BAYESIAN NETWORKS
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Outline

¢ Syntax

 Semantics

> Parameterized distributions
& Inference

e Exact inference (enumeration, variable elimination)
e Approximate inference (stochastic simulation)

AIMA2e Chapter 14.1-5 (some topics excluded) 2




Bayesian networks

A simple, graphical notation for conditional independence asser-
tions

and hence for compact specification of full joint distributions

Syntax:
Random Variables: a set of nodes, one per variable
Topology: a directed, acyclic graph (link ~ “directly influences”)
Probabilities. a conditional distribution for each node given its
parents:

P(X;|Parents(X;))

In the simplest case, conditional distribution represented as
a conditional probability table (CPT) giving the
distribution over X; for each combination of parent values
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Example

Topology of network encodes conditional independence assertions:

Weather 1s independent of the other variables
Toothache and C'atch are conditionally independent given Cavity

P(Toothache, catch, Cavity, Weather) =7
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Example

Topology of network encodes conditional independence assertions:

Weather 1s independent of the other variables

Toothache and C'atch are conditionally independent given C'avity

P(Toothache, Catch, Cavity, Weather) = P(Toothache|Cavity)
P(Catch|Cavity) P(Cavity) P(Weather)
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Example

I’'m at work, neighbor John calls to say my alarm is ringing, but
neighbor Mary doesn’t call. Sometimes it's set off by minor earth-

quakes. Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge:

— A burglar can set the alarm off

— An earthquake can set the alarm off

— The alarm can cause Mary to call

— The alarm can cause John to call
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Example contd.

Burglary

Earthquake
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Compactness

A CPT for Boolean X, with & Boolean parents has

2k rows for the combinations of parent values @/ \@u
Each row requires one number p for X, = true WMWN
(the number for X, = false is just 1 — p) @ @

If each variable has no more than & parents,
the complete network requires O(n - 2¥) numbers

l.e., grows linearly with 7, vs. O(2") for the full joint distribution

For burglary net, 1 + 1 +4 + 2+ 2 =10 numbers (vs. 2° — 1 = 31)
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Global semantics

Global semantics defines the full joint distribution
as the product of the local conditional distributions: @/ \@u

P(X,,...,X,) =1I;_,P(X;|Parents(X;)) WMN
e.g., PGAmAaA-bA—e) @ @
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Global semantics

“Global” semantics defines the full joint distribution

as the product of the local conditional distributions:

P(Xi,...,X,) = II_ P(X;|Parents(X;))
e.g., P(j AmAaA—-bA —e)
= P(jla)P(m|a)P(a|=b, —e)P(=b)P(=e)
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Local semantics

Local semantics: each node is conditionally independent
of its nondescendants given its parents

Theorem: Local semantics < global semantics

AIMA2e Chapter 14.1-5 (some topics excluded) 11



Markov blanket

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents
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Constructing Bayesian networks

Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

1. Choose an ordering of variables X, ..., X,
2.For:=1ton
add X; to the network
select parents from X, ... X,_; such that
_UAN@_w@ﬁmB\w%AN@vv — _UA;X:NT Ce N&Ib

This choice of parents guarantees the global semantics:

P(Xy,....,X,) = FL (X[ Xy, ..., X, 1) (chain rule)
= I P(X;|Parents(X;)) (by construction)
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Example

Suppose we choose the ordering M, J, A, B, £

P(J|M) = P(J)?
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Example

Suppose we choose the ordering M, J, A, B, £
=D
Comncals
D,

P(J|M) = P(J)? No
P(A|J, M) = P(A|.))? P(A|J, M) = P(A)?
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Example

Suppose we choose the ordering M, J, A, B, £

Burglary

J|M) = P(J)? No
A|J, M) = P(A|.))? P(A|J, M) = P(A)? No
B|A, J, M) = P(B|A)?

P(
P(
P(
P(B|A, J, M) = P(B)?
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Example

Suppose we choose the ordering M, J, A, B, E

Earthquake
iv P A .@0 No -
J

TNEHE_bwwg_&ivHEEQZo
J, M) = P(B]A)? Yes

T VVTVITY
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Example

Suppose we choose the ordering M, J, A, B, E

Earthquake
? No

P(JIM) = P(J)"

P(A|J,M) = P(A|J)? P(A|J,M)= P(A)? No
P(B|A,J,M)= P(B|A)? Yes

P(B|A,J,M)= P(B)? No

P(E|B,A,J,M)= P(E|A)? No
P(E|B,A,J,M)= P(E|A,B)? Yes
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Example contd.

Burglary

Earthquake

Deciding conditional independence is hard in noncausal directions

(Causal models and conditional independence seem hardwired for
humans!)

Assessing conditional probabilities is hard in noncausal directions
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Network is less compact: 1 + 2+ 4 + 2 + 4 =13 numbers needed
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Example: Car diagnosis

Initial evidence: car won't start
Testable variables (green), “broken, so fix it” variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters

broke

alternator

dead

broke
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Example: Car insurance




Compact conditional distributions

CPT grows exponentially with no. of parents
CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case:
X = f(Parents( X)) for some function f

E.g., Boolean functions
NorthAmerican < Canadian VvV USV Mexican
E.g., numerical relationships among continuous variables

0Level

T Inflow + precipitation - outflow - evaporation
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Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes
1) Parents U/, ... U, include all causes (can add leak node)
2) Independent failure probability ¢; for each cause alone

= wAvﬁqH...q,?J u..TH...I_Qwv H~|szHQ&

Cold Flu  Malaria| P(Fever)| P(—Fever)

F F F 0.0 1.0

F F T 0.9 0.1

F T F 0.8 0.2

F T T 0.98 0.02=0.2 x0.1

T F F 0.4 0.6

T F T 0.94 0.06 = 0.6 x 0.1

T T F 0.88 0.12=0.6 x 0.2

T T T 0.988 0.012 =0.6 x 0.2 x 0.1

Number of parameters linear in number of parents
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Continuous nodes

Networks may have discrete RVs, continuous RVs, or a mix of the
two.

All continuous (e.g., conditional Gaussian). Linear dynamic sysyems
(Kalman filter).

Discrete parents, continuous children (e.g., conditional Gaussian).
Gaussian mixture models.

Continuous parents, discrete children (e.g., probit and logit func-
tions). Difficult to deal with.
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Inference tasks

Simple queries: compute posterior marginal P( X, E = e
e.g., P(NoGas|Gauge = empty, Lights = on, Starts = false)

Conjunctive queries: P(X,, X;|[E=¢e) = P(X,|E=¢)P(X,| X, E=¢)

Optimal decisions: decision networks include utility information;
probabilistic inference required for P(outcome|action, evidence)

Value of information: which evidence to seek next?
Sensitivity analysis: which probability values are most critical?

Explanation: why do | need a new starter motor?
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Inference by enumeration

Slightly intelligent way to sum out variables from the joint without
actually constructing its explicit representation

Simple query on the burglary network:

P(B|j,m) =

= P(B, j.m)/P(j,m) Q/mu/\@
— Q_U@w?f Sv

= QMumMU@_UAvamv@?f Sv @ @

Rewrite full joint entries using product of CPT entries:
P(B|j, m)

= a2i.2,P(B)P(e)P(a| B, ) P(jla) P(m|a)

= aP(B)L.P(e)L.P(a| B, e) P(j|a) P(m]|a)

Recursive depth-first enumeration: O(n) space, O(d") time
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Enumeration algorithm

function ENUMERATION-ASK(X, € bn) returns a distribution over X
inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network with variables {X} U E U Y

Q(X) < a distribution over X, initially empty
for each value x; of X do

extend e with value z; for X

Q(x;) < ENUMERATE-ALL(VARS[bN], €)
return NORMALIZE(Q(X))

function ENUMERATE-ALL(vars, e) returns a real number
if EMPTY vars) then return 1.0
Y < FIRST(vars)
if Yhas valueyine
thenreturn P(y | Pa(Y)) x ENUMERATE-ALL(REST(vars), €)
elsereturn o, P(y | Pa(Y)) x ENUMERATE-ALL(REST(vars), e,)
where g, is e extended with Y = y
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Evaluation tree

Enumeration is inefficient: repeated computation
e.g., computes P(j|a)P(m|a) for each value of ¢

P(alb,e) P(—alb,e) MW_ b,—e)

P(la) P(|—a) P(|a) P(|—a)
90 .05 90 05
O O O O
P(m|a) P(m|—a) P(m|a) P(m|—a)
70 01 70 01
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Inference by variable elimination

Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation

P(B|j,m

aP(B) 2, P(e) 2, _UA@E e) P(jla) P(mla)
A@wa e)P(jla)fu(a)
Pla|B,e)fia)fula)
\€§§C§C

(b, e) (sum out A)
(sum out £)

vv:‘t_a\_/\_/
ST g g
\_/\C_D/\_/\_/

s;mmm
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Variable elimination: Basic operations

Summing out a variable from a product of factors:
move any constant factors outside the summation
add up submatrices in pointwise product of remaining factors

2igfi X oo X fro=fix o X fi 2 fiy1 X
assuming fi, ..., f; do not depend on X

Pointwise product of factors f, and f-:

\HART c. vb@.g@f C. v@wv X \wA@T ey Yk, 21, -

= f(T1y e s YLy ooy Yky By - -5 20)

m.QJ \HAQUN& X \wa mv - \Amf@u Qv

e X fp= X X iX fx
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Variable elimination algorithm

function ELIMINATION-ASK(X, e bn) returns a distribution over X
inputs: X, the query variable
e, evidence specified as an event
bn, a belief network specifying joint distribution P(X 4, ..., X))

factors< | |; vars<— REVERSE(VARS[bN])
for each var in varsdo

factors< [MAKE-FACTOR(var, €)|factors]

if var is a hidden variable then factors< Sum-OuT(var, factors)
return NORMALIZE(POINTWISE-PRODUCT(factors))
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Irrelevant variables

Consider the query P(JohnCalls| Burglary = true)
@ ®

P(J|b) = aP(b) M\uﬁmv W\u?\iy e)P(J|a) Wm\uﬁjiav WDH
Sum over m is identically 1; M is irrelevant to the query @ @

Thm 1: YV is irrelevant unless Y € Ancestors({ X} UE)

Here, X = JohnClalls, E={Burglary}, and
Ancestors({ X} UE) = { Alarm, Farthquake}
so M is irrelevant
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Complexity of exact inference

Singly connected networks (or polytrees):
— any two nodes are connected by at most one (undirected) path
— time and space cost of variable elimination are O(d"n)

Multiply connected networks:
— can reduce 3SAT to exact inference = NP-hard
— equivalent to counting 3SAT models = #P-complete
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Inference by stochastic simulation

Basic idea:
1) Draw N samples from a sampling distribution 5
2) Compute an approximate posterior probability P E

3) Show this converges to the true probability P

Outline:
— Sampling from an empty network
— Rejection sampling: reject samples disagreeing with evidence
— Likelihood weighting: use evidence to weight samples
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Sampling from an empty network

function PRIOR-SAMPLE(bn) returns an event sampled from bn
inputs: bn, a belief network specifying joint distribution P( X, ..., X,,)

X <—an event with n elements
fori = 1tondo
z; < a random sample from P(X; | Parents(X;))

return x
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Example

O
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S R|P(W|SR)
T T| .99
T F| .90
F T| .90
F F| .01
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Example
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O

P(SIC)

-

10
.90

P(C)
50

S R|P(W|SR)
T T| .99
T F| .90
F T| .90
F F| .01

O

P(RIC)
80
20

T —

AIMA2e Chapter 14.1-5 (some topics excluded)

41



Example
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Example
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Sampling from an empty network contd.

Probability that PRIORSAMPLE generates a particular event
Sps(xy...x,) = II]_ P(z;|Parents(X;)) = P(x; ... x,)
l.e., the true prior probability

E.g., Sps(t, f,t,t) =0.5x0.9x 0.8 x 0.9 = 0.324 = P(t, f,t,1)

Let Nps(zi...x,) be the number of samples generated for event
Llyeo-yp

Then we have

lim P(x1,...,2,) = lim Npg(zi,...,z,)/N

N—o0 N—00
= mwm@u?...f&zv
P(xy...x,)

That is, estimates derived from PRIORSAMPLE are consistent

Shorthand: P(z1,...,z,) ~ Pz ... z,)
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Rejection sampling

P(X |e) estimated from samples agreeing with e

function REJECTION-SAMPLING(X, €, bn, N) returns an estimate of P(X|e)
local variables. N, a vector of counts over X, initially zero

for j=1to N do
X <— PRIOR-SAMPLE(bn)
if X is consistent with e then
N[X] +— N[x]+1 where x is the value of X in X
return NORMALIZE(N[X])

E.g., estimate P(Rain|Sprinkler =true) using 100 samples
27 samples have Sprinkler =true
Of these, 8 have Rain=true and 19 have Rain = false.

N

P(Rain|Sprinkler =true) = NORMALIZE((8,19)) = (0.296, 0.704)

Similar to a basic real-world empirical estimation procedure

AIMA2e Chapter 14.1-5 (some topics excluded) 45



Analysis of rejection sampling

P(X|e) = aNps(X, €) (algorithm defn.)
— Npg(X,e)/Nps(e) (normalized by Nps(e))
~ P(X,e)/P(e) (property of PRIORSAMPLE)
= P(X|e) (defn. of conditional probability)

Hence rejection sampling returns consistent posterior estimates
Problem: hopelessly expensive if P(e) is small

P(e) drops off exponentially with number of evidence variables!
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Likelihood weighting

ldea: fix evidence variables, sample only nonevidence variables,
and weight each sample by the likelihood it accords the evidence

function LIKELIHOOD-WEIGHTING(X, € bn, N) returns an estimate of P(X |e)
local variables. W, a vector of weighted counts over X, initially zero

for j=1to N do

X, W< WEIGHTED-SAMPLE(bn)

W(z] < W|[z] + w where x is the value of X in x
return NORMALIZE(W[X])

function WEIGHTED-SAMPLE(bN, €) returns an event and a weight

X <—an event with n elements; w< 1
fori=1ton do
if X; hasavalue z;ine
then w« w x P(X;= z; | Parents(X;))
else x; < a random sample from P(X; | Parents(X;))
return x, w
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Likelihood weighting example
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Likelihood weighting example
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Likelihood weighting example
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Likelihood weighting example
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Likelihood weighting example
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Likelihood weighting example
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Likelihood weighting example
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Likelihood weighting analysis

Sampling probability for WEIGHTEDSAMPLE IS
Sws(z,€) = SMHH\UAN&_\UE&S?AN&E
Note: pays attention to evidence in ancestorsonly
= somewhere “in between” prior and

posterior distribution (Sprinkier) (Rain )

Weight for a given sample z, eis
w(z,e) = II'_, P(e;| Parents(E;))

Weighted sampling probability is
M‘S\NMANv mvgﬁNv mv
HEMHKUAN@._%@%@Q%AN% WHHKUA@_\U@%Q@?A@S

= P(z,e) (by standard global semantics of network)

Hence likelihnood weighting returns consistent estimates
but performance still degrades with many evidence variables
because a few samples have nearly all the total weight
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