An Asymptotically Optimal Algorithm for Maximum Matching in Dynamic Streams

Vihan Shah

Department of Computer Science
Rutgers University

January 21, 2022

Joint work with Sepehr Assadi
Matching Problem

- Graph \(G = (V, E) \)
- Matching: \(M \subseteq E, (V, M) \) has max degree 1
- Maximum matching: Matching \(M^* \) of the largest size
Matching Problem

- Graph \(G = (V, E) \)
- Matching: \(M \subseteq E \), \((V, M)\) has max degree 1
- Maximum matching: Matching \(M^* \) of the largest size
Matching Problem

- Graph $G = (V, E)$

- Matching: $M \subseteq E$, (V, M) has max degree 1

- Maximum matching: Matching M^* of the largest size
Streaming Setting

Continuous Data Streams → Memory
Streaming Setting

- \(G = (V, E) \)
- Edges of \(G \) appear in a stream
- Dynamic Stream: Insertions or Deletions
Streaming Setting

- $G = (V, E)$
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions
Streaming Setting

- \(G = (V, E) \)
- Edges of \(G \) appear in a stream
- Dynamic Stream: Insertions or Deletions

\[\begin{array}{c}
\text{\includegraphics[width=0.5\textwidth]{streaming-setting-diagram}} \\
\end{array} \]
Streaming Setting

- $G = (V, E)$
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions

![Diagram of a graph with vertices and edges showing the streaming setting.]

Vihan Shah
Streaming Setting

- $G = (V, E)$
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions
Streaming Setting

- $G = (V, E)$
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions

![Graph Diagram]
Streaming Setting

- $G = (V, E)$
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions
Streaming Setting

- $G = (V, E)$
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions

\[
\text{\begin{tikzpicture}
 \node (A) at (0,0) [circle,draw] {A};
 \node (B) at (1,0) [circle,draw] {B};
 \node (C) at (2,0) [circle,draw] {C};
 \node (D) at (3,0) [circle,draw] {D};
 \node (E) at (4,0) [circle,draw] {E};
 \draw (A) -- (B);
 \draw (B) -- (C);
 \draw (C) -- (D);
 \draw (D) -- (E);
\end{tikzpicture}}
\]
Streaming Setting

- $G = (V, E)$
- Edges of G appear in a stream
- Dynamic Stream: Insertions or Deletions
- Output a solution at the end of the stream
- Goal: Minimize Memory
Lower Bound

- Maximum Matching Lower bound: $\Omega(n^2)$ bits [FKM+05]
- Store the input: $O(n^2)$ bits
- No non-trivial solution
Approximation

- Question: What about an α approximation?

- Return a matching M of size at least $\frac{|M^*|}{\alpha}$

- Can we get $o(n^2)$ space?

- What is the trade off between α and the space?
Previous Work

<table>
<thead>
<tr>
<th>Result</th>
<th>Upper Bound</th>
<th>Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Kon15]</td>
<td>$O(n^2/\alpha^2)$</td>
<td>$\Omega(n^{1.5}/\alpha^4)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Space-Approximation Tradeoff

$\Omega(n^{1.5}/\alpha^4)$

Gap: $\alpha^2 \cdot n^{0.5}$

$O(n^2/\alpha^2)$
Previous Work

<table>
<thead>
<tr>
<th>Result</th>
<th>Upper Bound</th>
<th>Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Kon15]</td>
<td>$O(n^2/\alpha^2)$</td>
<td>$\Omega(n^{1.5}/\alpha^4)$</td>
</tr>
<tr>
<td>[AKLY16]</td>
<td>$\tilde{O}(n^2/\alpha^3)$</td>
<td>$\Omega(n^{2-o(1)}/\alpha^3)$</td>
</tr>
</tbody>
</table>

Space-Approximation Tradeoff

[AKLY16] $\tilde{O}(n^2/\alpha^3)$

Gap: $n^{o(1)}$
Previous Work

<table>
<thead>
<tr>
<th>Result</th>
<th>Upper Bound</th>
<th>Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Kon15]</td>
<td>$O(n^2/\alpha^2)$</td>
<td>$\Omega(n^{1.5}/\alpha^4)$</td>
</tr>
<tr>
<td>[AKLY16]</td>
<td>$\tilde{O}(n^2/\alpha^3)$</td>
<td>$\Omega(n^{2-o(1)}/\alpha^3)$</td>
</tr>
<tr>
<td>[CCE+16]</td>
<td>$\tilde{O}(n^2/\alpha^3)$</td>
<td></td>
</tr>
</tbody>
</table>

Space-Approximation Tradeoff

[AKLY16] \quad \text{Gap: } n^{o(1)} \quad [AKLY16]

$\Omega(n^{2-o(1)}/\alpha^3)$ \quad $\tilde{O}(n^2/\alpha^3)$
Previous Work

<table>
<thead>
<tr>
<th>Result</th>
<th>Upper Bound</th>
<th>Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Kon15]</td>
<td>$O(n^2/\alpha^2)$</td>
<td>$\Omega(n^{1.5}/\alpha^4)$</td>
</tr>
<tr>
<td>[AKLY16]</td>
<td>$\tilde{O}(n^2/\alpha^3)$</td>
<td>$\Omega(n^{2-o(1)}/\alpha^3)$</td>
</tr>
<tr>
<td>[CCE+16]</td>
<td>$\tilde{O}(n^2/\alpha^3)$</td>
<td></td>
</tr>
<tr>
<td>[DK20]</td>
<td>$\tilde{O}(n^2/\alpha^3)$</td>
<td>$\Omega(n^2/\alpha^3)$</td>
</tr>
</tbody>
</table>

Space-Approximation Tradeoff

[DK20] $\Omega(n^2/\alpha^3)$ \[\text{Gap: polylog}(n) \][AKLY16] $\tilde{O}(n^2/\alpha^3)$

Vihan Shah
Dynamic Streaming Matching
January 21, 2022
Previous work

- Best known upper bound: $\tilde{O}(n^2/\alpha^3)$ bits ([AKLY16])
- Best known lower bound: $\Omega(n^2/\alpha^3)$ bits ([DK20])
- Gap of $\text{polylog}(n)$ bits
- These types of $\text{polylog}(n)$ gaps appear frequently in dynamic streams
- One key reason is a main technique for finding edges in a dynamic streams
Previous work

L_0-Samplers:

- It is non-trivial to find even one edge in a dynamic stream

- L_0-Samplers are a key tool to solve this problem

- They can sample an edge uniformly at random from a set of pairs of vertices undergoing edge insertions and deletions
Previous work

- L_0-Samplers can be implemented in $O(\log^3 n)$ bits of space [JST11]

- $\Omega(\log^3 n)$ bits are also necessary [Kap+17]

- Many problems in streaming have the $\text{polylog}(n)$ overhead because of the use of L_0-samplers

- Connectivity has a lower bound of $\Omega(n \log^3 n)$ ([NY19])
Our Result

We prove asymptotically optimal bounds on the space-approximation tradeoff:

There is a dynamic streaming algorithm that with high probability outputs an α-approximation to maximum matching using $O\left(\frac{n^2}{\alpha^3}\right)$ bits of space for any $\alpha \ll n^{1/2}$.

This closes the gap up to constant factors. Some problems do not need the polylog(n) overhead.

If $\alpha > n^{1/2}$ then there is not enough space to output the answer: $n^\alpha > n^{2\alpha^3}$.
Our Result

We prove asymptotically optimal bounds on the space-approximation tradeoff:

Result

There is a dynamic streaming algorithm that with high probability outputs an α-approximation to maximum matching using $O(n^2/\alpha^3)$ bits of space for any $\alpha \ll n^{1/2}$.
Our Result

We prove asymptotically optimal bounds on the space-approximation tradeoff:

Result

There is a dynamic streaming algorithm that with high probability outputs an α-approximation to maximum matching using $O\left(\frac{n^2}{\alpha^3}\right)$ bits of space for any $\alpha \ll n^{1/2}$

This closes the gap up to constant factors

Some problems do not need the $\text{polylog}(n)$ overhead
Our Result

We prove asymptotically optimal bounds on the space-approximation tradeoff:

Result

There is a dynamic streaming algorithm that with high probability outputs an α-approximation to maximum matching using $O(n^2/\alpha^3)$ bits of space for any $\alpha \ll n^{1/2}$

This closes the gap up to constant factors.

Some problems do not need the $\text{polylog}(n)$ overhead.

If $\alpha > n^{1/2}$ then there is not enough space to output the answer:

$$\frac{n}{\alpha} > \frac{n^2}{\alpha^3}$$
We will now show how to prove this!
Assumptions

Simplifying Assumptions for this talk:

- The input graph is bipartite
- The maximum matching has size $\Omega(n)$
- Getting an $\Theta(\alpha)$ approximation is enough
Assumptions

Simplifying Assumptions for this talk:

- The input graph is bipartite
- The maximum matching has size $\Omega(n)$
- Getting an $\Theta(\alpha)$ approximation is enough

All these assumptions can be lifted!
A hard instance from previous work [Kon15, AKLY16, DK20]:

Lower Bound [DK20]: $\Omega(n^2/\alpha^3)$ bits
Approach

1. Match or Sparsify:
 - Either find a large matching
 - Or identify hard instances similar to hard instances of previous work

2. Solve the hard instances

Note: We run these algorithms in parallel
1. Find a matching M_{easy} in space $O(n^2/\alpha^3)$ bits such that:
 - Either $|M_{\text{easy}}| = \Omega(n/\alpha)$

$$|M_{\text{easy}}| \geq n/\alpha$$
Find a matching M_{easy} in space $O(n^2/\alpha^3)$ bits such that:

- Either $|M_{\text{easy}}| = \Omega(n/\alpha)$
- Or subgraph induced on unmatched vertices has $\tilde{O}(n)$ edges and a matching of size $\Omega(n)$
Idea:

- Sample $O(n^2/\alpha^3 \text{polylog}(n))$ random edges

- L_0-samplers take space $\text{polylog}(n)$

- M_{easy} is a greedy matching over the sampled edges

- Similar to residual greedy property of matching (used in [Ahn+18, Kon18])

- Different proof but along the same lines
The instances we focus on are qualitatively same as the hard instances.

$|M_{\text{easy}}| < n/\alpha$

$\tilde{O}(n)$ edges

$o(n/\alpha)$

$\Theta(n)$

sparse
Solving Hard Instances

Analysis of [DK20]:

- We need $\frac{n^2}{\alpha^3}$ edges
- Space: $O\left(\frac{n^2}{\alpha^3} \cdot \log(n)\right)$ bits
- L_0-samplers: $O\left(\frac{n^2}{\alpha^3} \cdot \text{polylog}(n)\right)$ bits
Solving Hard Instances

We know the partition U, B at the end of the stream from Match Or Sparsify step.
Grouping

Consider the bipartite graph

\[
\begin{array}{ccc}
 n & \circ & \circ & n \\
 \circ & \circ & \circ & \circ \\
\end{array}
\]
Grouping

Partition left randomly into groups of size α

\[\frac{n}{\alpha} \quad \circ \quad \circ \quad n \]

\[\circ \quad \circ \quad \circ \quad \circ \]

\[\circ \quad \circ \quad \circ \quad \circ \]

\[\circ \quad \circ \quad \circ \quad \circ \]

\[\circ \quad \circ \quad \circ \quad \circ \]
Grouping

V_i lies within B with probability $1 - o(1)$
Focus on group V_i that lies within B
\[V_i \text{ has } \alpha \text{ edges to } B; \quad \text{We just need one edge;} \]

\[V_i \]

\[n \]

\[\Theta(n) \]

\[o(n/\alpha) \]

\[U \]

\[B \]
1/\alpha \text{ fraction of vertices on right are in the neighborhood of } V_i
V_i has n/α vertices in its neighborhood
Grouping

\(o(n/\alpha^2) \) from \(U; \quad n/\alpha \) from \(B; \)

\(V_i \quad o(n/\alpha^2) \)

\(\Theta(n) \)

\(o(n/\alpha) \)

\(U \quad B \)
V_i has just 1 edge in B
Can we find this one neighbor efficiently?

\[V_i \]

\[o(n/\alpha^2) \]

\[n/\alpha \]

\[o(n/\alpha) \]

\[\Theta(n) \]
Grouping

- This is like the set disjointness problem from communication complexity

- Need to find a vertex that has an edge from V_i and is from B

\[\Theta(n) \]

\[o(n/\alpha) \]

\[n/\alpha \]

\[o(n/\alpha^2) \]
Recovery

Need to find a vertex that is from B and also has an edge from V_i.

- Trivial solution: $O(n \log n / \alpha^2)$ bits
- Goal: $O(n / \alpha^2 + \log n)$ bits
- So n / α groups will imply space of $O(n^2 / \alpha^3)$ bits
Recovery

Idea:

- Represent the neighborhood of V_i as a binary vector
- Compute inner products with random vectors
Recovery

Idea:

- Represent the neighborhood of V_i as a binary vector
- Compute inner products with random vectors
- Recovery: Go over all possible neighbor vectors and check if the inner products match
Recovery

Idea:

- Number of possible neighbor vectors: $2^{o(n/\alpha^2)} \cdot n$
- Space: $O(n/\alpha^2 + \log n)$ bits
Issues

- We can find the neighbor of V_i

- But we do not know the name of the endpoint in V_i

- Cannot recover an edge

- We need grouping on the right too

V_i

\[o(n/\alpha^2) \]

\[n/\alpha \]
Grouping

Consider the bipartite graph

\[\begin{array}{c}
 n & \circ & \circ & n \\
 \circ & \circ & \circ & \circ \\
 \end{array} \]
Random grouping on both sides

\[\frac{n}{\alpha} \quad \text{circles} \quad \frac{n}{\alpha} \]
V_i lies within B with probability $1 - o(1)$
Focus on group V_i that lies within B
Grouping

V_i has α edges to B; We just need one edge;

V_i has $\Theta(n)$ edges to $\Theta(n)$ in B; We just need one edge;
$1/\alpha$ fraction of groups on right are in the neighborhood of V_i
V_i has n/α^2 groups in its neighborhood
Grouping

The green groups lie completely within B

V_i

$\Theta(n)$

$\omega(n/\alpha)$

U

B
V_i has an edge to V_j
Recovery

- There may be multiple edges between V_i and V_j
- But there is just one edge between them with high constant probability
Want to recover the edge between V_i and V_j
Recovery

- We know \(u \) is a neighbor of \(V_i \) (from Neighborhood sketch of \(V_i \))
- We know \(v \) is a neighbor of \(V_j \) (from Neighborhood sketch of \(V_j \))
- Thus, \((u, v)\) must be an edge
We need to solve a more general problem

- $|M_{easy}| < n/\alpha$
- $\tilde{O}(n)$ edges
- $\Theta(n)$
- $o(n/\alpha)$

Challenges
Challenges

- $\tilde{O}(n)$ edges

- Cannot bound the degree of vertices with a constant

\[|M_{\text{easy}}| < \frac{n}{\alpha} \]

$\tilde{O}(n)$ edges

\[o(n/\alpha) \]

$\Theta(n)$

sparse
Sparse Neighborhood Recovery

- $G = (V, E)$ specified in a dynamic stream
- $S \subseteq V$ known before the stream
- $T \subseteq V$ revealed after the stream
- Goal: Return $N(S) - T$
Sparse Neighborhood Recovery

Promises:

1. $|T| \leq a$;

2. $|N(S) - T| \leq b$;

3. for every vertex $v \in N(S) - T$, $|S \cap N(v)| = O(1)$
Sparse Neighborhood Recovery

Space:

1. Trivial solution: $O(a \log n + b \log n)$ bits
2. Goal: $O(a + b \log n)$ bits
Solution:

1. We can solve the problem using previous ideas of inner products

2. Problems:
 - Exponential time for recovery
 - Random bits needed is much more than space budget
Solution:

1. We can solve the problem using previous ideas of inner products

2. Problems:
 - Exponential time for recovery
 - Random bits needed is much more than space budget

3. Solution using ideas from sparse recovery (complicated)

4. Space bound: $O(a + b \log n)$ bits

5. This bound is information-theoretically optimal
Solving General Hard Instance

- Using **sparse neighborhood recovery sketch** we can solve the general hard instance
- Space: $O\left(\frac{n^2}{\alpha^3}\right)$ bits

![Diagram](image)
Concluding Remarks
Summary

1. Match or Sparsify: In $O(n^2/\alpha^3)$ bits of space
 - We either get a large matching
 - Or get a hard instance that is sparse and contains a large matching

2. Our sparse recovery sketches can be used to solve these hard instances in $O(n^2/\alpha^3)$ bits

3. We run both algorithms in parallel and get the final algorithm
Summary

- There is a dynamic streaming algorithm that whp outputs an α-approximation to maximum matching using $O(n^2/\alpha^3)$ bits of space.
Summary

- There is a dynamic streaming algorithm that whp outputs an α-approximation to maximum matching using $O(n^2/\alpha^3)$ bits of space.

- The lower bound of [DK20] is $\Omega(n^2/\alpha^3)$ bits making our algorithm optimal.
Summary

- There is a dynamic streaming algorithm that whp outputs an α-approximation to maximum matching using $O(n^2/\alpha^3)$ bits of space.

- The lower bound of [DK20] is $\Omega(n^2/\alpha^3)$ bits making our algorithm optimal.

- $\text{polylog}(n)$ overhead of L_0-samplers is not always necessary (Unlike [NY19]).
Open Problems

- These \(\text{polylog}(n) \) overheads due to use of \(L_0 \)-samplers are prevalent in dynamic stream literature.

- Can our techniques be used to bypass \(\text{polylog}(n) \) overheads for other problems:
 - E.g. Vertex Cover, Dominating Set, Vertex Connectivity
Open Problems

- These \(\text{polylog}(n) \) overheads due to use of \(L_0 \)-samplers are prevalent in dynamic stream literature.

- Can our techniques be used to bypass \(\text{polylog}(n) \) overheads for other problems:
 - E.g. Vertex Cover, Dominating Set, Vertex Connectivity

Thank you!