KALMAN FILTERS AND DYNAMIC BAYESIAN NETWORKS
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Time and uncertainty

The world changes; we need to track and predict it (remember situ-
ation calculus!)

E.g., autonomous taxi position, airplane position, level of chemicals
In chemical plant

Basic idea: copy state and evidence variables for each time step

X, = set of unobservable state variables at time ¢
e.g., Rain;, Xyelocity,, etc.

E, = set of observable evidence variables at time ¢
e.g., Umbrella;, X position;, etc.

This assumes discrete time; step size depends on problem

Notation: Xyp = XQ; X@Jrf - vxwlf Xy
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Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?
Markov assumption: X, depends on bounded subset of X.;

First-order Markov process: P(X;| X, 1) = P(X¢|X; 1)
Second-order Markov process: P(X;| X 1) = P(X¢| X0, X 1)
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Sensor Markov assumption: P(E;| Xy, Eq; 1) = P(E/[X;)

Stationary process: transition model P(X;|X; ;) and
sensor model P(E,|X;) fixed for all ¢
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Example

Ri_1| P(Ry)

t 0.7
f 0.3

First-order Markov assumption not exactly true in real world!

Possible fixes:
1. Increase order of Markov process
2. Augment state, e.qg., add T'emp;, Pressure;

Example: robot motion.
Augment position and velocity with Battery;
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Inference tasks

Filtering: P(X;|e;)
belief state—input to the decision process of a rational agent

Prediction: P(X, ;|e;,) for k > 0
evaluation of possible action sequences;
like filtering without the evidence

Smoothing: P(X,|e;,) for 0 < k <t
better estimate of past states, essential for learning

Most likely explanation: arg maxy,, P(X./|€)
speech recognition, decoding with a noisy channel
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Filtering

Aim: devise a recursive state estimation algorithm:

P(Xit1|€141) = f(€41, P(X¢|€14))

P(Xii1l€1641) = P(X¢y1]€14, €141)
— Q_UA@LLXT} mZV_UAXtL_Qi
= aP(e1|Xi11)P(Xit1]er)

l.e., prediction + estimation. Prediction by summing out X;:

P(X¢i1leni1) = aP(e1Xii1)20x, P(Xei1|Xt, €1.4) P(X¢|€1:¢)
= aP(€41|Xi11) 2k, P(Xps1|Xe) P(Xc|€14)

fi.,.1 = FORWARD(fy,, &) where f,,, = P(X,|e, ;) — forward message
Time and space constant (independent of 7)
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Filtering example

0.500 0.627
0.500 0.373
True 0.500 o.%pm o.%mw
False 0.500 0.182 0.117
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Smoothing

CED <, GO

Divide evidence e, Into €., €.,

P(Xilew:) = P(Xg|€.r, €y1:)
aP(Xj|€1:1)P(€rt1:¢| Xk, €11)
aP(Xi|€rr)P(€r11:4| Xy

= afi.1bp 14

Backward message computed by a backwards recursion:

Pleri1:4/Xk) = 2ix,,, P(€1:4/ X5, Xi 1) P(Xper1| X )
- Mﬁiﬁ@iix\ib_ucoﬂi_x\&v
= iy P81 |Xps1) P(€2:0|Xpr1) P(Xpr1 [ X5)

Chapter 15 9



Chapter 15 10



Smoothing example

True
False

0.500 0.627
0.500 0.373
0.500 o.%“_.m o.%ww
0.500 0.182 0.117
o.m*mw o.m*mw
0.117 0.117
0.690 - 1.000
0.410 1.000

forward

smoothed

backward

Umbrella; é

Forward—backward algorithm: cache forward messages along the

way
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Time linear in ¢ (polytree inference), space O(t|f|)
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Most likely explanation

Most likely sequence 4 sequence of most likely states!!!!

Most likely path to each x;
= most likely path to some x; plus one more step

umw@wmw UAXT ooy Kty VANTTH_@H:IrHv
= P(er1[Xes1) mpox (P(X s xe) mgpe P, X1, Xilen)

Identical to filtering, except f,.; replaced by

My = o P(X1, ..., Xe—1, X¢|€1),

l.e., my,(2) gives the probability of the most likely path to state .

Update has sum replaced by max, giving the Viterbi algorithm:

My = P(€41|Xei1) Hax (P(X¢11|X:)my)
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Viterbi example
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Kalman filters

Modelling systems described by a set of continuous variables,
e.g., tracking a bird flying—Xx, = X. Y, Z, X, Y, Z.
Airplanes, robots, ecosystems, economies, chemical plants, plan-

P
DaheE
NN

Gaussian prior, linear Gaussian transition model and sensor model
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Updating (Gaussian distributions

Prediction step: if P(X;|e;;) is Gaussian, then prediction

P(Xii1]€1t) = \5 P(Xis1[Xe) P(X¢|€1:¢) dXy

Is Gaussian. If P(X;.|e;) is Gaussian, then the updated distribution

P(X¢i1|€1:041) = aP(€11]Xir1)P(Xey1l€1)
IS Gaussian
Hence P(X,|e,;) is multivariate Gaussian N (,, >3;) for all ¢

General (nonlinear, non-Gaussian) posterior grows unboundedly as
T — o0
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Linear dynamic system

Transition and sensor models:

Tip1 = FX+ vy
z = HX; 4+ wy
Uy ~~ ZAOQM&V
wy ~ N(0,3,)

F i1s the matrix for the transition; >, the transition noise covariance

H 1s the matrix for the sensors; 3. the sensor noise covariance

v, IS the state noise process (white Gaussian noise)

w; 1S the measurement noise process (white Gaussian noise)
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General Kalman update

Transition and sensor models:

P(Xei1]%t) = N(FX¢, 3z)(X¢41)
P(z|x;) = N(Hx;, X.)(z)

Filter computes the following update:

P = Fpy+ Kz — HFpy)
i1 = (I — K )(FEFT +3,)

where K, = (FX,F' + S,)H ' (HFSF' + Z,)H' +32,)7!
IS the Kalman gain matrix

>, and K, are independent of observation sequence, so compute
offline
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2-D tracking example: filtering

12

11

10

2D filtering

— & true

* observed
filtered

10 12 14 16 18 20 22 24
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2-D tracking example: smoothing
2D smoothing
12
—8—  true
* observed
R S smoothed
11+
10+

10

12
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Where it breaks

Cannot be applied if the transition model is nonlinear

Extended Kalman Filter models transition as locally linear around

Xt = Iy
Fails if systems is locally unsmooth

L
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Dynamic Bayesian networks

X;, E; contain arbitrarily many variables in a replicated Bayes net

P(Ro)

P(R;)

Battery Battery 4

—
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DBNs vs. HMMs

Every HMM is a single-variable DBN; every discrete DBN is an HMM

IR
W= S E
N

Sparse dependencies = exponentially fewer parameters;
e.g., 20 state variables, three parents each
DBN has 20 x 2° = 160 parameters, HMM has 2%V x 22 ~ 10%
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DBNs vs Kalman filters

Every Kalman filter model is a DBN, but few DBNs are KFs;
real world requires non-Gaussian posteriors

E.g., where are bin Laden and my keys? What'’s the battery charge?

BMBroken, BMBroken,

_ E(Battery|...5555005555...)
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Time step
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Exact inference in DBNs

Naive method: unroll the network and run any exact algorithm

ECh) Ro | P(RD GG R | PR Ro | P(RD R | PR Ro | P(RD Ry
m 1K o Y ) N Py I N Py N Py 1 i Py
Rain, .In Raing .I! Rain, Rain, Raing Rain,
1R TPOD] Ry | P(Up) R; | P(Up) R; | P(Up) R; | P(Up)
HE i o i] e ilo i |8

Umbrella,; Umbrella, Umbrellag Umbrella,

Problem: inference cost for each update grows with ¢

Rollup filtering: add slice ¢ + 1, “sum out” slice ¢ using variable elim-
iInation

Largest factor is O(d""'), update cost O(d"*?)
(cf. HMM update cost O(d*"))
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Particle filtering

Basic idea: ensure that the population of samples (“particles”)
tracks the high-likelihood regions of the state-space

Replicate particles proportional to likelihood for g

Rain Rain; . Rain; . Rain; .
t t+1 t+1 t+1

true

o0 o000
ﬁm_mm o0 0000
(a) Propagate (b) Weight (c) Resample

Widely used for tracking nonlinear systems, esp. in vision

Also used for simultaneous localization and mapping in mobile robots
10°-dimensional state space
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Particle filtering contd.

Assume consistent at time #: N (x:|e;;)/N = P(x/e)
Propagate forward: populations of x; ., are

N (Xer1]€1:0) = 2ax, P(Xeq1|Xe) N (Xe|€14)
Weight samples by their likelihood for e, ;:

W (Xev1l€re41) = P(€r1|Xer1) NV (Xev1|€1:)

Resample to obtain populations proportional to 17:
N(Xir1l€rir1)/N = aW(Xig1|€ri11) = aP(€41]Xi11) N (Xr1]€1:4)
= aP(€41|Xeg1) i, P(Xeq1 | Xe) N (X¢ €124

— D\wAmTliXI.HvMUXNwAXIL_vawAXL@Av
= P(X¢+1/€1:041)
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Particle filtering performance

Approximation error of particle filtering remains bounded over time,
at least empirically—theoretical analysis is difficult
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Summary

Temporal models use state and sensor variables replicated over
time

Markov assumptions and stationarity assumption, so we need
— transition modelP(X;|X; 1)
— sensor model P(E;|X;)

Tasks are filtering, prediction, smoothing, most likely sequence;
all donerecursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used
for speech recognition

Kalman filters allow » state variables, linear Gaussian, O(n*) update

Dynamic Bayes nets subsume HMMs, Kalman filters; exact update
Intractable

Particle filtering is a good approximate filtering algorithm for DBNs

Chapter 15 29




