An Asymptotically Optimal Algorithm for Maximum Matching in Dynamic Streams

Vihan Shah

Department of Computer Science
Rutgers University

February 1, 2022

Joint work with Sepehr Assadi
Matching Problem

- Graph $G = (V, E)$
- Matching: $M \subseteq E$, (V, M) has max degree 1
- Maximum matching: Matching M^* of the largest size
Streaming Setting

Continuous Data Streams → Memory
Streaming Setting

- $G = (V, E)$
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions
Streaming Setting

- $G = (V, E)$
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions
Streaming Setting

- $G = (V, E)$
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions

\[
\begin{align*}
\text{\includegraphics[width=0.5\textwidth]{streaming.png}}
\end{align*}
\]
Streaming Setting

- $G = (V, E)$
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions
Streaming Setting

1. $G = (V, E)$
2. Edges of G appear in a stream
3. Dynamic Stream: Insertions or Deletions
Streaming Setting

- $G = (V, E)$
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions
Streaming Setting

- $G = (V, E)$
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions
Streaming Setting

- $G = (V, E)$
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions

Diagram of a graph with nodes and edges.
Streaming Setting

- $G = (V, E)$

- Edges of G appear in a stream

- Dynamic Stream: Insertions or Deletions

- Output a solution at the end of the stream

- Goal: Minimize Memory
Lower Bound

- Maximum Matching Lower bound: $\Omega(n^2)$ bits \cite{FKM+05}

- Store the input: $O(n^2)$ bits

- No non-trivial solution
Approximation

- Question: What about an α approximation?
- Return a matching M of size at least $\frac{|M^*|}{\alpha}$
- Can we get $o(n^2)$ space?
- What is the trade off between α and the space?
Previous Work

<table>
<thead>
<tr>
<th>Result</th>
<th>Upper Bound</th>
<th>Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Kon15]</td>
<td>$O(n^2/\alpha^2)$</td>
<td>$\Omega(n^{1.5}/\alpha^4)$</td>
</tr>
</tbody>
</table>

Space-Approximation Tradeoff

Gap: $\alpha^2 \cdot n^{0.5}$
Previous Work

<table>
<thead>
<tr>
<th>Result</th>
<th>Upper Bound</th>
<th>Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Kon15]</td>
<td>$O(n^2/\alpha^2)$</td>
<td>$\Omega(n^{1.5}/\alpha^4)$</td>
</tr>
<tr>
<td>[AKLY16]</td>
<td>$\tilde{O}(n^2/\alpha^3)$</td>
<td>$\Omega(n^{2-o(1)}/\alpha^3)$</td>
</tr>
</tbody>
</table>

Gap: $n^{o(1)}$

Space-Approximation Tradeoff
Previous Work

<table>
<thead>
<tr>
<th>Result</th>
<th>Upper Bound</th>
<th>Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Kon15]</td>
<td>$O(n^2/\alpha^2)$</td>
<td>$\Omega(n^{1.5}/\alpha^4)$</td>
</tr>
<tr>
<td>[AKLY16]</td>
<td>$\tilde{O}(n^2/\alpha^3)$</td>
<td>$\Omega(n^{2-o(1)}/\alpha^3)$</td>
</tr>
<tr>
<td>[CCE+16]</td>
<td>$\tilde{O}(n^2/\alpha^3)$</td>
<td></td>
</tr>
</tbody>
</table>

Gap: $n^{o(1)}$

Space-Approximation Tradeoff
Previous Work

<table>
<thead>
<tr>
<th>Result</th>
<th>Upper Bound</th>
<th>Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Kon15]</td>
<td>$O(n^2/\alpha^2)$</td>
<td>$\Omega(n^{1.5}/\alpha^4)$</td>
</tr>
<tr>
<td>[AKLY16]</td>
<td>$\tilde{O}(n^2/\alpha^3)$</td>
<td>$\Omega(n^{2-o(1)}/\alpha^3)$</td>
</tr>
<tr>
<td>[CCE+16]</td>
<td>$\tilde{O}(n^2/\alpha^3)$</td>
<td></td>
</tr>
<tr>
<td>[DK20]</td>
<td></td>
<td>$\Omega(n^2/\alpha^3)$</td>
</tr>
</tbody>
</table>

Space-Approximation Tradeoff

![Diagram showing the space-approximation tradeoff between $\Omega(n^2/\alpha^3)$ and $\tilde{O}(n^2/\alpha^3)$]
Previous work

- Best known upper bound: $\tilde{O}(n^2/\alpha^3)$ bits ([AKLY16])

- Best known lower bound: $\Omega(n^2/\alpha^3)$ bits ([DK20])

- Gap of $\text{polylog}(n)$ bits

- These types of $\text{polylog}(n)$ gaps appear frequently in dynamic streams

- One key reason is a main technique for finding edges in a dynamic streams
Previous work

L_0-Samplers:

- It is *non-trivial* to find even one edge in a dynamic stream
- L_0-Samplers are a *key tool* to solve this problem
- They can sample an edge uniformly at random from a set of pairs of vertices undergoing edge insertions and deletions
Previous work

- L_0-Samplers can be implemented in $O(\log^3 n)$ bits of space ([JST11])
- $\Omega(\log^3 n)$ bits are also necessary ([Kap+17])
- Many problems in streaming have the polylog(n) overhead because of the use of L_0-samplers
- Connectivity has a lower bound of $\Omega(n \log^3 n)$ ([NY19])
Our Result

We prove asymptotically **optimal** bounds on the space-approximation tradeoff:

\[
\text{(1)} \quad \alpha \approx n^{1/2}.
\]

If \(\alpha > n^{1/2} \), then there is not enough space to output the answer:

\[
\text{(2)} \quad n^\alpha > n^{2/3}.
\]
Our Result

We prove asymptotically optimal bounds on the space-approximation tradeoff:

Result

There is a dynamic streaming algorithm that with high probability outputs an \(\alpha \)-approximation to maximum matching using \(O(n^2/\alpha^3) \) bits of space for any \(\alpha \ll n^{1/2} \).
Our Result

We prove asymptotically optimal bounds on the space-approximation tradeoff:

Result

There is a dynamic streaming algorithm that with high probability outputs an \(\alpha \)-approximation to maximum matching using \(O(n^2/\alpha^3) \) bits of space for any \(\alpha \ll n^{1/2} \)

This closes the gap up to constant factors

Some problems do not need the \(\text{polylog}(n) \) overhead
Our Result

We prove asymptotically **optimal** bounds on the space-approximation tradeoff:

Result

There is a dynamic streaming algorithm that with high probability outputs an α-approximation to maximum matching using $O(n^2/\alpha^3)$ bits of space for any $\alpha \ll n^{1/2}$

This closes the gap up to constant factors

Some problems do not need the $\text{polylog}(n)$ overhead

If $\alpha > n^{1/2}$ then there is not enough space to output the answer:

$$\frac{n}{\alpha} > \frac{n^2}{\alpha^3}$$
We will now give a proof sketch
Simplifying Assumptions for this talk:

- The input graph is bipartite
- The maximum matching has size $\Omega(n)$
- Getting an $\Theta(\alpha)$ approximation is enough
Assumptions

Simplifying Assumptions for this talk:

- The input graph is bipartite
- The maximum matching has size $\Omega(n)$
- Getting an $\Theta(\alpha)$ approximation is enough

All these assumptions can be lifted!
Approach

1. Match or Sparsify:
 - Either find a large matching
 - Or identify hard instances

2. Solve the hard instances

Note: We run these algorithms in parallel
1. Find a matching M_{easy} in space $O(n^2/\alpha^3)$ bits such that:

- Either $|M_{\text{easy}}| = \Omega(n/\alpha)$
Find a matching M_{easy} in space $O(n^2/\alpha^3)$ bits such that:

- Either $|M_{\text{easy}}| = \Omega(n/\alpha)$
- Or Subgraph induced on unmatched vertices has $\tilde{O}(n)$ edges and a matching of size $\Omega(n)$
Match Or Sparsify

Idea:
- Sample $O(n^2/\alpha^3 \text{polylog}(n))$ random edges
- L_0-samplers take space $\text{polylog}(n)$
- M_{easy} is a greedy matching over the sampled edges
- Similar to residual greedy property of matching (used in [Ahn+18, Kon18])
- Different proof but along the same lines
Solving Hard Instances

We know the partition at the end of the stream from Match Or Sparsify step

\[|M_{\text{easy}}| < \frac{n}{\alpha} \]

\(\tilde{O}(n) \) edges
Consider the bipartite graph
Grouping

Random grouping on both sides

\[\frac{n}{\alpha} \quad \square \quad \frac{n}{\alpha} \]

\[\tilde{O}(n) \text{ edges} \]

\[|M_{\text{easy}}| < \frac{n}{\alpha} \]
1/α fraction of groups on right are in the neighborhood of V_i

Done to reduce the neighbors of V_i
Recovery

- There are $\Omega(n/\alpha)$ pairs of groups with exactly one edge between them.

- V_i, V_j do not contain any vertices of M_{easy}.

\[|M_{\text{easy}}| < \frac{n}{\alpha} \]

\[\tilde{O}(n) \text{ edges} \]
Want to recover the edge between V_i and V_j
Recovery

- V_i does not contain any vertices of M_{easy}
- Neighbors of V_i: $O(n/\alpha^2)$
- Trivial solution: $O((n/\alpha^2) \cdot \log n)$ bits
Recovery

- Goal: $O(n/\alpha^2)$ bits
- So n/α groups will imply space of $O(n^2/\alpha^3)$ bits
- V_j does not contain any vertices of M_{easy}
- Recover $N(V_i) - M_{\text{easy}}$

$V_i \quad V_j$

$|M_{\text{easy}}| < n/\alpha$

$\tilde{O}(n)$ edges
Sparse neighborhood recovery sketch

- Given V_i at the beginning
- Given M_{easy} at the end
- Output: $N(V_i) - M_{\text{easy}}$
- Space: $O(n/\alpha^2)$ bits
V_j lies completely within $N(V_i) - M_{easy}$
Recovery

- We know u is a neighbor of V_i (from Neighborhood sketch of V_i)
- We know v is a neighbor of V_j (from Neighborhood sketch of V_j)
- Thus, (u, v) must be an edge
Summary

Concluding Remarks
There is a dynamic streaming algorithm that whp outputs an α-approximation to maximum matching using $O(n^2/\alpha^3)$ bits of space.
There is a dynamic streaming algorithm that whp outputs an α-approximation to maximum matching using $O(n^2/\alpha^3)$ bits of space.

The lower bound of [DK20] is $\Omega(n^2/\alpha^3)$ bits making our algorithm optimal.
Summary

- There is a dynamic streaming algorithm that whp outputs an α-approximation to maximum matching using $O(n^2/\alpha^3)$ bits of space.

- The lower bound of [DK20] is $\Omega(n^2/\alpha^3)$ bits making our algorithm optimal.

- $\text{polylog}(n)$ overhead of L_0-samplers is not always necessary (Unlike [NY19]).
Open Problems

- These polylog(n) overheads due to use of L_0-samplers are prevalent in dynamic stream literature.

- Can our techniques be used to bypass polylog(n) overheads for other problems:
 - E.g. Vertex Cover, Dominating Set, Vertex Connectivity
Open Problems

- These $\text{polylog}(n)$ overheads due to use of L_0-samplers are prevalent in dynamic stream literature

- Can our techniques be used to bypass $\text{polylog}(n)$ overheads for other problems:
 - E.g. Vertex Cover, Dominating Set, Vertex Connectivity

Thank you!