
Comput Sci Res Dev
DOI 10.1007/s00450-014-0268-6

SPECIAL ISSUE PAPER

Exploring energy-performance-quality tradeoffs for scientific
workflows with in-situ data analyses

Georgiana Haldeman · Ivan Rodero · Manish Parashar ·
Sabela Ramos · Eddy Z. Zhang · Ulrich Kremer

© Springer-Verlag Berlin Heidelberg 2014

Abstract Power and energy are critical concerns for high
performance computing systems from multiple perspec-
tives, including cost, reliability/resilience and sustainabil-
ity. At the same time, data locality and the cost of data
movement have become dominating concerns in scientific
workflows. One potential solution for reducing data move-
ment costs is to use a data analysis pipeline based on in-
situ data analysis.However, the energy-performance-quality
tradeoffs impact of current optimizations and their overheads
can be very hard to assess and understand at the appli-
cation level.In this paper, we focus on exploring perfor-
mance and power/energy tradeoffs of different data move-
ment strategies and how to balance these tradeoffs with
quality of solution and data speculation. Our experimental
evaluation provides an empirical evaluation of different sys-
tem and application configurations that give insights into

G. Haldeman · I. Rodero (B) · M. Parashar
Rutgers Discovery Informatics Institute and NSF Cloud
and Autonomic Computing (CAC) Center, Rutgers University,
Piscataway, NJ, USA
e-mail: irodero@rutgers.edu

G. Haldeman
e-mail: haldeman@cac.rutgers.edu

M. Parashar
e-mail: parashar@rutgers.edu

S. Ramos
Computer Architecture Group, University of A Coruña,
A Coruña, Spain
e-mail: sramos@udc.es

E. Z. Zhang · U. Kremer
Department of Computer Science, Rutgers University,
Piscataway, NJ, USA
e-mail: eddy.zhengzhang@cs.rutgers.edu

U. Kremer
e-mail: uli@cs.rutgers.edu

the energy-performance-quality tradeoffs space for in-situ
data-intensive application workflows. The key contribution
of this work is a better understanding of the interactions
between different computation, data movement, energy, and
quality-of-result optimizations from a power-performance
perspective, and a basis for modeling and exploiting these
interactions.

Keywords Power/performance tradeoffs · In-situ data
analysis · Data staging · Data speculation

1 Introduction

Recent technological advances and trends are significantly
changing scientific computing along multiple dimensions.
System architectures are composed of multicore processors
with increasing core counts, closely coupled accelerators
and/or co-processors, and deeper memory hierarchies. Fur-
thermore, power and energy are becoming important con-
cerns from multiple perspectives, including cost, reliabil-
ity/resilience and sustainability.

As we approach the limits of current technologies, there
will be even more severe constraints on energy and power at
all levels, and tradeoffs between performance, power/energy,
resilience, etc., will be essential. For example, building an
exascale system with a budget of 20MW means a budget of
2pJ per operation. This 2pJ budget per operation includes
getting the data for the operation, completing the operation,
and storing the data. We believe that these performance and
energy efficiency targets can only be achieved using a combi-
nation of optimizations along the dimensions of computation,
data movement, desired result quality, and power/energy.
Furthermore, data locality and data movement will be impor-
tant aspects in satisfying these extreme efficiency constraints,

123



G. Haldeman et al.

and it is essential to understand related costs and tradeoffs as
part of the data analysis pipeline.

Current research efforts that address these challenges
are largely disjoint and are mostly designed to optimize
performance and utilization, and can negatively impact
power/energy behaviors. For example, optimizations that
include some form of speculative execution can introduce
a significant work overhead along the non-critical path of a
computation with only limited performance benefits. Finding
the best energy-performance tradeoff, e.g., the right level of
speculation, is therefore a crucial challenge. The same holds
for adjusting the quality of specific application characteris-
tics, for instance in terms of a selected spatiotemporal reso-
lution granularity, or frequency of a data analytics feedback
steps in a scientific workflow. We believe that the application
should be involved in making energy-performance-quality
tradeoff decisions. However, the energy, performance and
quality impact of current optimizations and their overheads
can be very hard to assess and understand at the application
level.

In this paper, we target data-intensive application work-
flows that generate/process large amounts of raw data at run-
time and analyze it in-situ (i.e., where it is generated). Specif-
ically, we focus on a synthetic workflow that reproduces the
behavior of a combustion simulation workflow with an in-
situ data analysis pipeline. Such a workflow needs to process
this data as often as possible to facilitate, for example, more
accurate or faster scientific discovery. The quality of solution
depends on different factors such as the frequency of analysis
of the produced data, the accuracy of the analytics algorithm
used (e.g., single precision vs. double precision) or number
of cores used for performing the analysis.

We study performance and power/energy tradeoffs of dif-
ferent data processing configurations and data movement
strategies, and how to balance these tradeoffs with the quality
of solution. We analyze these tradeoffs in detail for a com-
plete deep memory hierarchy using a canonical in-situ data
analysis workflow. We specifically focus on performance and
power/energy tradeoffs of different strategies for data move-
ment, and study how to balance these tradeoffs with the qual-
ity of solution (i.e., frequency of analysis and number of
resources/cores for performing the analysis) for the targeted
type of workflow. We also propose and study data specula-
tion techniques (also known as “prefetching”) for transferring
data across levels of the deep memory hierarchy leveraging
the iterative and predictive behavior of scientific applications.
Such strategies can significantly reduce I/O costs and opti-
mize energy consumption if the extra power cost is acceptable
and does not result in memory contention.

We also present an empirical evaluation of different sys-
tem and application configurations that gives insights into
the energy-performance-quality tradeoffs space for in-situ
data-intensive application workflows. This work is crucial

for better understanding the interactions between different
computation, data movement, energy, and quality-of-result
optimizations, and provides the foundations for modeling
and exploiting these interactions. The main contributions of
this paper are: (1) a comprehensive study of performance,
power and energy behaviors of in-situ data analysis pipelines
using different resource configurations and data paths in a
(deep) memory hierarchy, and (2) a study of the tradeoffs
between power/performance and quality of the solution, and
speculation-based techniques. The tradeoffs observed in this
study can be used to define an autonomic runtime that can
dynamically select the most appropriate configurations, data
placement, data paths and data movement optimizations.

The rest of this paper is organized as follows. Section 2
discusses related work. Section 3 describes the key data-
related challenges in executing typical data-intensive scien-
tific workflows and optimization strategies, such as spec-
ulation. Section 4 provides an experimental evaluation of
power/performance behaviors and tradeoffs of different data-
centric strategies. Finally, Sect. 5 concludes the paper and
outlines directions for future work.

2 Related work

In this section, we first present existing work related to the
cost of data movement. We then discuss prior studies on data
speculation and, finally, we describe the related approaches
characterizing power/performance tradeoffs for scientific
workflows in systems with deep memory hierarchies.

Data movement in complex memory hierarchies imposes
challenges in both energy efficiency and performance. Exten-
sive prior work focus on algorithm optimization for data
movement minimization [2,30]. Perrone et al. [25] present
optimizations based on domain partitioning to reduce data
movement on BlueGene. The contemporary heterogeneous
accelerator-based system structure complicates the data
movement between slower large storage, faster memories
and on-chip caches [4], which motivates the development
of tools like the one discussed in [9], that implement code-
analysis components to enable efficient data movement in
heterogeneous systems. The power consumption due to the
data movement is non-trivial, and Kestor et al. [17] present a
characterization of energy cost from data movement in sci-
entific applications.

Speculative execution has been largely used to enhance
parallelism, from instruction level parallelism such as branch
prediction in a microprocessor, to task level parallelism in
a heterogeneous system, such as [10], in which Diamos et
al. explore a dynamic optimization technique for specula-
tive execution of GPU kernels. In order to enable parallel
execution of sequential codes, Hammond et al. [16] imple-
ment thread-level speculation, and Balakrishnan et al. [3]

123



Exploring energy-performance-quality tradeoffs for scientific workflows

use speculative inputs to launch methods on other proces-
sors for optimization of sequential programs. There is a large
body of literature on speculation for modern multi-core sys-
tems, including [29] which provides profiled-based specu-
lative parallelization, and many of them are focused on I/O
data speculation. For instance, Nightingale et al. [24] propose
Linux kernel support for multiprocess speculative execution,
which improves the throughput of distributed file systems by
masking I/O latency.

An extensive number of publications have already
addressed energy efficiency focusing on the memory hierar-
chy and storage-class memory with solutions such as µblades
[22], FAWN [1] and Gordon [6]. Some prior work [8] exploit
the use of low-power (thin or wimpy) cores that consume
less energy, typically with the help of micro-benchmarks
[26]. Dong et al. [11] propose 3D stacked magnetic memory
(MRAM) caches for better power efficiency. Yoon et al. [31]
study the potential impact of NVRAM on the performance of
deep memory hierarchies and Li et al. [21] study the poten-
tial impact of hybrid DRAM and byte-addressable NVRAM
on both performance and energy perspectives of scientific
applications. Our previous work [15] also addresses energy
efficiency from an application-aware and data-centric per-
spective, focusing on optimizing data placement/movement
and scheduling computations as part of end-to-end simula-
tion workflows.

Energy-efficiency is becoming a major concern in large-
scale scientific applications. Shalf et al. [12] explore energy
efficiency for extreme-scale scientific applications and
address software-architecture co-design by comparing dif-
ferent architectural alternatives such as multi-cores, GPUs
and many-cores [18]. Rountree et al. [28] developed a sys-
tem called Adagio to collect statistical data on task execution
slacks for applying dynamic voltage and frequency scaling
(DVFS) techniques. Rodero et al. [27] studied application-
centric aggressive power management for HPC workloads
considering power management mechanisms and controls
available at different levels and for different subsystems. Li
et al. [19] focus on the hybrid MPI/OpenMP programming
model and used DVFS to reduce the energy requirements
of hybrid application codes for several benchmarks in HPC
systems. They also developed a framework to predict the per-
formance effect of task aggregation in both computation and
communication phases and its impact in terms of execution
time and energy of MPI programs [20]. Lively et al. [23]
investigate energy and performance characteristics of differ-
ent parallel implementations of scientific applications on a
multicore cluster system, and explore interactions between
power consumption and performance. Durillo et al. [13]
study the potential benefits of using a Pareto-based work-
flow scheduling algorithm using energy consumption and
performance models for task executions. Gamell et al. [14]
explored data-related energy-performance tradeoffs and co-

design choices on current and ongoing high-end computing
platforms.

Other existing work characterized power-performance
behaviors and tradeoffs of scientific applications; however,
at the best of our knowledge, this is the first work that
explores energy-performance-quality tradeoffs for scientific
workflows with in-situ data analyses with speculative data
movement.

3 Scientific workflows with in-situ data analysis

In this section we provide a description of the specific class
of scientific workflows that we target in this work, and the
data management challenges addressed.

3.1 Targeted workflow

The synthetic workflow used in this paper reproduces the
behavior of a class of scientific workflows with an in-situ
analysis typically used in production simulations. Our ulti-
mate goal is understanding data-related issues for an in-situ
analysis workflow integrated with S3D [7], a massively paral-
lel turbulent combustion code. S3D performs first-principles-
based direct numerical simulations of turbulent combustion
in which both turbulence and chemical kinetics associated
with burning gas-phase hydrocarbon fuels introduce spatial
and temporal scales spanning typically at least five decades.
We use a matrix multiplication kernel in order to simplify the
exploration space (S3D requires n3 MPI ranks) and focus on
the interaction between components. However, the selected
matrix multiplication kernel and S3D have similar power sig-
natures as shown in Fig. 1.

3.2 In-situ data analytics

In-situ analysis is performed where the data is located, and
it typically shares memory resources with the primary sci-
entific simulation. The main advantage of in-situ analysis is
that it avoids the data movement. However, constraints on the
acceptable impact on the simulation place significant restric-
tions on type and frequency of in-situ analysis. In contrast,
in-transit pipelines analyze the data while it is being staged
on separate resources, either local or remote. The decision on
whether to perform in-situ and/or in-transit data analysis is
based on data location and performance/energy constraints.
For example, one may use NVRAM as extended DRAM to
analyze data in-situ rather than transfer data over the network
or offload it to disk, in order to save the time and energy
required to transfer the data. In this paper, we focus on in-
situ data analysis and on using a deep memory hierarchy to
support data staging for the analysis, as illustrated in Fig. 2.
Although multiple memory levels could be used simultane-

123



G. Haldeman et al.

Fig. 1 Power signature of S3D
and the matrix multiplication
kernel. In both cases 8 cores
were used and the generated
data was written to hard disk

Fig. 2 Proposed data staging architecture. Simulation processes store
data in one level of the memory hierarchy (e.g., NVRAM) and analysis
components load the data from this memory level

ously, in this paper we study the use of each memory level
individually for data staging.

We target scientific and engineering workflows with cou-
pled application components that typically generate large
amounts of raw data at runtime. In general, we propose to
perform the data analysis as often as possible to facilitate
more accurate scientific discovery. This model of accompa-
nying scientific workflows with a data analysis pipeline is
illustrated in Fig. 3. In the data analysis pipeline, an arbi-
trary number of coupled parallel application components
(e.g., simulations) generate data (typically in DRAM) at arbi-
trary rates, and data analytics components process the data
where it is generated. However, as the execution of the scien-
tific application progresses, DRAM becomes insufficient for
storing the raw data, and a data staging area in other mem-
ory levels (e.g., disk or remote memory) is required, which
introduces associated I/O overhead. Clearly, the workflows
can utilize the resources available on emerging architectures
more effectively if the workload can be mapped and sched-
uled to exploit the data locality as well as the communication
patterns between workflow components. NVRAM is one of
the most important elements of emerging storage architec-
tures due to its power efficiency. We propose to use NVRAM

Fig. 3 Targeted data analysis pipeline illustrating execution stages for
N simulation steps—analysis of data from step i can be overlapped
with simulation step i +1; the simulation of step i +2 cannot start until
analysis of step i data is completed

as staging area for the data movement between simulation
and data analysis components, the exploration of which will
be elaborated in Sect. 4.

3.3 Quality of the solution

Simulation-based application workflows are typically itera-
tive (e.g., consisting of multiple time steps as illustrated in
Fig. 3). Each simulation step usually generates data, and,
although this data is not typically processed and analyzed at
every step, it must be analyzed as often as possible to improve
the quality of the solution. For example, turbulent combus-
tion direct numerical simulation currently resolve intermit-
tent phenomena that occur on the order of 10 simulation steps;
however, in order to maintain I/O overheads at a reasonable
level, typically only every 400th step is saved to persistent
storage for post-processing and, as a result, the data pertain-
ing to these intermittent phenomena is lost [5]. We use the
frequency of data analysis as metric for the quality of solution
in this paper.

3.4 Data speculation

Speculative execution has been extensively used as an opti-
mization technique in different areas such as branch predic-

123



Exploring energy-performance-quality tradeoffs for scientific workflows

tion, pipelined processors and optimistic concurrency con-
trol. It provides more concurrency if extra resources are avail-
able. Speculative data movement can potentially improve the
performance of application workflows; however, the possi-
ble power/energy costs associated with data movement may
be large. In this paper we target a deep memory hierarchy
composed of multiple levels such as DRAM, NVRAM and
SSD/disk storage. Efficiently speculating about data transfers
within this deep memory hierarchy requires understanding its
possible impact on performance as well as on energy/power
for each of the levels of the memory hierarchy.

In this paper, we study data speculation in the context
of an in-situ scientific workflow that processes data itera-
tively. Hence, speculation consists on loading the data that
is expected to be processed in the subsequent iteration while
the current data is being processed. As data speculation may
not always be accurate, it can result in larger energy con-
sumption. Thus, it is important to identify when speculation
is beneficial (e.g., to minimize energy consumption or cap-
ping power) and which levels of the memory hierarchy can
be used. Furthermore, using speculation under memory con-
tention may result in significant performance degradation.
Such situations can be determined at runtime, which is one
of the goals of this paper.

4 Experimental evaluation

4.1 Evaluation methodology

Hardware testbed The evaluation has been conducted on the
NSF-funded research instrument “Computational and dAta
Platform for Energy efficiency Research” (CAPER). This is
an eight-node cluster based on SuperMicro SYS-4027GR-
TRT system, which is capable of housing concurrently, in
one node up to eight general-purpose graphical processing
units (GPGPU), or eight Intel many-integrated-core (MIC)
coprocessors—or any eight-card combination of the two;
and up to 48 hard disk drives (HDD), or solid-state drives
(SSD). Its nominal configuration features servers with two
Intel Xeon Ivy Bridge E5-2650v2 (16 cores/node), 128 GB
of DRAM, 1TB of Flash-based NVRAM (i.e., Fusion-io
IoDrive-2), 2TB of SSD and 4TB of hard disk, one Intel
Xeon Phi 7120P, and Infiniband FDR network connectiv-
ity. This platform also mirrors key architectural characteris-
tics of high-end system, such as XSEDE’s Stampede system
at TACC, and provides several unique features to support
our research goals. Furthermore, CAPER is instrumented
with both coarse- and fine-grained power metering at server
level—an instrumented Raritan PDU provides power mea-
surements at 1 Hz, and a Yokogawa DL850E ScopeCorder
data acquisition recorder provides power measurements at
up to 1 kHz (from 1 Ms/s current and voltage modules).

CAPER provides us with a platform to validate our models
and investigate key aspects of data-centric and energy effi-
ciency research. Our experimental evaluation was conducted
using the fine-grained instrumentation system at server level
with power readings at 50 Hz. The system was configured
with turbo mode enabled and default OS-level DVFS capa-
bilities.
Software framework We have built a multi-threaded frame-
work which reproduces the behavior of the workflow
described in Sect. 3. It can be used to evaluate the different
configurations in terms of execution time and energy/power.
The framework divides the execution into stages. It uses a
synthetic workload, which (iteratively) performs the follow-
ing tasks:

1. simulation stages execute matrix multiplication kernels
(i.e., CPU-intensive computation),

2. the results of the matrix multiplications are stored to a
predefined memory level (i.e., HDD, SDD, etc.),

3. loads the data into memory, and
4. performs the analysis using a word finding kernel.

The amount of data, the rate of the simulation and the
analysis can also be configured. In the evaluation presented
in this paper, stages are composed of six steps and the matrix
multiplication kernel generates 1 GB of data per step (i.e.,
6 GB per stage). The data is written to the devices using
regular write operations.

The software framework uses a configuration file to define
all parameters. After setup, a monitor thread is spawned.
The monitor is in charge of spawning the necessary worker
threads to execute different tasks and to ensure the flow of
the application. Given that the framework is used to assess
performance of the application, we want to limit the over-
head of the monitor, so that all the computing power is used
by the application. To do so, upon creation the workers are
grouped based on the type of job they are executing (i.e.,
simulation, store data, analysis, load data) and each group
is assigned a queue of tasks. This solution not only ensures
limited overhead from the monitor’s perspective, but it also
enforces some control on the flow of the execution. As a
result the program needs minimal synchronization which is
another requirement because enforcing synchronization can
result in some or all threads being idle. It is undesirable to
have idle time since the server consumes power even when
it’s idle and there are two situation in which this can hap-
pen: (1) between stages of the execution (which is achieved
by the use of limited synchronization tool alone), and (2)
between threads from the same group, i.e., the threads finish
their tasks at different times (which is achieved by dividing
the workload in smaller tasks and making sure the number
of tasks it is divisible by the number of threads). To ensure

123



G. Haldeman et al.

fair share of the CPU, the number of working threads at any
time does not exceed the number of physical cores available
on the machine, unless the overloading thread is signaled.

The framework’s view of the memory is that it is divided
into four levels: DRAM, NVRAM, SSD and HDD. So far we
have explored fixed data paths, i.e., the memory level where
the data will be stored exclusively needs to be specified in the
configuration file. In this paper we do not use buffering-based
optimizations (e.g., double- or triple-buffering) to retrieve
data from different memory levels. This serves as a baseline
for future experiments in which we plan to combine memory
levels, optimizations and implement autonomic algorithms
for the dynamic placement of the data.

The following subsections provide a characterization of
the performance and energy/power behaviors of in-situ data
analytics using different technologies for data staging and
analyzes tradeoffs between the quality of the solution and
speculative techniques for data staging.

4.2 Data staging over the (deep) memory hierarchy

Figure 4 displays the execution time (top), energy con-
sumption (center) and average power (bottom) of the work-
flow’s execution using different configurations and paths
(i.e., devices) for data staging. It shows that when the number
of cores used for simulation increases, the simulation time
decreases while the analysis time increases. In general, the
execution time with HDD is much longer than with the other
devices; however, the difference in energy is lower due to
the limited power requirements of the HDD. The I/O cost (in
terms of execution time) is around 25 % larger with HDD
compared to SSD, on average. However, the I/O cost differ-
ence between flash-based devices (i.e., NVRAM and SSD) is
lower than 5 %, on average. The I/O costs are dominated by
store operations as the workflow performs load operations at
once while stores are interleaved within the simulation steps.
Further, the workload execution time deviation is small for
DRAM, NVRAM and SSD, but it is large for HDD.

Figure 4 (center) also shows that for 8s_8a configura-
tion (i.e., 8 cores used for simulation and 8 for analysis)
DRAM, NVRAM and SSD energy consumptions are close,
for 10s_6a NVRAM and SSD energy consumptions are
grouped together and at a equal difference between DRAM
and NVRAM energy consumption, and for the other two con-
figurations, the NVRAM and SSD energy consumptions get
close to HDD. This is because with four or less cores the
workload execution is dominated by the analysis time and it
results in significant idle time in the cores running simula-
tions. However, energy consumption and execution time are
quite correlated.

We can also observe some tradeoffs, for example NVRAM
is faster than SSD but it does consume more energy and
requires higher power as seen in 10_6 and 12_4 configura-

tions, because the average power—see Fig. 4 (bottom)—is
higher in NVRAM compared to SSD and HDD.

4.3 Tradeoffs with quality of the solution

Figure 5 displays the execution time (top), energy consump-
tion (center) and average power (bottom) of the workflow’s
execution for different frequencies of analysis. It shows that
both execution time and energy decrease as the number of
simulation steps between data analyses increases (i.e., fre-
quency of analysis decreases). Execution time and energy
consumption drastically decrease from f oa = 1 to f oa = 4;
however, they do decrease moderately with f oa ≥ 6. It
means that, for this specific configuration (i.e., 12 cores for
simulation and 4 for analysis), it is not worth to perform the
data analysis with less frequently than every six simulation
steps, as the savings in execution time and energy are low
while the impact on the scientific discovery (e.g., to be able
to visualize phenomena that are changing rapidly) associ-
ated to the workflow’s execution may be large. Thus, the best
tradeoff between performance/energy and quality of solution
is found when data is analyzed every 4–6 simulation steps.
Figure 5 (bottom) also shows that power increases as the
number of simulation steps between data analyses increases.
The reason is that the execution time is shorter and, conse-
quently, the CPU cores run simulation kernels (which are
more power demanding than data analysis) for a larger per-
centage of time.

4.4 Data speculation

Since there are different dimensions associated to the spec-
ulation such as its starting point, and its accuracy, we have
fixed the configuration to 12a_4a (i.e., 12 cores for simu-
lation and 4 for analysis) and the speculation start at 50 %
of the simulation stage. This is an approximation because
data speculation can be performed only when the data to be
moved is already available (i.e., existing data from previ-
ous simulation stages or data already produced in the previ-
ous simulation steps of the current stage). Figure 6 displays
the execution time (top), energy consumption (center) and
average power (bottom) of the workflow’s execution using
different devices for data staging and different speculation
accuracy levels. It shows that as the accuracy increases the
execution time and energy consumption decreases (between
10–20 %, on average depending on the device). When the
speculation is accurate, the difference in energy of NVRAM,
SSD, etc. is lower as speculation can be completed before
the simulation stage finishes. Figure 6 (bottom) shows that
average power is lower without speculation, especially with
HDD.

To understand better the performance/energy/power costs
and tradeoffs with speculation, Fig. 7 displays the outcomes

123



Exploring energy-performance-quality tradeoffs for scientific workflows

Fig. 4 Execution time (top),
energy consumption (center)
and average power (bottom) of
the workflow’s execution using
different configurations and
devices for data staging. Each
group of columns represents one
configuration (number of cores
for simulation/analysis) and
each column (top) provides the
time breakdown for the different
phases of the workflow. Error
boxes show average and
standard deviation of five runs

123



G. Haldeman et al.

Fig. 5 Execution time (top),
energy consumption (center)
and average power (bottom) of
the workflow’s execution for
different frequency of analysis
(“ f oa”) and different devices
for data staging. Frequency of
analysis f oa = k means that the
data analysis is performed every
k simulation steps. Error boxes
show average and standard
deviation of five runs

of the workflow’s execution with some relevant configura-
tions. The top three outcomes show the workload’s stages
over time using different devices in the data path. The exe-
cution time is shorter using DRAM and NVRAM compared
to HDD, as expected. The bottom three outcomes show how
speculation can reduce the execution time when the specu-
lation is accurate. When the speculation is not accurate (last

outcome in Fig. 7) there is no improvement in the execu-
tion time but there is a significant cost of energy and power.
Thus, the key aspect is balancing the use of speculation and
its associated costs depending on the confidence of the spec-
ulation, which can be realized using an autonomic runtime
and/or prediction techniques. Figure 7 also shows relevant
tradeoffs. For example, the use of NVRAM and HDD with

123



Exploring energy-performance-quality tradeoffs for scientific workflows

Fig. 6 Execution time (top),
energy consumption (center)
and average power (bottom) of
the workflow’s execution using
different devices for data staging
and different accuracy levels in
the data speculation. Error
boxes show average and
standard deviation of five runs

accurate speculation provide similar execution times; how-
ever, the energy cost is lower when using speculation while
the power cost is higher, as shown in Fig. 8. Thus, we can
conclude that speculation can optimize execution time and
energy, but it should be used only if there is enough power
budget available.

5 Conclusion and future work

This paper provides an evaluation of data-intensive applica-
tion workflows with in-situ data analysis in terms of tradeoffs
between performance and power/energy behaviors. We ana-
lyze different configurations for both architecture and appli-

123



G. Haldeman et al.

Fig. 7 Outcomes of the
workload execution using
different devices and
configurations. In the outcomes
that use HDD with speculation,
the speculation starts at 50 % of
the simulation stage. The X axis
represents time

Fig. 8 Power dissipation over
time using NVRAM (i.e.,
“nospec”) and using HDD with
speculation starting at 50 % with
accuracy = 100 % (i.e., “spec”).
The energy using NVRAM and
HDD with speculation is 403
and 388 kJ, respectively

cation, considering deep memory hierarchies, data specula-
tion and quality of the solution, among other parameters.
The empirical evaluation and the analysis provided is key in
setting the basis for modeling and optimizing data-intensive
scientific workflows.

Our future work includes extending this characterization
in order to analyze the impact of the use of co-processors
along with the deep memory hierarchy (e.g., offloading the
analytics component to Intel MIC co-processors). We also
plan to validate these results with multiple nodes and using
real applications (e.g., S3D) instead of a synthetic workflow.
Furthermore, we will apply this work in order to develop a
comprehensive model of data-intensive workflows and use

it for developing an autonomic runtime that can balance
dynamically the tradeoffs studied in this paper.

Acknowledgments The research presented in this work is supported
in part by U.S. National Science Foundation (NSF) via grants num-
bers OCI-1339036, OCI-1310283 and CNS-1305375, and by the Direc-
tor, Office of Advanced Scientific Computing Research, Office of Sci-
ence, of the US Department of Energy through the ExaCT Combustion
Co-Design Center via subcontract number 4000110839 from UT Bat-
telle. The research was conducted as part of the NSF Cloud and Auto-
nomic Computing (CAC) Center at Rutgers University and the Rutgers
Discovery Informatics Institute (RDI2) and partially supported by a
Rutgers Research Council Grant. The research presented in this paper
is also supported by the Galician Government (Projects CN2012/211
and GRC2013/055) and partially supported by FEDER funds of the

123



Exploring energy-performance-quality tradeoffs for scientific workflows

European Union. We also thank the anonymous reviewers for their com-
ments and recommendations, which helped to considerably improve the
quality of the manuscript.

References

1. Andersen DG, Franklin J, Kaminsky M, Phanishayee A, Tan L,
Vasudevan V (2009) Fawn: a fast array of wimpy nodes. In:
SIGOPS symposium on operating systems principles, pp 1–14

2. Avron H, Gupta A (2012) Managing data-movement for effective
shared-memory parallelization of out-of-core sparse solvers. In:
2012 International conference for high performance computing,
networking, storage and analysis (SC), pp 1–11

3. Balakrishnan S, Sohi GS (2006) Program demultiplexing: data-
flow based speculative parallelization of methods in sequential pro-
grams. In: Proceedings of the 33rd annual international symposium
on computer architecture, ISCA ’06, pp 302–313

4. Baskaran MM, Bondhugula U, Krishnamoorthy S, Ramanujam J,
Rountev A, Sadayappan P (2008) Automatic data movement and
computation mapping for multi-level parallel architectures with
explicitly managed memories. In: Proceedings of the 13th ACM
SIGPLAN symposium on principles and practice of parallel pro-
gramming, PPoPP ’08, pp 1–10

5. Bennett JC, Abbasi H, Bremer PT, Grout R et al (2012) Combining
in-situ and in-transit processing to enable extreme-scale scientific
analysis. In: International conference on high performance com-
puting, networking, storage and analysis (SC), pp 49:1–49:9

6. Caulfield AM, Grupp LM, Swanson S (2009). Gordon: using flash
memory to build fast, power-efficient clusters for data-intensive
applications. In: International conference on architectural support
for programming languages and operating systems, pp 217–228

7. Chen JH, Choudhary A, de Supinski B, DeVries M et al (2009)
Terascale direct numerical simulations of turbulent combustion
using s3d. Comput Sci Discov 2:1–31

8. Cockcroft AN (2007) Millicomputing: the coolest computers and
the flashiest storage. In: International computer measurement group
conference, pp 407–414

9. Dathathri R, Reddy C, Ramashekar T, Bondhugula U (2013) Gener-
ating efficient data movement code for heterogeneous architectures
with distributed-memory. In: 2013 22nd International Conference
on parallel architectures and compilation techniques (PACT), pp
375–386

10. Diamos G, Yalamanchili S (2010) Speculative execution on multi-
GPU systems. In: 2010 IEEE international symposium on parallel
distributed processing (IPDPS), pp 1–12

11. Dong X, Wu X, Xie Y, Chen Y, Li H (2011) Stacking MRAM
atop microprocessors: an architecture-level evaluation. IET Com-
put Digit Tech 5(3):213–220

12. Donofrio D, Oliker L, Shalf J, Wehner MF, Rowen C, Krueger J,
Kamil S, Mohiyuddin M (2009) Energy-efficient computing for
extreme-scale science. Computer 42(11):62–71

13. Durillo J, Nae V, Prodan R (2013) Multi-objective workflow
scheduling: an analysis of the energy efficiency and makespan
tradeoff. In: 2013 13th IEEE/ACM international symposium on
cluster, cloud and grid computing (CCGrid), pp 203–210

14. Gamell M, Rodero I, Parashar M, Bennett J et al (2013) Exploring
power behaviors and tradeoffs of in-situ data analytics. In: Inter-
national conference on high performance computing networking,
storage and analysis (SC). Denver, CO, pp 1–12

15. Gamell M, Rodero I, Parashar M, Poole S (2013) Exploring energy
and performance behaviors of data-intensive scientific workflows
on systems with deep memory hierarchies. In: Proceedings of
the 20th international conference on high performance computing
(HiPC), pp 1–10

16. Hammond L, Willey M, Olukotun K (1998) Data speculation sup-
port for a chip multiprocessor. In: Proceedings of the eighth inter-
national conference on architectural support for programming lan-
guages and operating systems, ASPLOS VIII, pp 58–69

17. Kestor G, Gioiosa R, Kerbyson D, Hoisie A (2013) Quantifying
the energy cost of data movement in scientific applications. In:
2013 IEEE international symposium on workload characterization
(IISWC), pp 56–65

18. Krueger J, Donofrio D, Shalf J, Mohiyuddin M, Williams S, Oliker
L, Pfreund FJ (2011) Hardware/software co-design for energy-
efficient seismic modeling. In: Proceedings of 2011 international
conference for high performance computing, networking, storage
and analysis (SC’11), pp 73:1–73:12

19. Li D, De Supinski B, Schulz M, Cameron K, Nikolopoulos D
(2010) Hybrid MPI/openMP power-aware computing. In: 2010
IEEE International Symposium on parallel distributed processing
(IPDPS), pp 1–12

20. Li D, Nikolopoulos D, Cameron K, De Supinski B, Schulz M
(2010) Power-aware MPI task aggregation prediction for high-end
computing systems. In: 2010 IEEE international symposium on
parallel distributed processing (IPDPS), pp 1–12

21. Li D, Vetter JS, Marin G, McCurdy C, Cira C, Liu Z, Yu W (2012)
Identifying opportunities for byte-addressable non-volatile mem-
ory in extreme-scale scientific applications. In: International par-
allel and distributed processing symposium, pp 945–956

22. Lim K, Ranganathan P, Chang J, Patel C, Mudge T, Reinhardt S
(2008) Understanding and designing new server architectures for
emerging warehouse-computing environments. In: Annual inter-
national symposium on computer architecture, pp 315–326

23. Lively C, Wu X, Taylor V, Moore S, Chang HC, Cameron K (2011)
Energy and performance characteristics of different parallel imple-
mentations of scientific applications on multicore systems. Int J
High Perform Comput Appl 25(3):342–350

24. Nightingale EB, Chen PM, Flinn J (2006) Speculative execution in
a distributed file system. ACM Trans Comput Syst 24(4):361–392

25. Perrone M, Liu LK, Lu L, Magerlein K, Kim C, Fedulova I,
Semenikhin A (2012) Reducing data movement costs: scalable
seismic imaging on blue gene. In: 2012 IEEE 26th international
parallel distributed processing symposium (IPDPS), pp 320–329

26. Rivoire S, Shah MA, Ranganathan P, Kozyrakis C (2007) Joule-
sort: a balanced energy-efficiency benchmark. In: SIGMOD inter-
national conference on management of data, pp 365–376

27. Rodero I, Chandra S, Parashar M, Muralidhar R, Seshadri H, Poole
S (2010) Investigating the potential of application-centric aggres-
sive power management for HPC workloads. In: Proceedings of
the IEEE international conference on high performance comput-
ing (HiPC). Goa, India, pp 1–10

28. Rountree B, Lownenthal DK, de Supinski BR, Schulz M, Freeh
VW, Bletsch T (2009) Adagio: making DVS practical for complex
hpc applications. In: International conference on supercomputing,
pp 460–469

29. Tian C, Feng M, Nagarajan V, Gupta R (2008) Copy or discard
execution model for speculative parallelization on multicores. In:
Proceedings of the 41st annual IEEE/ACM international sympo-
sium on microarchitecture, MICRO 41, pp 330–341

30. Yan Y, Zhao J, Guo Y, Sarkar V (2010) Hierarchical place trees:
a portable abstraction for task parallelism and data movement. In:
Proceedings of the 22nd international conference on languages and
compilers for parallel computing. LCPC’09. Springer, Berlin, pp
172–187

31. Yoon DH, Gonzalez T, Ranganathan P, Schreiber RS (2012)
Exploring latency-power tradeoffs in deep nonvolatile memory
hierarchies. In: Conference on computing frontiers, pp 95–102

123



G. Haldeman et al.

Georgiana Haldeman received
a B.S. in Computer Science from
Rutgers University. She is cur-
rently pursuing her M.S. stud-
ies at Rutgers University. Her
research interests are in the area
of High-Performance Comput-
ing and heterogeneous systems
performance, including model-
ing and optimization.

Ivan Rodero is an Assistant
Research Professor of Electri-
cal and Computer Engineering at
Rutgers University and a mem-
ber of the Discovery Informatics
Institute and the US National Sci-
ence Foundation (NSF) Cloud
and Autonomic Computing Cen-
ter. His research falls into the
areas of parallel and distributed
computing and includes High-
Performance Computing, energy
efficiency, autonomic comput-
ing, grid/cloud computing and
big data management and analyt-

ics. His current research activities are in the intersection of green com-
puting and big data with a focus on energy-efficient scientific data man-
agement and analytics. Dr. Rodero holds a M.S. and Ph.D. in computer
science and engineering from Technical University of Catalonia, Spain,
in 2004 and 2009, respectively. He is a senior member of IEEE, and
member of ACM and AAAS.

Manish Parashar is Profes-
sor of Electrical and Computer
Engineering at Rutgers Univer-
sity. He is the founding Director
of the Rutgers Discovery Infor-
matics Institute (RDI2) and of
the NSF Cloud and Autonomic
Computing Center (CAC), and is
Associate Director of the Rutgers
Center for Information Assur-
ance (RUCIA). His research
interests are in the broad areas of
Parallel and Distributed Comput-
ing and Computational and Data-
Enabled Science and Engineer-

ing. A key focus of his research is on addressing the complexity or
large-scale systems and applications through programming abstractions
and systems. Manish serves on the editorial boards and organizing com-
mittees of a large number of journals and international conferences and
workshops, and has deployed several software systems that are widely
used. He has also received numerous awards and is Fellow of AAAS,
Fellow of IEEE/IEEE Computer Society and Senior Member of ACM.
For more information please visit http://parashar.rutgers.edu/.

Sabela Ramos received the
B.S. (2009), M.S. (2010) and
Ph.D. (2013) degrees in Com-
puter Science from the Uni-
versity of A Coruña, Spain.
Currently she is a post-doc
researcher at the Department of
Electronics and Systems at the
University of A Coruña. Her
research interests are in the area
of High Performance Comput-
ing (HPC), focused on message-
passing communications on mul-
ticore architectures and clus-
ter/cloud computing.

Eddy Z. Zhang is a new assis-
tant professor in the Department
of Computer Science at Rutgers
University. She received her B.S.
in electronics engineering from
Shanghai Jiao Tong University.
She obtained her M.S. and Ph.D.
in computer science from the
college of William and Mary.
Her research interests are gener-
ally in the area of compilers and
programming systems. She is a
recipient of PPoPP’10 best paper
award and QEST’08 best student
paper award.

Ulrich Kremer is a Profes-
sor in the Department of Com-
puter Science at Rutgers Univer-
sity. He graduated with a Diplom
in Informatik from the Univer-
sity of Bonn, Germany. He went
on to receive a M.S. and Ph.D.
in Computer Science from Rice
University in 1993 and 1995,
respectively. His research inter-
ests include compilation tech-
niques and interactive program-
ming environments for parallel
systems, compiler support for
power and energy management,

programming models and optimizations for dynamic networks of
resource constrained devices (e.g.: smart phones), and novel program-
ming architectures or autonomous robots such as autonomous under-
water vehicles. Dr. Kremer received a NSF CAREER award for his
work on compiler-directed low power and energy optimizations. He is
a member of the ACM.

123

http://parashar.rutgers.edu/

	Exploring energy-performance-quality tradeoffs for scientific workflows with in-situ data analyses
	Abstract 
	1 Introduction
	2 Related work
	3 Scientific workflows with in-situ data analysis
	3.1 Targeted workflow
	3.2 In-situ data analytics
	3.3 Quality of the solution
	3.4 Data speculation

	4 Experimental evaluation
	4.1 Evaluation methodology
	4.2 Data staging over the (deep) memory hierarchy
	4.3 Tradeoffs with quality of the solution
	4.4 Data speculation

	5 Conclusion and future work
	Acknowledgments
	References


