
An Undergraduate Course in ParallelComputingfor Scientists and Engineers1Manavendra MisraDept. of Mathematical and Computer SciencesColorado School of MinesGolden, CO 80401Ph. (303)-273-3873email: mmisra@mines.colorado.eduAbstractParallel Computing is traditionally treated as a highly specialized area of study,and courses in this area are therefore designed with the advanced Computer Sciencegraduate student in mind. This thinking excludes non computer scientists from obtain-ing formal instruction in parallel problem solving techniques that might prove usefulto them in their careers. To rectify this shortcoming in curricula, we have designeda course to teach parallel computing to science and engineering undergraduates. Aprototype of this course was taught at CSM in Spring 1993. A unique feature of thiscourse was the involvement of project mentors to guide students on individual projects.The mentors provide students with exciting projects which have to be solved on parallelmachines. The students start designing the problem solution early in the semester, andlearn appropriate skills from the course \just in time" to apply them to the project.This paper describes the prototype course, and plans for the future.1 IntroductionThe course described in this paper attempts to rectify what the author perceives as a severeshortcoming in traditional curricula. In most universities, parallel computing is treatedas a highly specialized area of knowledge that is taught only to computer science graduatestudents. This philosophy makes the parallel computing courses inaccessible to non computerscience students. Many graduates from these scienti�c and engineering areas will feel theneed to use parallel and high performance computers to solve complex problems in their areasof expertise. In fact, most computational scientists who use parallel machines are from �elds1Parallel hardware for future o�erings of this course will be procured through NSF ILI-IG grant DUE-9450874 1



other than computer science. Since so many non-computer scientists use high performanceparallel machines to solve problems, the lack of formal training in parallel problem solvingskills often results in sub-optimal solutions to the problems. Students from science andengineering disciplines would therefore bene�t immensely from a course in parallel computingdesigned with their needs in mind.Another drawback of teaching parallel computing only to graduate students is that it is toolate to prevent students from developing a habit of using sequential problem solving tech-niques for all problems, even if the problems are inherently parallel. It is therefore importantto provide scientists and engineers an early introduction to parallel problem solving.A number of other educators have tried to address one or both of the aspects of the problemidenti�ed above. Most of the discussions in [3, 4, 6, 7, 8, 9, 10, 11, 12, 15, 17] address theinstruction of parallel computing to computer science undergraduate students. A sequence ofcourses on High Performance Scienti�c Computing have been developed at the University ofColorado (CU) at Boulder as a result of an Educational Infrastructure Grant from the CISEdivision of the NSF [5]. The �rst course familiarizes students with three high performancemachines, and teaches the students how to use software tools for visualizing data. The secondcourse in the sequence teaches the students how to solve three scienti�c problems on eachof the three machines. The author is currently involved in an e�ort to extend the diversityand number of application problems in this project. The author is also involved in a DOEsponsored initiative called UCES 2 (Undergraduate Computational Engineering and Sciencesproject). The goal of the UCES project is to develop modules for teaching computationalscience to undergraduate students. The DOE has also sponsored a similar project at thegraduate level. This project is called CSEP (Computational Science Education Project),and it has resulted in an electronic text-book that can be retrieved via the World Wide Web3.The above discussion points towards a strong need for courses that teach parallel computingto science and engineering students at an early stage of their education. A prototype coursemotivated by this need was taught at the Colorado School of Mines in the Spring of 1993.This paper describes the prototype course, discusses the lessons learnt from teaching thecourse, and describes how the course will be taught in the future, beginning in Fall 1994.2 The Spring 1993 PrototypeThe need described in the previous section motivated the development of a prototype coursein \Scienti�c Supercomputing" at the Colorado School of Mines in the Spring semesterof 1993. The course was developed and taught by the author, with considerable help fromProfessor Jean Bell of the Mathematical and Computer Sciences department. In this section,we shall discuss various aspects of this course, and the lessons learnt from it.2The contact person for the project is Tom Marchioro (tlm@ameslab.gov).3CSEP Materials can be viewed at http://csep1.phy.ornl.gov/csep.html using NCSA Mosaic.2



2.1 Course OrganizationThe prototype course was taught as a combined graduate/undergraduate class. It was at-tended by undergraduates at the senior level, as well as beginning graduate students froma number of disciplines. This combination of backgrounds and levels resulted in a veryproductive environment, as will be disussed later in this section.It was strongly felt that students would be best motivated by learning how real-life interestingproblems could be solved using high performance computing. The prototype course wastherefore built around individual semester projects that required the students to use parallelcomputing to solve fairly complex problems. Unlike courses where the instructor chosesspeci�c applications, students were encouraged to choose projects in areas that they foundmost interesting. Thus, the emphasis of instruction changed from teaching details of speci�capplications, to parallel computing issues that enhance general problem-solving techniques.Since the students were working on projects that they found exciting, it was expected thatthere would be a greater eagerness to learn.Involvement of Project Mentors: A course like this requires the students to choose aproject very early in the semester. However, it is unrealistic to expect students who don'thave much of a computing background to decide on a parallel computing project of the appro-priate complexity at an early stage. To facilitate the process of project selection, researchersfrom di�erent areas of expertise were invited to give a short talk on some research projectin their area that might bene�t from parallel computing. Each student (in consultationwith the instructor and the respective researcher) then chose one of these application areasfor his/her term project. The researcher then played the role of client and mentor for thestudent project. Researchers working in robotics, neural networks applications in chemistryand mining, databases, computer vision, renewable energy resources, and geophysics actedas mentors for projects in the course (see Table 1). Since then, other faculty members in en-gineering, geophysics, and geology have expressed an interest in mentoring student projectsin the course.During the �rst two weeks, the students were given an introduction to parallel computing,and the prospective project mentors gave short presentations of the problems from theirareas of research that they thought were appropriate for student projects. At the end of the�rst two weeks of class, the students turned in a problem-statement that brie
y describedthe project that they chose. After this, students started work on the design of a parallelsolution to the problem, with help from the course instructor and the project mentor. It wasexpected that the process of designing a parallel solution, and the ensuing implementationof their design would result in the students discovering that they lacked certain skills andknowledge to solve the problem on parallel machines. Instruction in the course thereforeconcentrated on providing these very skills. In this way, we intended to provide a settingin which the students could see how the knowledge learned in this course can be applieddirectly for solving real-life problems.Midway through the semester, the students were expected to have completed the design oftheir solution. They briefed the instructor on their progress by submitting updated versions3



of their report document (the students maintained a document that started o� as theirproblem statement, and was updated periodically till it was in the form of the �nal report).The students then began implementing this solution on the parallel machine of their choice.At the end of the semester, the students were graded on a �nal project report, and an in-classpresentation of the results of their project{including a discussion on the design and analysisof the algorithms used, and performance analysis of the solution (see Appendix A).Instruction in the class was imparted through some lecturing, and in large part through groupdiscussions. The small class size, and a lively group of students who came from di�erentbackgrounds made these discussions very fruitful and educational. This way, the computerscientists could help the non-computer scientists with some of the computing aspects, whilethe non-computer scientists provided an application 
avor that some of the computer scien-tists were not used to. Also, the fact that we had both graduate and undergraduate studentsin the same room helped the undergraduates as they could get to see a graduate perspectiveon their projects.2.2 Software Issues CoveredThe following software issues were covered in the prototype course:� Using Unix workstations: directory structures, email, network news, ftp, remote logins,make, etc. Many of the non-computer science majors did not have a familiarity withthese concepts, and they were necessary to e�ectively use the supercomputers remotely(see Section 2.4).� Design and analysis of sequential and parallel algorithms, performance analysis of aparallel program, optimizing performance. The students were taught how to timeprogram runs on the single processor workstations, as well as on the parallel machines.They were introduced to concepts of speedup, e�ciency, and processor-time optimality.� A discussion on parallelizing compilers, parallel debuggers, integrated program develop-ment environments, graphical user interfaces, and their e�ect on program development.Although we did not have access to most of these tools for the machines we used, thestudents discussed how their project would bene�t from these tools, and they alsoacquired an understanding of how di�cult it is to build these tools.� Writing parallel programs for shared versus distributed memory machines, the kindsof synchronization primitives required in each case.� e�cient data mapping onto di�erent parallel architectures.2.3 Computer Architecture Issues CoveredThe following architecture oriented issues were covered in the prototype course:4



� Taxonomy of parallel computers. Vector processors, SIMD computers, MIMD com-puters.� The appropriateness of each class of machine for certain problem types. The analysisof the granularity of parallelism in a problem, and how it a�ects the choice of parallelmachine.� The distributed memory,message passing paradigm versus the shared memory paradigm.� Interconnection networks, parallel computer architecture issues, and their e�ect onprogram development.� The architectures of the three machines used in the course.2.4 Resources UsedWhen the prototype course was taught in Spring 1993, CSM did not possess parallel hard-ware that could be used for the course. We did, however, have workstations with Internetaccess. Therefore, it was decided to use the resources available at the Supercomputer Cen-ters through the Internet. Three machines were chosen so as to provide students access torepresentative computers in three di�erent classes of high performance computers. Eachcomputer was located at a di�erent Supercomputer Center:1. The Cray Y-MP was the representative chosen for the class of vector supercomputers.Access to the Y-MP was provided by the National Center for Atmospheric Research(NCAR). Due to the proximity of NCAR to our campus, we were also able to organizea tour of the NCAR facilities for the students. This was particularly motivating forthe students as they got to see some of the machines that they were working on, inaddition to the kinds of problems that were being solved on them by other scientists.2. The Connection Machine CM-2 was chosen as the representative of the class of SIMDmachines. Access to the CM-2 was provided by the Pittsburgh Supercomputer Center.3. The nCUBE-2 was chosen as the representative of the MIMD class of machines. Accessto the nCUBE-2 was provided by the San Diego Supercomputer Center.The students were asked to solve sample problems on each machine during the �rst half ofthe course. They then had to analyze the problem they were solving for their term project,and decide which machine was best suited for the solution of the problem.Textbook: The �rst edition of George Almasi and Alan Gottlieb's text book Highly Par-allel Computing was used for the class. Unfortunately, the students found this to be tooadvanced a text for them. It seems like there is no single book that is perfect for a courseof this nature. In Fall 1994, we expect to use Introduction to Parallel Computing by Lewisand El-Rewini, along with lecture notes developed by the instructor.5



During the course, a heavy emphasis was placed on the use of electronic mail and networknewsgroups for exchanging information. Unfortunately, a number of the students were notvery comfortable with Unix, and the facilities that it provides. This meant that some timehad to be devoted towards teaching these concepts. In future o�erings of the class, one weekwill be reserved for teaching these concepts (see Section 3.1). An internal newsgroup wasset up just for the course. This newsgroup facilitated communication between students andbetween the professor and students. The instructor also posted announcements of recentdevelopments in the �eld of parallel computing (some of which were taken from newsgroupslike comp.parallel, and from mailing lists like the UParCC 4 mailing list). Students couldalso use the newsgroup to discuss common problems, and help other students out.2.5 Projects completedTable 1 lists the projects completed by the students in the prototype course, along with thetarget machine used for each project, and the project mentors.Title of project Target Machine MentorPrediction of Protein Structure Cray Y-MP Prof. Lorien Pratt (CSM)using Neural NetworksRecognition of Mining Machine nCUBE Prof. Aaron Gordon (CSM)Events using Neural NetworksParallel Implementation nCUBE Prof. Robin Murphy (CSM)of Robot BehaviorsParallel Implementation of CM-2 Prof. John Scales (CSM)the Seismic Migration ProblemAn Analysis of Parallel nCUBE Prof. Jean Bell (CSM)Relational DatabasesParallel Implementation of CM-2 Prof. Manavendra Misra (CSM)2-D Wavelet TransformsWind Simulation Cray Y-MP Neil Kelly(National Renewable Energy Lab)Parallel Neural Network CM-2 Prof. Lorien Pratt (CSM)SimulationTable 1: The list of projects completed in the prototype course. The table shows the projects,the target machines the projects were implemented on, and the names of the project mentors.3 Future PlansThe prototype course provided valuable experience in teaching a broad based course inparallel computing for undergraduates. The lessons learnt from the course will help determine4UParCC stands for Undergraduate Parallel Computing Consortium.6



the changes that will need to be incorporated in future o�erings of the course.A feeling that was shared by some of the students was that often times, slow access overthe internet, and overloaded machines at the Supercomputer Centers was an inconvenience.Many students felt that an on-campus parallel machine dedicated to the course would bene�tthem immensely. With this in mind, it was decided that we would invest in some a�ordableparallel hardware. The CSM administration provided a seed grant to purchase a 10-nodetransputer based machine, with a Sun front-end. We have also recently been awarded anNSF ILI-IG grant to purchase a larger machine capable of handling a full class, along withappropriate software.Choice of Hardware: The two driving considerations in the choice of equipment for thecourse were: (a) budgetary considerations and (b) the suitability of the equipment in anundergraduate teaching environment. Although a number of commercially available parallelcomputers were considered for the course, most were outside our budget limitations. It wasimportant for the purposes of this course to provide an adequate degree of parallelism toas many student users as possible at any given time, subject to the limits imposed by ourbudget. It was also important to have a parallel system that could be recon�gured so thatstudents could compare performances across a number of di�erent interconnection networks.Based on the above criteria, it became apparent that transputer based parallel machineswould be best suited for this situation. Discussions with educators at other Universities whohad tried to achieve similar goals as us [1, 14, 16, 18, 19] and with members of the UParCCgroup helped reinforce this decision.Other than the transputer machines, there was an option of buying used parallel machinesthat would be within our budget. Another option was to purchase a shared-memory parallelmachine (from a vendor who was going out of business) for a fraction of its original price.These options were discarded because of the possible maintenance problems they might haveentailed.Once a decision was made to buy a transputer machine, a number of vendors were contacted.In response to a posting on the UParCC mailing list and on comp.parallel, educators providedaddresses and comments on vendors with whom they had interacted. Using this informa-tion, Parsytec, Transtech, Meiko, Computer System Architects (CSA), and Alta TechnologyCorporation were contacted. To provide maximum accessibility to the parallel system, itwas decided to have the processors housed in an independent chassis that was connected toa Unix workstation through an interface. Since students had access to workstations con-nected to the network all over campus, they could login remotely into the front end (FE)workstation and thus get easy access to the parallel machine. Alta provided the lowest pricequotations for such a set-up.It was decided that a machine with 64 processors, that could be accessed by up to fourindependent users at a time, and whose interconnections could be recon�gured easily throughsoftware control, would be ideal for the required environment. This way, a student couldcon�gure an individual 16-node section in one of many interconnection schemes{a 4�4 two-dimensional mesh, a 4-D hypercube, a 16 node shu�e-exchange network, a 16 node linear7



array, etc. Alternatively, a student could request all 64 nodes to solve a larger problem, orrun tests on performance that require a large number of nodes. It was decided to con�gureall 64 nodes with 4MB of RAM, as it is envisioned that most student projects will be dataintensive (seismic data analysis, image processing, neural networks). A system based on theUltra/XL cards from Alta meets these speci�cations in the most cost-e�ective manner. Peerreviews of Alta's interface card have also been excellent [2].Visualization: One major shortcoming of the prototype course was the lack of emphasisplaced on the visualization of results. Students had a hard time making sense of the largeamount of data that sometimes resulted from their projects. Some of them managed to useMathematica for simple visualization tasks, but it became apparent that a course such asthis should de�nitely have a visualization component to it. The latest version of Matlabfrom The Math Works, Inc. combines powerful numerical processing with excellent graphicsand is ideal for this course. Matlab will be used in addition to public domain packages(e.g. Ximage, XCollage, GVLware) for visualization. We already have a site license forMathematica, which can also be used for simple data visualization tasks.Unix skills: The original schedule of the prototype course did not have a large amount oftime earmarked for teaching Unix skills. It turned out that a number of the students did notfeel very comfortable with these skills, and so the new schedule reserves a week for teachingthese skills.More group work: In the prototype course, students did individual projects over thesemester. It might be worthwhile to form groups of two students from di�erent backgrounds(and possibly groups with one graduate and one undergraduate student) to facilitate learningfrom each other.Cooperation with other similar e�orts: The author is involved with the UCES project,as well as with the enhancement of the CU Boulder HPSC project [5]. Such collaborationsprovide opportunities for the exchange of project modules, as well as a chance to exchangeideas with educators with similar goals.3.1 Course Description and ScheduleThe description of the course as it appears in the catalog is as follows:MACS 463 : Parallel Computing for Scientists and Engineers. This course is de-signed to introduce the �eld of parallel computing to all scientists and engineers. Thestudents will have access to state of the art supercomputers, and will be taught howto solve scienti�c problems on these machines. They will be introduced to varioussoftware and hardware issues related to high performance computing.8



3 hours lecture, 3 semester hoursPrerequisites: Programming experience in C/Fortran, consent of instructor.At the end of this course, the student should be able to demonstrate:a. an understanding of the basic issues involved in using high performance computers.b. a knowledge of how to write parallel programs on state of the art supercomputers.c. a knowledge of how to solve scienti�c problems using parallel problem solving tech-niques.A tentative course schedule for a 14 week semester is presented here:Weeks 1 and 2 An overview of parallel computing, motivation for using parallel comput-ing, suitable problems.Presentations by prospective project mentors on their research.Students submit a problem statement describing their project by the end of the secondweek.Week 3 Using Unix workstations: Unix directory structures, e-mail, network news, ftp,remote logins, using Unix make. (This is necessary because a number of non-CSmajors do not have these skills).Weeks 4 and 5 Designing e�cient parallel solutions to problems: the concept of an al-gorithm, design and analysis of sequential algorithms, design and analysis of parallelalgorithms, performance analysis of a program, optimizing the performance of a parallelprogram.Tour of the Parallel Processing Lab. Introduction to the setup. Initiating a loginsession to use the parallel machine. Introduction to the programming environment(Trollius and Logical Systems C).Students turn in a preliminary report with the solution design for their project.Weeks 6 and 7 Taxonomy of parallel computers. Vector Processors, SIMD computers,MIMD computers, suitability of machines for di�erent problem types.Student presentations of their problem-statement and solution design.Week 8 The distributed memory, message passing paradigm versus the shared memoryparadigm.Writing programs in the Trollius environment.Weeks 9 and 10 Software issues: parallelizing compilers, parallel debuggers, integratedprogram development environments, graphical user interfaces and their e�ects on thee�ciency of program development.Analysis of Trollius with respect to the above software issues.9



Week 11 Scienti�c Visualization using tools like Mathematica, Matlab, XImage, XCollage,GVL.Week 12 and 13 Hardware issues: interconnection networks, parallel computer architec-ture issues and their e�ect on program development.Week 14 End semester in-class presentation of project results.Submission of project report.4 ConclusionThis paper describes a course that is being developed at the Colorado School of Mines. Thegoal of the new course is to instruct undergraduate science and engineering students in par-allel computing. It is hoped that this knowledge will make them more valuable contributorsto industry (one of the students from the Spring '93 class went on to do a summer internshipwith Mobil Oil, where she wrote programs on the CM-5). For those students who pursue agraduate education, this course will provide instruction in an extremely useful research tool(one of the student projects formed the basis of an article at an international conference[13]). In addition, it is hoped that this course will prove to be a model that can be usedby other schools that are dedicated to enhancing undergraduate education in science andengineering.

10



References[1] Al Brady. Mackay School of Mines, University of Nevada. Personal Communication.[2] Greg D. Burns. Ohio Supercomputing Center. Personal Communication.[3] R. M. Butler, R. E. Eggen, and S. R. Wallace. Introducing parallel processing at theundergraduate level. SIGCSE Bulletin, 20(1), February 1988.[4] A. L. Fisher and T. Gross. Teaching the programming of parallel computers. SIGCSEBulletin, 23(1), March 1991.[5] L. Fosdick, E. Jessup, and C. Schauble. Course material for High Performance Scienti�cComputing. Material obtainable by anonymous ftp from cs.colorado.edu.[6] A. Ghafarian. An experimental approach to a course on parallel and distributed algo-rithms. SIGCSE Bulletin, 23(1), March 1991.[7] J. Hartman and D. Sanders. Teaching a course in parallel processing with limitedresources. SIGCSE Bulletin, 23(1), March 1991.[8] B. P. Hillam. Integrating an array processor into a `hands-on' computer science cur-riculum. SIGCSE Bulletin, 22(2), June 1990.[9] D. C. Hyde. A parallel processing course for undergraduates. SIGCSE Bulletin, 21(1),February 1989.[10] D. J. John. Integration of parallel computation into introductory computer science.SIGCSE Bulletin, 24(1), March 1992.[11] E. Luque, R. Suppi, and J. Sorribes. A quantitative approach for parallel computingteaching. SIGCSE Bulletin, 24(1), March 1992.[12] M. J. Meredith. Introducing parallel computing into the undergraduate computer sci-ence curriculum: A Progress Report. SIGCSE Bulletin, 24(1), March 1992.[13] Manavendra Misra and Terry Nichols. Computation of 2-d Wavelet Transforms onthe Connection Machine-2. In Claude Girault, editor, Applications in Parallel andDistributed Computing, number A-44 in IFIP Transactions, pages 3{12. North Holland,1994.[14] C. Nevison. Colgate University. Personal Communication.[15] C. Nevison. An undergraduate parallel processing laboratory. SIGCSE Bulletin, 20(1),February 1988.[16] Nan C. Schaller and Andrew Kitchen. Rochester Institute of Technology. PersonalCommunication. 11



[17] Nan C. Schaller and Andrew T. Kitchen. Experiences in parallel computing. In Pro-ceedings of the Parallel Computing in Education Workshop, Miskolc, Hungary, March1993.[18] G. S. Stiles. Utah State University. Personal Communication.[19] D. Thiebaut. Smith College. Personal Communication.

12



A Evaluation SheetThe following grading sheet lists the criteria based on which the students were assigned agrade for the class. These criteria were handed out to the students towards the end of thesemester. Scienti�c Supercomputing, Spring 1993Grading SheetTechnical Quality of Project: 90%1. Motivation for choice of project{why did you think that this was an appropriate su-percomputing project?2. Motivation for choosing the particular target machine that you worked on. What wasit about your project that made you think that this was the best machine to solve theproblem on? Do you have an understanding of the special features and the functioningof this machine?3. An understanding of the various supercomputing issues and tradeo�s. What kind ofbene�ts were obtained by using the particular supercomputer that was used for theproject? Was there an adequate explanation of why these bene�ts came about (e.g. ifthere is a signi�cant speedup, why did it come about{if there wasn't, why not?). Whatkind of data mapping was used? What kind of special functions/functional units onthe machine were used for this application? Why?4. Amount of work appropriate for a semester project?5. What was the quality of results achieved (with respect to supercomputing issues!)?How much (of the supercomputing issues covered in the class) was learned from thecourse?6. Does the project report describe the relevant work done for the project adequately?Communication of project results: 10%1. Quality of in-class presentation.2. Quality of project report. 13


