
An Interactive Slocum Glider Flight Simulator

Hans Christian Woithe and Ulrich Kremer

Department of Computer Science, Rutgers University

{hcwoithe, uli}@cs.rutgers.edu

Abstract—The Slocum Glider is a commercially avail-
able autonomous underwater vehicle used in the sensing
of the world’s oceans. Its manufacturer-provided simula-
tor uses nearly identical electronics and components as
installed in the production glider. The simulator is mainly
used to develop and test new hardware and software
components in a real-time setting, where for instance, a
one-week mission of the glider takes one week to simulate.
This limits the types and the complexities of algorithms
that can be developed and tested on the vehicle.

In this paper, we present our ongoing work on a
simulation infrastructure used to fly and operate a Slocum
Glider in a virtual ocean environment. We also introduce
a new three dimensional companion visualization tool. The
effectiveness of the infrastructure and its new visualization
tool is illustrated in the context of three applications,
namely glider education and training, the replay and
analysis of glider missions, and the design and testing of
algorithms to be used in future missions.

I. INTRODUCTION

Autonomous underwater vehicles (AUVs) have revo-

lutionized the sensing of the world’s oceans. The Slocum

Electric Glider is such an AUV and belongs to class

of vehicles which propel themselves using a buoyancy

driven mechanism [1], [2], [3] instead of a propeller

[4], [5], [6], [7]. The vehicle is a commercial product

manufactured and sold by Teledyne Webb Research

(TWR) [1].

The buoyancy driven flight is accomplished by the

movement of a piston at the front of the vehicle and

is referred to as the buoyancy pump. When the pump

is fully retracted, the vehicle’s displacement of water

decreases and causes the vehicle to dive towards the

ocean floor. Likewise, when the piston is fully extended,

the glider’s displacement increases and it is forced to

rise towards the surface. The movement of an internal

battery pack changes the vehicle’s center of gravity and

allows the fine tuning of the pitch angle of the glider.

Along with wings and a controllable fin, the AUV is able

to navigate through the ocean in a sawtooth flight profile

at approximately 35 cm/s [8].

The manufacturer, along with the production of the

vehicle, also produces a simulator for the Slocum Glider.

The simulator contains the essential electronics needed

to develop and integrate new software and hardware for

the platform. These electronics are in a small container

and it is affectionately called the Shoebox simulator.

Because the Shoebox’s hardware closely matches that

of the vehicle, little or no additional work needs to be

performed to bring the new components into production.

This however is also a point of strict limitation. The

glider’s 16 MHz processor already struggles at times

to run the control software, so advanced simulations

involving, for example, a trace of ocean currents is not

possible. This brings forward the issue of how well tested

an algorithm can be if its testing framework is limited.

In previous work [9], we introduced our Slocum

Glider simulation infrastructure. Unlike the Shoebox, it

is more flexible and allows for direct specification of

the environment that the vehicle should perform in. The

simulator also runs faster than real time, allowing for a

faster and more streamlined development environment.

For example, a one-week mission can be simulated

on commodity hardware within minutes or seconds

depending on the detail of the simulation. During our

work on the simulation environment, we recognized

the need for visualizing the behavior and performance

of a vehicle during its mission. To address this need,

we have developed a companion graphical interface to

our simulation environment. In this paper, we will (1)

provide the background to our simulation infrastructure,

(2) introduce a complimentary three dimensional visual-

ization tool, and (3) illustrate their effectiveness through

real world applications.

II. SIMULATOR BACKGROUND

The simulation framework for our new Slocum Glider

is developed using the Python programming language.

Python provides for rapid application development and

has a vast set of libraries available to it. Such libraries

include NumPy, SciPy and Matplotlib which are es-

sential for the development of algorithms within the

simulation environment and provide an open source and

free alternative to Matlab.

As described in our previous work [9], the simulator is

capable of using multiple speed models for the Slocum

Glider. They include a speed model similar to the one

present in the TWR’s Shoebox simulator and a speed



distribution model we have empirically derived from

years of flight time off of the coast of New Jersey.

Experimental results in [9] showed that sampling the

vehicle speed using this distribution can produce sim-

ulated missions similar in length (in time) to their real

counterparts when supplied with the same waypoint list.

The framework also makes use of bathymetry data

from the National Geophysical Data Center’s (NGDC)

ETOPO1 model[10]. As with the real glider, this allows

the simulated vehicle to be programmed to inflect a spec-

ified amount of distance off of the ocean floor. This is

accomplished by an artificial altimeter which interpolates

the bathymetric dataset using inverse distance weighting

(IDW). The rate at which the dataset is sampled can be

adjusted so it must not be performed at every iteration of

the control loop. This allows the tradeoff of decreasing

the time necessary to perform a mission while losing

some accuracy or vice versa.

Integration of Coastal Ocean Radar (CODAR) [11]

data from Rutgers has also been incorporated into the

simulation environment. Data products are available in

hourly increments and contain a grid of sea surface

current vectors. Like the bathymetry model, the cur-

rents applied to the vehicle are interpolated using IDW.

However, unlike the bathymetric dataset, new CODAR

files must be loaded as the simulated vehicle progresses

through time. This method has been used successfully

in [9] to emulate a previous sea trial.

Products generated from the Regional Ocean Mod-

eling System (ROMS) [12] and the Hybrid Coordinate

Ocean Model (HYCOM) are also being developed into

the framework’s world model. These systems provide

nowcasts and forecasts of the ocean environment. The

slow speed of the Slocum glider makes it much more

sensitive to ocean currents. For this reason we are

particularly interested in the current predictions of these

two technologies. Both models can estimate currents at

multiple depths which will allow us to more accurately

simulate the vehicle’s flight. This is useful in the initial

mission planning stages of a deployment, allowing one

to accurately judge when and where to deploy. It may

also assist in the selection of new target waypoints.

Planning an efficient path through a field of currents

may be vital to the success of missions. However,

making efficient use of the limited energy resources that

are available in the vehicle is an equal challenge. In [9]

we describe an infrastructure we have created to mea-

sure the power consumption of a subset of the Slocum

Glider’s components. These devices include main and

emergency power, the fin and pitch motors, and the

buoyancy engines pump and brake. This platform was

successfully deployed on two sea trials. The collected

data was analyzed and used to build several energy

profile models of these devices as part of the simulation

environment. For example, we have observed that the

energy cost to perform an inflection increases linearly

with depth. This is due to the increase in water pressure

that the buoyancy pump must work against as the vehicle

is exposed to deeper depths. As we increase the number

of energy profiles we measure and integrate the total

energy costs calculated by simulated missions becomes

more accurate.

Providing an idea of the necessary cost required

to perform a deployment may be helpful for mission

planning engineers. A simulated deployment will likely

always vary from an actual deployment because of the

highly dynamic nature of the physical environment and

the accuracy and resolution of forecasts. However, the

framework should not only be used before the mission,

but also actively during deployments. If the vehicle is

not equipped with our measurement infrastructure, the

energy used up to that point of the deployment could

be estimated through log files sent by the glider. The

remainder of the mission, which has not yet been flown,

could then be simulated. Feedback of the energy used

can then be given to the planning engineer to decide

whether to maintain or alter the programmed flight

scenarios.

In its current form, the simulator can only be pro-

grammed using the Python programming language.

Generally, an object of class Glider is instanti-

ated and loaded with the speed models SimDist

and SimShoebox, described previously in [9]. The

bathymetry and currents, and their effect on the vehi-

cle, are then optionally loaded. Additionally, waypoint

bearings and depth limitations can be set. When the ini-

tialization of the environment and the vehicle is finalized,

an iteration of the vehicle control loop is called. This is

followed by an update to the environment and finally, any

other algorithms may run before the process is repeated

by a call to the control loop.

Other methods to program the simulation framework

are in progress. A parser for mission files used by

the Slocum Glider has been created. The infrastructure

needed to run these missions is however not yet complete

as it has required the development of a control system

more similar in nature to that of the glider’s. A parser

and compiler for our domain specific language is also

ongoing work [13].

The simulation framework is a versatile tool which

allows for the specification and behavior the vehicle and

its environment. Its can lend itself useful in a variety of
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Fig. 1. A heightmap (a), generated from NGDC’s ETOPO1 model, is used to create a texture (b) for the 3D object (c) of the terrain in SimGUI.

applications, some of which are describe in section IV.

For further insight into inner workings of the simulator

we refer the reader to [9].

III. GRAPHICAL INTERFACE

Missions performed in the simulator can generate out-

put about the vehicle as well as the environment. Typical

focal points are on the glider’s vertical profile (depth,

pitch, roll) and geographic position. Much of these data

can be graphed using tools such as matplotlib, Matlab,

and the Generic Mapping Tools. We have nonetheless

found the need to be able to visualize the Slocum Glider

in three dimensional (3D) space for both simulated and

real sea trials.

Google Earth is a powerful 3D tool that allows for

the display of data on a world model [14]. It is used

extensively in the deployment process, from the initial

planning stages to tracking the vehicle’s flight. Weather

forecast images are often overlaid to aid in the selection

of new waypoints. The simulator has also been retrofitted

to create KML files. Despite its usefulness, it also has its

shortcomings. First, under the current licensing scheme,

any movies, KML/KMZ, or images from Google Earth

cannot be used in any reports or presentations outside

of our organization without the purchase of a license

of Google Earth Professional. Secondly, we would like

to be able to easily customize the 3D environment to

allow for live interaction as well integration with our

simulation environment.

To fulfill this gap, we have implemented an interactive

graphical environment for the Slocum Glider that is able

to mesh with the existing framework. In the simula-

tion front, it can be utilized in the development and

debugging of algorithms, for example in glider swarming

and coordination. With regard to actual deployments,

it can be applied to the whole deployment process

from waypoint selection, like Google Earth, to a three

dimensional inspection of a vehicle’s flight, such as

that RU27’s when it suffered from biofouling [15]. We

will refer to this graphical user interface as “SimGUI”

although it is completely independent from the simulator.

The SimGUI makes use of Panda3D, an open sourced,

BSD licensed, cross-platform 3D game engine with

origins from Disney. It is a mature and stable engine used

in commercial products. The core of the engine is written

in C++, for efficiency, and its primary programming

interface is exposed through Python. This allows a single

language to be used throughout the entire simulation

infrastructure. Although other game engines such as

Ogre [16] provide Python bindings, they are not the focal

point of the engine and so were not chosen.

The terrain information in SimGUI, as in the simula-

tor, is based off a of dataset by NGDC. A heightmap,

an image representing the height of the terrain, must

first be generated. This is accomplished by interpolating

the height of a physical location and mapping it to a

corresponding pixel in the image. A heightmap generated

using this process of the coast of New Jersey is shown

in Fig. 1(a). The presented heightmap has been limited

to maximum altitude of 25 meters and maximum depth

of 125 meters. These limits were chosen to give enough

detail about the immediate landscape for orientation, and

to provide enough depth for our simulations of a 100

meter glider. Different parameters can be provided to the

heightmap generation script, but details about the terrain

may need to be sacrificed because most heightmaps are

bound to eight bits of resolution.

Once the heightmap of the area of interest has been

generated, a texture must be generated for the terrain. A

set of images, such as sand, rocks and grass are repeated,

or tiled until they have the dimensions of the desired

image texture. Each of the tiled images are then blended



together in a process called texture splatting. In this

process, a pixel’s transparency, or alpha, is calculated

for each image depending on its altitude. For example,

a pixel representing a deep ocean depth should have

little or no contribution of the grass texture applied to it.

Fig. 1(b) shows the result of the texture splatting process

performed using the NGDC dataset.

The heightmap is also used to generate a 3D object

of the terrain. This is achieved in Panda3D using the

GeoMipTerrain class. The terrain texture can then

be applied to the 3D object. The resulting product, with

lighting, is shown in Fig. 1(c). Water, as well as a sky

box surrounding the environment have been created and

can be seen by the reflection of clouds in the lower right

corner of Fig. 1(c).

Depending on the graphical capabilities of the hosting

machine, the level of detail (LOD) in SimGUI can be

adjusted. The LOD of the terrain could be set to use a

high number of polygons to shape the nearby scenery,

while progressively decreasing the polygon count into

the horizon as the distance from the engine’s camera

increases. Smaller textures for the terrain and the reduc-

tion of non-essential models can also aid in the programs

performance but comes at the cost of the user’s overall

experience. If desired, SimGUI can optionally be loaded

without a terrain object. This is certainly useful in non-

coastal areas while simulating a shallow water glider

because it is unlikely that the vehicle will ever reach

the ocean floor.

As previously stated, SimGUI is independent of the

simulation infrastructure and intentionally so. This al-

lows the simulation and the graphical environment to be

developed separately and leaves open the possibilities

for simulators from other vehicles to be integrated into

SimGUI. Three dimensional objects must simply be

imported and their respective simulators must provide

the necessary information to SimGUI to place the vehicle

in the scene.

The simulator and SimGUI typically run as separate

operating system processes, but can be run as one.

Running as one process gives the benefit of simplicity in

that the memory is shared between the two components

of the infrastructure. However, this can also lead to

performance and engine frame rate issues because the

process will be busy computing the simulation instead of

refreshing the scene. This can be particularly be the case

if multiple vehicles are in the environment concurrently.

When running as separate processes, the components

can exchange information through pipes, shared memory

or other forms of interprocess communication. Using

UDP/TCP it is also possible for the simulation node to

be on a completely different node than that of SimGUI.

A cluster of computers can also run vehicle simulations

while communicating to a central coordinating node. The

coordinator ensures that other nodes have synchronized

the global environment and updates the display state of

SimGUI to provide feedback of the distributed simula-

tion.

Great care has been taken to keep SimGUI, like the

simulator, flexible enough for a multitude of applications.

A selection of the employments of the simulator and

SimGUI is described in the follow section. These appli-

cations should provide an indication of the applicability

of the infrastructure in context with the Slocum Glider.

IV. APPLICATIONS

The initial purpose of the simulation environment was

to make use of energy usage models we have created

from collected samples of sea trials equipped with our

measurement infrastructure. Using theses models, basic

flight segments were to be analyzed for their energy

costs. The need for additional functionality was quickly

realized if more complex virtual deployments were to be

executed. Thus, the framework was extended to include

bathymetry, currents, and a companion graphical inter-

face. This multipurpose platform has found itself useful

outside the realm of mission planning. This section

describes how the simulator and SimGUI have been

successfully used in eduction, the replay and analysis

of missions, and in the development and testing of

algorithms.

A. Education

The simulator and SimGUI can coincide to produce a

feature rich and flexible environment. It can augmented

to aid in the education of those curious to learn more

about the operations of underwater vehicles. To demon-

strate the general dynamics of the Slocum Glider’s flight,

the infrastructure was modified to make use of the Nin-

tendo Wii Remote controller. In addition to its buttons,

the controller also contains motion sensors allowing an

additional level of interaction with the console’s games.

The remote’s popularity and familiarity with children

and adults, along with a large support community, makes

the Wii Remote an ideal tool to be integrated into the

simulation framework for education. Use of the Wii

Remote to control the glider allows the user to more

fully understand the saw-tooth flight profile utilized by

the vehicle. For the more experienced, the simulator and

SimGUI platform can be used in the training of new

mission planning engineers.

The remote communicates with the computer hosting

our infrastructure using the wireless Bluetooth technol-
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Fig. 2. The Wii Remote has been integrated with SimGUI to control a virtual Slocum Glider. The roll of the remote (a) translates to a roll
on the vehicle (b). Likewise, the glider’s pitch (c) is defined by the pitch of the controller (a).

(a) (b)

Fig. 3. SimGUI, retrofitted to work with the Wii Remote, was put on display at Rutgers Day 2010. Students and families were able to learn
the basic principals of flying a Slocum Glider through an interactive mission (a). Feedback about the glider is provided through heading, speed
and pitch gauges as well as a minimap showing the location of the vehicle (b).

ogy. For a workstation not equipped with Bluetooth,

USB Bluetooth adapters are readily available. The CWiid

library [17] and its python wrappers were used to de-

velop a program to acquire data from the controller for

our simulation infrastructure.

The acquisition program periodically polls the library

for updates of the Wii Remote; any pending messages

are returned. Before any data are used, the remote must

first be calibrated. This is accomplished by calculating

an average offset by collecting several hundred messages

while the remote is untouched on a flat surface. This

offset is then used to properly calculate readings when

the remote is in active use. Because of the controller’s

high fidelity and update rate, tens of samples are also av-

eraged together to compose a single aggregated reading.

This would otherwise induce an undesirable oscillating

effect on the vehicle since fluctuations of the hand are

captured by the remote. Readings for Wii controller’s

pitch, roll and home button are serialized and sent to a

simplified simulation component via UDP.

The simulator, upon receiving updated pitch and roll

information, performs an iteration of its control loop

to update the vehicle’s state and position in the envi-

ronment. The control loop’s speed model is a modified

version of SimShoebox [9]. The AUV’s speed over the

ocean floor is calculated based on the pitch angle of the

remote. With the pitch and speed known, the glider’s

change in depth can be calculated using trigonometry.

The roll component of the update is mapped to the

rotation of the glider’s battery pack which corresponds

to a roll in the vehicle. The glider’s progress made in

the environment is then computed. Finally, the necessary

information of the simulated AUV’s newly determined

state is given to SimGUI.

The SimGUI interface updates the graphical represen-

tation of the virtual glider. The vehicle’s roll and pitch

will match that of the Wii Remote as shown in Fig. 2.

Although the Slocum Glider no longer uses the roll of

the battery pack as a steering mechanism, steering the

vehicle through the rolling of the Wii Remote is more

intuitive to an inexperienced user who is unfamiliar with

gliders. We may, in the future, opt to instead control the

fin by detecting the yaw angle of the remote.

The system, as described, allows users to fly the glider

in a depiction of a real environment. This educational

tool was put on display, along with the actual vehicle,

at the Computer Science booth at Rutgers Day 2010.

Because of the public’s familiarity with torpedoes, it is



often assumed that Slocum Glider is propeller driven and

that the propeller was removed when put on display.

After an explanation of the nature of the buoyancy

engine, we have found it useful, especially for children,

to let them take Wii Remote and experience the vehicle’s

flight dynamics themselves as shown in Fig. 3.

The platform on display took users through a inter-

active mission. The objective of the deployment was to

fly to a list of waypoints, from a previous deployment,

marked by floating buoys. The mission, starting near

Marthas Vineyard in Massachusetts, brought users near

the shore and the edge of the continental shelf, then

towards Tuckerton, New Jersey for the final recovery.

A miniature map on the screen displays the environ-

ment, the location of the vehicle and the next target

waypoint. This is useful for navigation as the glider

is displayed in a third person perspective, where the

camera is behind and slightly above the vehicle. SimGUI

was also equipped with heading, speed and pitch gauges

as shown in Fig. 3(b). The heading gauge aids in the

navigation, while the pitch and speed gauges can provide

the user with information about how to accomplish an

optimal flight profile. Users learn that long and deep

saw tooth glides at 26◦ make the most progress towards

the waypoint. The speed of the simulated vehicle was

increased so that the mission could be accomplished in

a few minutes. Students, children, and adults were all

able to learn the basics of glider flight using this tool.

An especially enthusiastic kindergartner was curious to

know when it would be available for their Wii console.

After the basic dynamics of a glider’s flight are

understood, the infrastructure can also be used to teach

flight planning procedures. First, as is typical in deploy-

ments, a suitable day must be chosen based on weather

conditions. Once the virtual date has been determined,

the trainer must specify the dataset to be used by the

simulation infrastructure. As in [9] this can include, but

is not limited to, coastal radar and bathymetry.

Next, when the vehicle is placed at its point of

departure, the trainee follows protocol and performs a

sequence of short test flight segments. Given the green

light, the glider’s target waypoint can be given along

with the parameters specifying when its next surfacing

should occur. The dive segment is then simulated, with

the vehicle surfacing at approximately the time specified.

The AUV’s position with an overlay of the most recent

ocean conditions, such as CODAR, can be displayed in

SimGUI. After analyzing the situation, the trainee may

opt to change mission parameters or have the simulation

continue as formerly instructed.

The energy models that are part of the simulation

framework provide the trainee with an assessment of the

amount of energy used during the virtual deployment.

The mission could then be executed again by the trainee

with a different set of waypoints based on the intuitions

gathered from the first run. Results of the simulations

could then be compared and scored. The trainer, with

their additional experience, could conceivably also show

the trainee a more suitable and energy efficient alterna-

tive flight path that still satisfies the objectives of the

mission.

The simulator and SimGUI lend themselves useful

in the education of those yearning to learn more about

the Slocum Glider. The Wii Remote controlled virtual

glider enlightens users of the basic flight dynamics of the

vehicle. The platform can also contributes to the training

of those ready to advance to becoming flight engineers.

B. Replay And Analysis

The presented infrastructure is not limited to being

an educational tool. Experienced users can also use the

infrastructure to replay and analyze past and current

deployments. The plotting of data is indispensable, how-

ever it can at times be difficult to correlate the vast

amount data at once. We have used the infrastructure

to visualize the tracking of a thermocline and begun the

process of replaying the transatlantic mission of RU27’s

where its flight suffered from biofouling.

A thermocline is a layer of water where the tempera-

tures changes drastically in the water column, typically

within several meters, and is often associated with phyto-

plankton. Phytoplankton is responsible for much of the

oxygen produced in the Earth’s atmosphere. Scientific

instruments to gather information about phytoplankton

are available for the Slocum Glider. To improve the

measurement of the plant life, it may be useful for the

vehicle to gather readings only near points of interest,

such as that of thermoclines. In [13] we describe the

tracking of a thermocline using a Slocum Glider.

The tracking algorithm used in the sea trials was

purposely simplistic. The glider used to perform the

algorithm was equipped with a Linux single board

computer (SBC) with new vehicle control software [13].

The sea trials were thus short with a buoy attached to

the AUV in case of failure. Because the deployments

were so brief, the algorithm made use of only the

most recent temperature and depth readings. This was

to ensure that readings like the initial dive profile do

not perturb the vehicle’s view of the water column. The

temperature measurements collected from the initial dive

are sometimes discarded because the sensor is affected

by being at the surface; the sun, for example, can heat

the sensor causing warmer than actual temperatures to
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Fig. 4. A flight profile of a Slocum Glider tracking a thermocline (a) in a water column as measured in (b). The water column and the flight
of the vehicle can be displayed for analysis in SimGUI (c).

be reported for several meters. As the vehicle ascends

or descends, the algorithm searches recent readings to

detect if a temperature threshold has been met over a

certain depth. The temperature and depth thresholds are

predefined parameters and are specified a priori. When

triggered, the SBC instructs the vehicle to fly in between

the depths that caused the trigger. Other thermocline

tracking algorithms, [18], [19], have since been devel-

oped that may make use of but do not necessarily require

these temperature and depth parameters to be specified.

The resulting flight profile of the glider tracking a

thermocline using said algorithm is shown in Fig. 4(a).

The temperature of the water column during the sea

trial is presented in Fig. 4(b) and was captured using

a Sea-Bird profiling sensor. The thermocline is present

at approximately 10-18 meters where the observed tem-

peratures change dramatically. The AUV successfully

detected the thermocline and flew the depth range that

triggered the specified parameters. At approximately 700

mission seconds, the glider did not observe a dramatic

temperature change in recent readings and thus returned

to its previously instructed minimum depth. This was not

caused by a fault in the thermocline detection algorithm

and could have been prevented if we made more of

the flight data available to it. As stated, however, the

sea trials were short and we wanted to avoid the initial

dive readings which could possibly corrupt the whole

dive segment. After this mishap, the thermocline is again

found and tracked.

This thermocline tracking mission has been imported

into SimGUI for visualization. The data captured by the

Sea-Bird profiling sensor was interpolated to produce a

temperature water column texture. The texture was then

applied to a 3D plane and position in the environment.

Like Google Earth, overlays in SimGUI can be applied

to the ocean surface. It is also possible for overlays to

be placed in the water column as is shown in Fig. 4(c).

Before a mission can be replayed in the environment,

the vehicle’s data files must be readied. The binary

log files are converted into text and filtered for the

necessary data fields. The data are then used by SimGUI

to visualize the virtual vehicle. Fig. 4(c) depicts the

flight of the thermocline tracking mission. The glider

flies the profile of Fig. 4(a) with the water column

temperature overlay of Fig. 4(b). The vehicle can be

seen hovering at approximately 15 meters towards the

end of the segment. This was likely due to the vehicle’s

density in the water or being tethered to a buoy. This

phenomena is not unusual and can be readily observed

in other deployments.

The replay feature may also be instrumental in de-

termining why and how a glider’s flight went astray. In

the case of RU27, when crossing the Atlantic from New

Jersey to Spain, it experienced biofouling primarily of

gooseneck barnacles. The biofouling caused the vehicle

to spin, especially when climbing. The SimGUI infras-

tructure could have been used to view the spinning in

3D space to help ascertain the cause. RU27’s flight is

in the process of being imported into SimGUI so that a

visual record of the effect of its biofouling exist. In the

case of future missions, we hope to use the platform to

analyze these types of scenarios and to compare them

against those previously observed.

C. Algorithm Development & Testing

The simulation framework is especially pertinent to

the development and testing of algorithms for the Slocum

Glider. The thermocline tracking algorithm described

earlier was not developed using this development en-

vironment. If the infrastructure had been in place, the

implementation of the algorithm would have been more

robust because the simulator grants a more realistic

scenario for rigorous testing.

The dataset used to test the thermocline tracking

algorithm in [13] was a synthetic thermocline loosely
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Fig. 5. A triangle swarming formation was implemented in the simulation environment. Using SimGUI, the formation can be viewed from
the top (a) as well as at an angle (b). The vehicles maintain the formation throughout the entire virtual deployment.

based on a small subset of observed readings from a

real deployment. To emulate the vertical movement of

the water column, the temperature data was shifted to

different depths. This however is not representative of

what would be observed in real ocean conditions.

With the simulation environment, previous tempera-

ture profiles captured from past missions can now be

loaded. The algorithm’s input is then identical to what

is observed in nature. The dataset is also not limited

to merely one deployment. The algorithm’s depth and

temperature threshold parameters can even be tested and

made to match what has been witnessed during the same

dates of the deployment in previous years. With the

integration of HYCOM and ROMS, forecast data could

also be used to determine if the parameters are fit for

the mission.

The simulator on its own is already a constructive tool

in the development of novel algorithms. When combined

with SimGUI however, the two components together

truly shine. In one example, this platform has been used

to develop, debug, and visualize the coordination of

multiple gliders.

The number of sensor packages available for the

Slocum Glider has steadily increased over years. Un-

fortunately, the vehicle is limited to a small amount of

sensors it can carry aboard during a mission. This has

created interest in the dispersal of multiple AUVs during

a deployment. The vehicles themselves, and the sensors

they carry may be heterogeneous. This approach allows

scientists to study an area of interest in a broader context.

Using the infrastructure we have developed a triangle

swarming algorithm. The triangle is formed by three

gliders, with one lead vehicle and two followers. Each

vehicle in the triad can carry different sensor packages

and conjointly sample an area at the same time. The lead

glider periodically informs the followers of its current lo-

cation and heading using acoustic communication, such

as the Woods Hole Oceanographic Institution’s (WHOI)

Micro-Modem [20]. The followers calculate their next

target waypoint relative to the information received by

the lead glider. Their position in the triangle is specified

a priori although it may be changed if desired.

With this scheme in place only the waypoint for the

lead glider must be set. The remaining gliders follow

the lead vehicle as long as they can regularly receive

updates. During simulations, this update occurred once

every ten minutes. This refresh rate was enough for the

AUVs to maintain formation. To ensure that the burden

of the energy costs does not solely fall on one glider, we

envision that the responsibility of the lead glider rotates

among the group.

The results of testing the algorithm in the simulator

and displaying them in SimGUI are shown in Fig. 5. The

gliders are all deployed at the same location and can be

seen at first dispersing away from one another towards

their position in the triangle. Once the triangle is formed,

the follower AUVs turn and proceed the execution of the

formation.

Although an engineer effort is still required to port

algorithms from the simulation environment to the actual

vehicle, the framework makes up for this shortcoming

by allowing the algorithm to be extensively tested before

deployment. We foresee that the effort and cost expended

in lab testing would be less than that of a trial and

error approach through sea trials. This development

environment, while under continual development, will

prove itself as an indispensable tool as we work with

the Slocum Glider.



V. RELATED WORKS

Google Earth [14] is an excellent and general all

purpose utility applicable throughout the deployment

process. However, because of its license and our current

need for adaptability, we have chosen to implement our

own graphical interface. Neptus [21], [22] and AUV

workbench [23] most closely resembles our work. They,

like in our framework, present a visual interface useful in

the planning and playback of missions. It is nonetheless

unclear if these systems were adaptable enough for our

requirements and for applications like that of the Wii

Remote controlled Slocum Glider.

VI. FUTURE WORK

Future work is dedicated toward increasing the num-

ber of devices that the power measurement infrastructure

monitors. This will be accomplished with the next revi-

sion of the measurement board currently in development.

The new design includes a master with several slave

boards; each slave is created to sample only a specific

subset of glider components. The master’s responsibility

is to instruct the other board when and at what rate

to sample sensors. The sampled readings are then sent

through the data link to the master for logging. To reduce

its energy foot print, the master also has the authority

to put slave boards into a low power mode when their

services are not required.

This modular design, albeit more complex than the

previous infrastructure [9] adds flexibility. Once the

master board is completed and stabilized, it will likely

not require many changes. This separation between the

sampling and logging enables slaves to be interchanged

in the vehicle while leaving the master in place. Thus,

as new scientific sensors are added to the glider, slave

boards can be created to monitor their power profile.

Depending on the needed configuration, the slaves may

also be daisy chained together. The previous design

also relied on the glider’s science computer to perform

the data logging. A major pitfall of this approach was

not being able to record sensor data during surfacings

because the vehicle disables the science bay. The new

infrastructure will surpass the shortcomings we have

experienced with our first measurement board and can

be customized more easily to match a mission’s specifi-

cations.

While the second board is still being developed, we

have decided to continue to make use of the existing ar-

chitecture to collect power measurements of the vehicle’s

devices. During its last deployment, all of the eight initial

sensors were employed with the science computer’s

clock speed increased to handle the data logging. This

produced an overhead of 1.28 watts to the stock glider

[9]. A modified board using only four sensors and a

science computer with a lower clock speed of 7.3 MHz

(still higher than the default), decreased the overhead

to 0.71 watts, or by 45%. This board, measuring the

vehicle’s main power, brake, and buoyancy pump, is

being readied for a deployment in early August of 2010.

With the additional power savings, the glider will fly

from the coast of southern New Jersey to the end of

the continental shelf to collect readings for the buoyancy

engine at depths up to 100 meters. The collected data will

be used to extend our energy models for our simulation

framework [9].

To further improve the simulation framework we will

continue our work on the integration of ROMS and HY-

COM data. This is useful in the replay of past, ongoing,

and future missions. As previously stated, the glider is

extremely sensitive to ocean currents. We hope that by

applying current estimations to a virtual vehicle we can

support flight engineers in the selection of new target

waypoints. Also, during the training of new engineers

the infrastructure can give an inclination of the effects

of currents or tides without endangering a real glider.

Finally, the infrastructure is planned to be used in a

classroom setting. We hope that this framework will be

useful for students learning about the glider and prove

to be an excellent instrument for teaching.

VII. CONCLUSION

We have described our continuing work on the simula-

tion infrastructure and introduced its companion graph-

ical user interface, SimGUI. When used in conjunc-

tion, an excellent and useful tool in education, replay

and analysis, and algorithm development and testing is

produced. Its use as an educational medium is evident

when the Wii Remote is picked up by a newcomer who

quickly learns to fly the vehicle. It is pertinent to the

replay and analysis of missions to aid in the diagnosis

and visualization of previously flown missions. Finally,

it is suitable in the development and testing of novel

algorithms as shown by our implementation of a Slocum

Glider swarming algorithm.
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