separable by a classifier such
as a support vector machine.

. [2 ptg] Utility of money and expected monetary value.

Expected monetary val ueisthe average monetary val ue of a | ottery whose outcomes can be assigned a monetary
value. Utility of money is not directly proportional to its monetary value, hence expected utility of money is not
the same as its expected monetary value.

. [2 pts] Consistent and inconsistent hypotheses.

Consistent hypothesisis the one which agrees with the data. Inconsistent does not fully agree with the data.

. [2pts] Information gain.

Information gain is the difference in information contents of a set of points before and after a split. More
precisely, it is a the difference between the entropy of a labeled set of points and the average entropy of a
partition of that set of points.

. [2 pts] Reinforcement learning.

Thetask of reinforcement learning isto use observed rewardsto learn an optimal policy (the one that maximizes
the total reward) for an environment.

. [2 pts] Vaue of perfect information.

The value of perfect information (VPI) of a piece of evidence E is the difference between the average maximum
expected utility computed if £ were known and the maximum expected utility with £ absent. Non-zero informa-
tion value implies that one should ask for that piece of evidence E. (However, the VPI is often counterbalanced
by the cost of getting that evidence E which is not included in the VPI.)

. [2 pts] Completed dataset.

A completed dataset is the dataset whose missing or hidden attributesare” filled-in” using a particular methods.
In EM, the attributes are filled-in using all possible values of the missing attributes weighted by their posterior
probabilities computed under a current probabilistic model.
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