
A Lightweight Scripting Engine

for the Slocum Glider

Hans Christian Woithe, Ulrich Kremer

Department of Computer Science

Rutgers University

Piscataway, NJ 08854

Email: {hcwoithe,uli}@cs.rutgers.edu

Abstract— The Slocum Glider is a buoyancy driven Au-
tonomous Underwater Vehicle (AUV) capable of deployments
lasting several weeks or months. The layered control architecture
used by the vehicle is difficult to program and restrictive. As part
of previous work we have developed a more flexible programming
framework capable of performing dynamic feature tracking.
However, the gliders new and more computationally capable
Linux Single Board Computer (SBC) results in additional energy
demands.

In this paper, we describe a lightweight scripting engine we
have developed to allow the execution of code as part of the
glider’s existing layered control system. In this scheme, the SBC
creates code and initiates remote code execution on the glider’s
stock infrastructure. In order to save energy, the SBC may enter
a low power mode during the remote code execution. The SBC
may be woken up periodically, or by specified events encountered
during remote code execution. The resulting system can provide
the enhanced computational capabilities of the SBC system,
but only in situations where it is necessary, thereby potentially
enabling significant energy savings.

The lightweight scripting engine is not restricted to our
prototype system but can also be used on a stock glider. The
engine provides an alternative programming infrastructure for
marine science application programmers to implement and test
novel algorithms for their vehicle, thereby enhancing the usability
of a stock glider. Along with the engine, we have developed a
higher level programming language and compiler, and showcase
the flexibility of the system by using it to track a thermocline.

I. INTRODUCTION

The Slocum Glider is an Autonomous Underwater Vehicle

(AUV) produced by Teledyne Webb Research (TWR) [1]. It

is capable of prolonged missions lasting several weeks or

months to gather scientific data from the world’s oceans [2].

With AUVs becoming more commonplace, the complexity

of the sensors and the need for robust and flexible control

infrastructures for the platforms has also risen. In our previous

work [3], we described our efforts to provide such a framework

for the Slocum Glider and showcased its capabilities by

performing dynamic feature tracking of a thermocline (a rapid

change of temperature within a small column of water).

The infrastructure of [3] consisted of the integration of

a Linux Single Board Computer (SBC) into the glider, a

prototype domain specific language and compiler to program

and control the vehicle from the SBC, and the necessary

retrofitting of the glider’s software on both of its two Persistor

CF1 computing systems [4]. The objective was to provide the

necessary groundwork to make the vehicle a more effective

tool for researchers, and to enable complex algorithms that

cannot be performed on the current computing infrastructure.

However, the addition of the SBC comes at the cost of

an increase in power requirements. For example, if the SBC

is used to power manage sensors, the employed management

algorithm must ensure that it saves more energy than needed

to run it on the SBC to justify its use. For data processing, it

may be advantageous for the SBC to be powered only when

enough data becomes available to perform the calculations.

Finally, if the SBC is used to control the glider’s flight, there

may still be autopiloting opportunities where it can be powered

off to let the legacy system control fly the vehicle. Thus, a

system is needed that allows for the flexibility of the existing

prototype system but at a lower energy cost so that the vehicle

can continue to sustain long term deployments.

To fulfill this requirement we have developed a lightweight

scripting engine, named GLOC, for the Slocum Glider. It

is designed to operate on the glider’s native processor so

that researchers with standard vehicles can also develop new

algorithms for the glider. The engine is implemented as a

behavior for the vehicle’s layered control system. As in our

previous work [3], this is to ensure that other higher priority

behaviors can override the actions requested by a script.

Because the language of the scripting engine is rather low

level, we have also developed a BASIC-like higher level

programming language and compiler called GBASIC. This

sample language illustrates the flexibility of the engine and

is a reference point for other future languages that may be

developed to program the vehicle. Using this infrastructure

we perform dynamic feature tracking of a thermocline which

is not possible with stock gliders today. The investigation of

different energy saving strategies using the SBC and the GLOC

engine are part of our future work.

II. BACKGROUND

The scripting engine we have developed for the Slocum

Glider is part of the vehicle’s control system. To gain a detailed

perspective into the design and implementation of the engine,

we describe the previous efforts which form the basis of

our work. In Section II-A, the overall philosophy, lineage,

and usage of the control system is discussed. The focus of

Section II-B is a description of our prototype programming

framework that is still under development. Components of the

framework are used by the engine, and the scripting engine

itself may later be absorbed into this work.

A. Layered Control

Conceptually, the existing control system on the Slocum

Glider has its roots in the Massachusetts Institute of Tech-

nologies’ (MIT) Artificial Intelligence (AI) laboratory. There,

Brooks’ developed the layered control architecture [5] where a

robot’s control system is described as being decomposed into

task achieving behaviors. These behaviors can perform com-

plex tasks by gradually increasing their level of competence.

This is accomplished by having more complex layers build on

top of simpler, more robust lower layers. Higher level layers

in this architecture inject data into the lower layers to suppress

their normal data flow.

The described layered control architecture served as the

basis for the control system used on the Odyssey II AUV

developed as part of MIT’s Sea Grant [6]. The implementation

diverges, however, from the original design in that a particular

behavior’s arbitration of output commands is not restricted to

only that behavior. A given layer in this architecture can in-

stead take into account the results produced by other behaviors.

For example, as in [6], an obstacle avoidance algorithm may

try to avoid an object immediately ahead of the vehicle. The

decision to steer left or right to avoid the object may not be

important, as long as collision is avoided. Another behavior

may in fact prefer a specific direction over another to avoid

the shore nearby. This design can conceptually allow for the

satisfaction of both behaviors in the control system.

The Slocum Glider’s control software is a descendant from

Odyssey’s control system. Behaviors, such as a dive to and

climb to, are written in mission files, from highest to lowest

priority. An example of a behavior with high priority is the

abend behavior which assists in keeping the vehicle safe.

Safety behaviors include guarding the glider from diving too

deeply or staying underwater for too long without communi-

cation with a control center.

At the start of a mission a flight engineer will decide which

mission file is to be loaded and executed on the vehicle. The

mission file is then parsed and used to initialize the layered

control system of the vehicle. The vehicle, at each four second

control cycle, will begin the arbitration of what to do next

by executing the bottommost active behavior. The output of

a behavior are commands which will be passed to the next

higher level in the layered control system. The final set of

commands to be executed during the later stages of the cycle

is produced by the topmost behavior and is the result of the

arbitration of all active layers.

The layered control architecture performs well for many

applications but it has some disadvantages. It can be difficult

to create new missions because it is not always clear how the

layers interact since behaviors can produce different output

commands based on their state. A given behavior can be a

construct of multiple sub-behaviors which themselves have

state. Certain portions of a mission may need a specific subset

of behaviors to be activated to produce the desired effect.

Therefore, writing missions is error prone and requires a

significant verification, testing, and debugging effort.

Another important limitation when writing missions for the

glider is that users are limited to the behaviors supplied by the

manufacturer. Although core behaviors may exist to achieve

a particular task, the proper coordination of the behaviors is

not easily accomplished. As a result of these programmability

issues we have begun the development of a domain specific

language for the Slocum Glider [3].

B. Previous Work

The current glider programming framework has its limita-

tions. Because writing new missions is not straight forward,

users generally limit themselves to using existing missions

created by the manufacturer. A deployment’s parameters are

specified through the use of mission argument files which are

loaded alongside the actual mission file. In many cases, little

or no change is required to the actual mission file itself, but

merely its accompanying argument files.

Although some users venture into writing their own mis-

sions, few are likely to write their own new behaviors for the

vehicle’s layered control system. To develop for the system,

a tool chain for the glider’s Persistor CF1 processors is

required [4]. Any source changes that need testing must first

be compiled, and the resulting binary must be transferred

and flashed to the Persistors. Because of the complexity and

difficulty of programming the glider, we are developing a new

programming infrastructure for the vehicle.

In [3], we introduced our initial prototype framework for the

Slocum Glider. The prototype included a new domain specific

programming language and compiler, software hooks into the

existing control system to gain access to the vehicle, and a

Linux Single Board Computer (SBC) with a runtime system

to generate commands for the software hooks. An overview of

the design is shown Fig. 1. To illustrate the new capabilities

possible using this novel architecture, we performed dynamic

feature tracking of a thermocline off the coast of New Jersey.

The glider contains two 16 MHz Persistor CF1 processors:

the flight controller is responsible for navigating the vehicle

as instructed by a flight engineer, while the other science

processor is responsible for interacting with and logging

the data produced by scientific sensors. The two CPUs can

communicate via a serial connection to exchange flight and

sensor information. The hooks for the prototype involved

modifications to the software residing on both Persistors.

A driver on the science processor, also known as a proglet,

was added to interact with the SBC over a serial connection.

The protocol between the SBC and the proglet lets the SBC

read, write, and request data to and from the glider using the

existing communication infrastructure of the Persistors. In this

scheme, simply put, the science processor acts as a proxy to

read and write to the memory of the flight Persistor.

On the flight controller, a new hook behavior was intro-

duced. Given that the proglet on the science computer allows

the SBC to write to the glider’s memory, a mechanism must

Fig. 1. The overall design of the prototype software infrastructure as presented in [3]. The hooks into the existing system can been seen as part of the
layered control system on the flight controller and as a hook proglet on the science processor.

exist on the flight controller to interpret the commands sent by

the SBC. When active, the hook behavior will execute as part

of the layered control’s arbitration process. When specific flags

and parameters are sent by the SBC, the hook behavior will

dynamically create and execute the SBC requested behaviors

in each control cycle. More specifically, these behaviors are

sub-behaviors of the hook behavior much like a yo behavior

consists of a sequence of dive_to and climb_to behav-

iors.

The described scheme allows the vehicle to be controlled

by the runtime system on the SBC while still making use of

the existing control system and safety checks. For example,

the SBC may request the glider to dive below the crush

depth of the vehicle, however, the abend behavior which is

still at a higher layer of priority will override the outputs

produced by the rogue hook behavior. This retrofitted system

opens the door for applications on the Linux based computing

environment to dynamically control the vehicle. It has been

used to successfully detect and track a thermocline, and is the

basis for the scripting engine we have created.

III. LIGHTWEIGHT SCRIPTING ENGINE

The current programming environment for the Slocum

Glider is limited since users are confined to the behaviors

produced by TWR. Creating new mission files can also be

cumbersome, because of the complex interactions between

behaviors. We hope to improve the programmability of the

glider as well as add additional functionality that will make the

vehicle an overall more effective tool. By creating a scripting

engine, we aim to increase the scope of applications that can

be performed on the vehicle.

The initial goal for the development of the scripting engine

was to interact with the infrastructure described in Sec-

tion II-B. However, an additional goal is to provide application

programmers with an alternative mechanism to easily develop-

ing new algorithms for the vehicle. This is particularly useful

during the simulation and testing phases of newly designed

algorithms where the engine can act as a test bed before the

algorithm is independently created, for example, as its own

behavior.

The scripting engine, like the hook behavior, is implemented

as a behavior and resides in the layered control system. It is

therefore able to take advantage of some of the safety features

present in the layered control system. The GLOC1 language

resembles a simple assembly language and is inspired by

ILOC [7], an intermediate language for optimizing compilers

developed at Rice University. Currently, GLOC has over thirty

instructions, including instructions to load and store data to

and from the glider’s sensor list and the engine’s registers,

perform mathematical and logical operations, produce output,

as well as perform jumps and conditional branches to labels.

Although an assembly level language is typically considered

to be more difficult to program than a higher level language,

it has several advantages. Parsers for complex languages often

require a more complex set of tools and libraries to implement

them. Some parsing techniques are also memory intensive and

would use too much of this scarce resource on the vehicle’s

1MB Persistor processor. In addition, the size of the code base

may be a concern since larger codebases are typically harder

to maintain and take longer to debug.

Due to the aforementioned reasons, the design decision was

to make the scripting language very simple. The code base of

the core of the engine itself is compact, measuring under 600

lines of code including documentation. Although this does not

necessarily ensure reliability, the engine has thus far been easy

to maintain. Another advantage is that it is simple to parse and

1GLOC: Glider intermediate Language for Optimizing Compilers

1 nregs 8
2 n l b l s 7
3 n i n s t r 27
4 l a b e l 0
5 l oads 444 , r0
6 loadd 15 . 0 , r1
7 cmpgt r0 , r1 , r2
8 cbr r2 , 3 , 4
9 l a b e l 3
10 l o ad i 128 , r3
11 s t o r e s r3 , 1387
12 jumpi 1
13 l a b e l 4
14 y i e l d
15 jumpi 0

16 l a b e l 1
17 l oads 444 , r4
18 loadd 5 . 0 , r5
19 cmplt r4 , r5 , r6
20 cbr r6 , 5 , 6
21 l a b e l 5
22 l o ad i 0 , r7
23 s t o r e s r7 , 1387
24 jumpi 2
25 l a b e l 6
26 y i e l d
27 jumpi 1
28 l a b e l 2
29 y i e l d
30 jumpi 2

 0

 5

 10

 15

 20

 25

 30
 0 2 4 6 8 10 12 14 16 18 20

D
e

p
th

 (
M

e
te

rs
)

Mission Time (Minutes)

Simulated GLOC Mission

Fig. 2. A sample three yo mission executing a GLOC script. The glider mission (not shown) is instructed to dive and climb three times between 2–25 meters.
The script behavior instead attempts to first fly a single yo between 5–15 meters before relinquishing control and letting the other yo behavior complete its
mission. Both behaviors are active at the same time, with the GLOC scripting engine at a higher priority in the layered control stack. The resulting simulated
flight path is shown to the right.

interpret, and has a small memory and processing footprint.

The exact memory and processing requirements are dependent

on the script being executed, but all of our experiments so far

have only required a few kilobytes of memory and have added

at most 30 milliseconds to the glider’s four second control

cycle.

A sample of a GLOC script is listed in Fig. 2 along with the

simulated flight profile of the vehicle’s mission. The example

illustrates the interactions between a mission’s behaviors and

the behaviors induced by a GLOC script. The glider mission

specifies a sequence of three yos, where a yo consists of a dive

and climb operation. Instead, the GLOC script first instructs

the glider to perform a single yo between 5–15 meters. In

the layered control architecture, the script behavior is at a

higher level than the yo behavior and thus supersedes the

yo. As shown by the flight profile, the script successfully

accomplishes its task and then lets the glider proceed with

the rest of the mission.

When a glider mission is executed with the GLOC behavior,

the engine first loads and allocates the memory required by the

specified script. The beginning of the script file, lines 1–3 of

Fig. 2, specifies the number of registers, labels and instructions

that the script will use. This allows for the behavior to

statically allocate all required private memory at one time,

and makes deallocation of the memory easy at the end of a

mission. This mechanism follows the general design pattern

used for behaviors throughout the glider software.

Labels in GLOC are numbered and serve as targets for jump

and conditional branch instructions. These instructions allow

for control flow to occur in the scripting engine and are the

building blocks for conditional statements such as an if and

loops such as a while. The jump targets may be specified

directly by a number or indirectly through a value contained

inside a register. Conditional branch instructions jump to the

first label when the condition holds true and jump to the second

label if false.

GLOC is a language for a simple reduced instruction set

computing (RISC) architecture [8]. A register contains data

values such as floating point numbers or integers. Mathemati-

cal and logical instructions require their input values to be in

registers and write their output target registers. Registers can

be populated with values using a number of load instructions.

The loadd and loadi instructions of Fig. 2 assign a floating

point and integer values to their given target registers, respect-

fully. A loads instruction however loads a register with data

from the glider’s sensor array. The sensor array, is part of

the pre-existing glider behavior programming architecture. The

load instruction in line five assigns the value of the vehicle’s

current depth to register zero. This is because the 444th sensor

variable in the glider’s sensor array is designated for the depth

information. Writing data to the sensor array is possible via

the stores instruction.

The scripting engine is able to gain flight control of the vehi-

cle by using the hook behavior. The engine, through the hook

behavior, can dynamically create and execute sub-behaviors

by setting the appropriate flags and parameters in the glider’s

sensor array, much like the SBC does in our previous work

[3]. Lines 10 and 11 correspond to such an interaction between

the components. Sensor 1387 is a variable that is checked

periodically by the hook behavior to see which sub-behaviors

are to be created. A value of 128 activates a climb_to

behavior whose parameters in this particular case have been

predefined in the glider’s mission file. Other behaviors can be

simultaneously activated by setting appropriate flags through

the hook behavior’s variable.

The GLOC engine is lightweight and can quickly execute

scripts as part of the layered control system. However, the

exact overhead is reliant on the code being executed. It is

currently the responsibility of the programmer to ensure that

only a limited amount of code is executed as behaviors are

not preempted by the glider software. In GLOC, the yield

instruction informs the engine that the program wishes to

relinquish execution for the current control cycle. It is in this

manner that cooperative multitasking is achieved. The user

1 l a b e l : s t a t e 1
2 i f m depth > 15 .0 then
3 SCI RUHP BEHS = 128
4 goto s t a t e 2
5 end i f
6 y i e l d
7 goto s t a t e 1
8 l a b e l : s t a t e 2
9 i f m depth < 5 . 0 then
10 SCI RUHP BEHS = 0
11 goto s t a t e 3
12 end i f
13 y i e l d
14 goto s t a t e 2
15 l a b e l : s t a t e 3
16 y i e l d
17 goto s t a t e 3

Fig. 3. A sample GBASIC program to perform a single yo between 5–15
meters. This program is the source of the compiler generated GLOC script
shown in Fig. 2

must be aware that taking a large quantum of execution could

lead to undesired control cycle overruns.

We believe that our scripting environment is flexible and

robust, and will increase the scope of applications that can now

be performed on the glider. The engine is also not restricted

to performing tasks independently, but can collaborate on

computation and data processing tasks with the SBC. One

of the main motivations for GLOC is to reduce the energy

consumption of the vehicle by alleviating the need to have the

Linux SBC be powered at all times. Powering off the SBC

may be desirable in many scenarios. If an application on the

SBC does not require a large processing workload for a portion

of its execution, the task could instead be executed remotely

by the scripting engine. In this scenario, the SBC can enter a

low power mode or power off entirely until it is needed again.

A transfer into low power mode may also be profitable when

data processing is not worthwhile until a large data set has

been acquired by onboard sensors.

In combination with the SBC, tasks can be performed

concurrently with the scripting engine. The design of the

original prototype has changed since [3] in that the SBC

can now communicate directly with the flight controller and

no longer requires the science computer to act as a proxy.

This direct connection between the two computers is more

robust and an overall more sound design. We hope that the

programming infrastructure will take full advantage of the

scripting engine in the future, and allow for the automatic code

generation of lightweight tasks to be generated, transferred,

and executed.

IV. GBASIC LANGUAGE

To showcase the capabilities of the scripting engine and

to improve the programmability of the scripting system we

have created a subset of a BASIC-like programming language,

called GBASIC. Although the development of our domain

specific programming language is still in progress, the im-

plementation of GBASIC can serve as a reference point for

other language designs and compilers that target GLOC.

The compiler for GBASIC was implemented using Python

and the Python Lex-Yacc (PLY) toolset. This toolset is com-

parable to standard Lex and Yacc tools used in compiler

construction [9]. The code base for the compiler is small

with approximately 700 lines of source code. As the language

develops and more BASIC inspired statements are added, the

code size will slightly increase.

Currently, the compiler does not perform any optimizations

on the GLOC code to reduce either its code size or memory

consumption. However, type checking and casting is imple-

mented since it is the responsibility of the compiler, or the

programmer, to ensure that the GLOC code running on the

actual vehicle is safe.

The GBASIC language has support for variables and one

dimensional arrays of integer or floating point values. Like

GLOC, GBASIC can express mathematical, relational and

logical operations. The language contains the label, goto

and if statements, useful to control the flow of execution.

Although not yet implemented, the creation of while/wend,

do/loop, and for/next loops should be trivial as they can

be constructed from the already built constructs.

An example of a GBASIC program is listed in Fig. 3.

The GLOC code presented in Fig. 2 is in fact the output

code generated by our GBASIC compiler of the program

in Fig. 3. The higher level language is more readable and

thus makes it easier to debug. Labels, for example, are not

just numbers as in GLOC, but can have descriptive names.

Built-in vehicle variables such as m_depth can also be

called directly by their name, as specified in the glider’s

Masterdata documentation. Although GBASIC may not be

the most appropriate language to develop programs for the

Slocum Glider, it illustrates that higher level languages can be

constructed for our scripting engine.

V. THERMOCLINE TRACKING

Similar to our previous work on thermocline tracking [3],

the new scripting engine adds functionality to the vehicle that

is not available on a standard glider. We have implemented

the thermocline tracking algorithm of [10] in GBASIC. The

compiled GLOC code was executed by the scripting engine in

a simulated thermocline tracking mission.

In [10], Petillo et al. developed a thermocline tracking

algorithm for use within the MOOS-IvP autonomy system

[11]. The algorithm collects temperature and depth data from

a Conductivity, Temperature, and Depth (CTD) sensor and

places the readings into depth bins. In our implementation,

one meter depth bins are used. When a dive or climb leg has

been completed by the vehicle, the depth bins are averaged.

The vertical derivatives, the change of temperature over the

change of depth, are then calculated for each bin. The average

of the vertical derivatives is used to determine the upper and

lower bounds of the thermocline. Any depth bin whose vertical

derivative is greater than the average derivative is considered

to be part of the thermocline. The algorithm requires an initial

 5

 10

 15

 20

 25

 30
 8 10 12 14 16 18 20 22 24

D
e

p
th

 (
M

e
te

rs
)

Temperature (Celsius)

Simulated Temperature Profile
Derived From Sea-Bird CTD

(Measured 09/04/2008)

Measured
Simulated

(a)

 0

 5

 10

 15

 20

 25

 30
 0 2 4 6 8 10 12 14 16

D
e

p
th

 (
M

e
te

rs
)

Mission Time (Minutes)

Simulated GBASIC Thermocline Tracking Mission

(b)

Fig. 4. (a) Water column temperatures acquired with a Sea-Bird Conductivity, Temperature, and Depth (CTD) profiling sensor; a simulated representation
of the column’s temperatures derived from the measured data. (b) Flight profile of a simulated glider tracking the thermocline in (a).

dive profile and periodic resets of the depth bin data to ensure

variations of the thermocline are successfully detected. For

our evaluation, however, we do not perform resets as the

thermocline data is simulated.

The vertical temperature profile used as the basis for the data

in the simulation is shown in Fig. 4(a). The water column was

measured using a Sea-Bird CTD sensor, and the thermocline

shown was tracked using a Slocum Glider equipped with

our previous prototype system [3]. The GBASIC code to

perform the simulated tracking mission was under 130 lines of

code. This included data and GBASIC code used to fake the

simulated temperature profile of Fig. 4(a). The non-optimized

compiled code executed by the scripting engine was just

over 300 lines of GLOC. The resulting flight profile which

successfully performed tracking of the thermocline is shown

in Fig. 4. Algorithms, like the discussed thermocline tracking

algorithm, can be easily implemented using our new scripting

engine and opens the door to a world of new applications for

the glider that were not possible before.

VI. CONCLUSION

In this paper we have described the design and imple-

mentation of a lightweight scripting language for the Slocum

Glider. The intent of the scripting language was twofold: to

enable marine science application programmers to develop

novel algorithms within the context of a legacy glider, and to

provide an alternative program execution mechanism within

our Slocum Glider programming architecture that includes a

Linux SBC. In the latter context, the scripting engine may be

used to conserve energy by offloading trivial execution tasks

from the SBC to the glider computer, thereby allowing the

SBC to be powered down.

The GLOC scripting engine is implemented as a behavior

and can make use of another behavior we have created

to dynamically instantiate sub-behaviors as part of layered

control. GBASIC, a higher level language and accompanying

compiler were designed and implemented to illustrate the

potential of GLOC as an intermediate program representation.

A thermocline tracking application, programmed in GBASIC,

showed the effectiveness of our discussed approach. Although

not yet fully feature complete, the described work is a step

toward making the Slocum Glider a more effective research

tool.

VII. FUTURE WORK

The scripting engine has not yet been implemented as part

of our Slocum Glider simulation infrastructure [12], [13],

Integrating a GLOC interpreter within the simulation envi-

ronment could provide another way for programmers to test

their programs. Additionally, when compared to the TWR’s

simulator, it can run faster than real time. This could greatly

reduce the time required for debugging, as whole missions

can be simulated in seconds or minutes, rather than days or

months. Although it is not a complete replacement to executing

the code in a real glider, it can provide the user with better

insight into developing code.

Although the scripting engine supports some generalized

functions to produce output, it is not enough to support the

logging of complex sensors. Their primary purpose instead is

to assist in the debugging of user programs. Currently, when

sensors or variables must be logged, they are written to the

glider’s sensor array. The vehicle will then record the values of

the array within each control cycle, usually every four seconds.

The existing system is also limited to being only able to record

floating point values. Having proper support for data logging

in the engine is essential since it may be required by future

applications.

Thus far, the glider scripting engine has only been tested on

the Shoebox simulator and on the glider itself while still on

the bench. A Shoebox simulator contains the essential glider

electronics needed to perform glider simulations, and is named

after the shoe box sized container that the electronics are

housed in. We hope to perform additional experiments both

in and out of the water. Out of water tests before the sea trials

will continue to improve the robustness of the infrastructure.

Initial sea trials will require a buoy to be attached to the glider

via a rope until is determined safe enough to be set free.

First, simple dive segment manipulation tasks will be tested,

followed by short thermocline tracking missions.

When the core of the scripting engine has independently

completed its open ocean trials, the data and control interac-

tions between the engine and the SBC need to be tested and

deployed. We hope that this remote execution of code will

enable considerable energy savings by instructing the SBC to

sleep until an event is triggered by the engine. For example, the

scripting engine may use a limited amount of sensory input to

detect an algae plume. When detected, it may decide to power

up the SBC as well as more advanced sensors to sample at a

higher data rate and process the data in real-time. To quantify

the energy savings, we plan to measure the power consumption

of components of the vehicle, including the SBC, using the

power measurement infrastructure we have developed as part

of our previous work [12].

Finally, we would like to add additional safety precautions

to the system. This may be accomplished in several ways, such

as a preprocessor that performs safety checks before any of

the GLOC code is ever executed, or by a compiler. Not only

can a compiler make it easier to program for the engine, by

compiling a higher level language into GLOC, it can alleviate

some concerns regarding the safety of some aspects of the code

by only allowing safe programs to compile. An optimizing

compiler that reduces code size or memory usage is also in

the planning stage.

ACKNOWLEDGMENTS

This research has been partially funded by NSF awards

CSR-CSI #0720836 and MRI #0821607. We would also like

to thank David Aragon, Tina Haskins, Chip Haldeman, Oscar

Schofield and Scott Glenn from the Institute of Marine and

Coastal Sciences at Rutgers University for their continued

support.

REFERENCES

[1] Teledyne Webb Research, “Slocum glider,” Falmouth, MA,
http//www.webbresearch.com/slocum.htm.

[2] O. Schofield, J. Kohut, D. Aragon, L. Creed, J. Graver, C. Haldeman,
J. Kerfoot, H. Roarty, C. Jones, D. Webb, and S. Glenn, “Slocum gliders:
Robust and ready,” J. Field Robotics, vol. 24, no. 6, pp. 473–485, 2007.

[3] H. Woithe and U. Kremer, “A programming architecture for smart au-
tonomous underwater vehicles,” in IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2009. IROS 2009., October 2009.
[4] Persistor Instruments Inc., “Cf1 computer system,” Marstons Mills, MA,

http://www.persistor.com.
[5] R. Brooks, “A robust layered control system for a mobile robot,” vol.

RA-2, no. 1, March 1986, pp. 14–23.
[6] J. Bellingham and J. Leonard, “Task configuration with layered con-

trol,” in IARP Workshop on Mobile Robots for Subsea Environments,
Monterey, CA, May 1994.

[7] K. Cooper and L. Torczon, Engineering a Compiler. San Francisco,
CA: Morgan Kaufmann Publishers (Impring of Elsevier Science), 2008.

[8] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative

Approach, 4th ed. San Francisco, CA: Morgan Kaufmann Publishers
(Impring of Elsevier Science), 2007.

[9] A. Aho, M. Lam, R. Sethi, and J. Ullman, Compilers: Principles,

Techniques, and Tools, 2nd ed. Addison Wesley, 2007.
[10] S. Petillo, A. Balasuriya, and H. Schmidt, “Autonomous adaptive envi-

ronmental assessment and feature tracking via autonomous underwater
vehicles,” in IEEE Oceans 2010 Conference, Syndey, Australia, May
2010.

[11] M. R. Benjamin, H. Schmidt, P. M. Newman, and J. J. Leonard, “Nested
autonomy for unmanned marine vehicles with moos-ivp,” Journal of

Field Robotics, vol. 27, no. 6, pp. 834–875, 2010.
[12] H. C. Woithe, I. Chigirev, D. Aragon, M. Iqbal, Y. Shames, S. Glenn,

O. Schofield, I. Seskar, and U. Kremer, “Slocum glider energy measure-
ment and simulation infrastructure,” in IEEE Oceans 2010 Conference,
Syndey, Australia, May 2010.

[13] H. Woithe and U. Kremer, “An interactive slocum glider flight simula-
tor,” in IEEE Oceans 2010 Conference, Seattle, USA, September 2010.

