Towards a Resource-Aware Programming Architecture for Smart
Autonomous Underwater Vehicles*

Technical Report DCS-TR-637

Hans Christian Woithe Denitsa Tilkidjieva Ulrich Kremer
{hewoithe,denitsa,uli}@Qcs.rutgers.edu

Department of Computer Science
Rutgers University

June 2008

1 Introduction and Motivation

The world’s oceans represent over 99% of the earth’s ecological space that can support life. This
vast space is still widely undiscovered, and the notion that “we know more about the surface of the
moon than the bottom of our oceans” still holds. Many global oceanographic phenomena are not
yet well understood, in particular their impact on global warming and marine life. In recent years,
autonomous underwater vehicles (AUVs) have become an indispensable tool for marine scientists
to learn more about our world’s oceans and large water bodies. Their use has replaced the tedious
process of gathering oceanographic data through sensor probes lowered into the water from surface
vessels and operated by scientists. Today’s AUVs are able to gather orders of magnitude more data
than the traditional approach, operating at a fraction of the overall costs, and allowing deployment
under harsh environmental conditions such as those encountered during hurricanes or in polar regions.

The main thrust in the design of autonomous underwater vehicles such as the Slocum glider
[12, 13] has been the development of a reliable, effective, and low cost data-acquisition instrument,
typically for a small collection of sensors to measure water salinity, pressure, and temperature. The
collected sensor data is stored on-board, and a subset of the data can be communicated back to a
mission center, allowing scientists to monitor the progress of the glider mission, and potentially change
mission parameters, if necessary. At the end of the mission, the glider is retrieved, together with
its complete sensor data sets. Although extremely effective as compared to previous oceanographic
data-acquisition technologies, state-of-the-art gliders such as the Slocum glider fall short of reaching
their full potential. They are (1) very difficult to program by marine scientists, (2) have very limited
resources in terms of computation, storage, and communication capabilities, (3) are extremely energy
constrained, and (4) rely heavily on a remote mission control center for safe and effective operation.
To address these shortcomings, we have designed a new resource-aware programming architecture
for the Slocum glider.

The new hardware/software architecture consists of a new programming abstraction and an addi-
tional computing system to be deployed within the glider. New compiler and runtime optimizations
will balance power/energy needs across a set of sensors. Underwater communication capabilities

*This research was supported in part by NSF grant CSR/CSI-0720836. The information presented here does not
necessarily reflect the position or the policy of the Government and no official endorsement should be inferred.

mussion file: contains predefined transfer mission file
“behaviors” of decreasing priority to glider

behavior: abend

Lehavior: surface k X l
behavior: set_heading ~)'“\.

b_arg: use_heading(bool) 4 .
b_arg: heading_value(X) -0.46 parse and execute mission

b_arg: start_when(enum) 0 on the glider
b_arg: stop_when(enum) 5 . s s

behavior: dive_to)
b.arg: target_depth(m) 100 sl 4
b_arg: start_when(enum) 4 s “ »
b_arg: use pitch(enum) 3 L
b_arg: pitch_value(X) -0.5235 1 4

hgjmg; prepare_to_dive

st

(a) Two gliders with a down- (b) Current glider programming model.
ward and upward trajectory
(sawtooth-shaped flight path).

Figure 1: Webb Research’s Slocum Glider.

will allow gliders to coordinate their sensing tasks across a swarm of gliders, and an overall mission
planning tool will give feedback about mission critical parameters such as estimated mission duration
given an energy budget, a set of desired sensors, and a flight path as input. The new programming
architecture will significantly enhance the capabilities of the gliders, making them “smarter” in terms
of power /energy usage and more autonomous by reducing the dependence on a mission control center.

2 Slocum: An Autonomous Buoyancy Driven Underwater Vehicle

Our initial goal is to support buoyancy driven autonomous underwater vehicles (AUVs), and par-
ticularly the Slocum glider. Propeller-driven AUVs such Remus [7] have different mission profiles,
with mission lengths in terms of hours rather than days or weeks. The Slocum glider is a 1.8m long
torpedo-shaped, winged AUV developed by Webb Research Corporation [12, 13]. Instead of using a
propeller, it achieves forward propulsion by changing its buoyancy, resulting in a sawtooth-shaped
gliding trajectory with a forward speed of 20-30cm/s at a dive angle of 26 degrees. Both angle and
speed can be adjusted by selecting a particular buoyancy together with a center of gravity. This
adjustment is done dynamically using a buoyancy pump and a pitch motor that moves an internal
battery pack. Lateral steering is supported by a tail fin rudder. Figure 1(a) shows two Slocum
gliders, with the glider in the foreground at a descending, and in the background with an ascending
flight path.

The glider has an on-board GPS receiver and typically communicates with a mission control
center via an Iridium satellite phone. GPS positioning and satellite communication is only possible
when the glider is at the surface. Multiple sensors can be mounted within or on the outside of
the vehicle. An acoustic altimeter is installed in the nose section to avoid collisions, in particular
collisions with the sea floor. Depending on the gearbox of the buoyancy pump, the glider can operate
at depths of up to 30, 100, 200, or 1000 meters. Glider missions may last weeks or months, depending
on the selected sensors, the desired flight path, and the frequency of sensor readings. A more detailed
description of this class of underwater vehicles can be found in [4].

Current Programming Architecture

The current Slocum glider has only limited on-board processing capability (two Motorola 68338
based single board systems, 1MB flash, 512KB SRAM, 8KB virtual EEPROM). The programming
environment allows users, i.e., oceanographic scientists and biologists, to express the actions to be
performed by the glider as a priority stack of behaviors (layered control) [3, 15, 1]. Such a priority
stack specification is referred to as a “mission”, and is written in a mission file. Each individual
behavior selects an action that may be overwritten by a behavior with a higher priority. Every 4
seconds, the operating system running on the glider traverses the priority stack of behaviors, from
lowest to highest priority, to determine the next action (command) to be performed by the glider.
An example mission file is shown in Figurel(b). Behaviors are listed in descending priority in the
mission file. In our example, the abend behavior has the highest priority. This behavior will be active
if the glider needs to resurface due to some software or hardware failure. It is of highest priority
since it may prevent the total failure and potential loss of the glider. Other behaviors specify the
diving pattern, set of active sensors, and the overall heading of the glider (waypoints).

In non-emergency operation, the current programming model does not allow the glider itself to
change its behavior based on the sensor readings that it has collected. To change its behavior, a
new set of parameters for the existing mission, or a new mission file has to be downloaded from the
remote control center. If the mission change is based on sensor readings, a representative subset
of these readings (which may potentially be very large) has to be communicated to the control
center via the satellite phone connection. This can be a rather costly operation, both in terms
of power/energy and time. Every time the glider surfaces, approximately 20 minutes are spent at
the surface to communicate a representative data subset back to mission control via the satellite
phone, and to receive new instructions from the control center. The glider typically surfaces every
3-5 hours. Once a new mission has been received, it is “recompiled” and installed in the glider.
If only new parameters are received for the existing mission, no recompilation is necessary. This
overall programming paradigm for the Slocum glider is illustrated in Figure 1(b). Although a highly
successful research platform, the current programming architecture will not be able to satisfy the
increasing demands of marine scientists for more sensors, more data storage, a better programming
model and tools to support such a model, more flexibility in controlling the gliders, and better
mechanisms and tools for resource management.

Limited Programming Model and Tool Support The existing programming model is rather
limited and error-prone. Typically, scientists do not write their own behaviors, but build their
missions from pre-existing behaviors with parameters set to values that reflect the particular new
mission goals. Parameter values are typically interdependent, which is not obvious and requires an in-
depth understanding of the software and hardware control systems of the glider. Therefore, scientists
typically limit themselves to modifying existing missions that work, and adapt these missions to
their new mission goals, resulting in a trial-and-error programming approach. Debugging support,
or help with assessing the overall impact of the selected mission characteristics on the expected
resource usage, in particular battery life, is very limited. Mission characteristics include the set of
active sensors, the flight path profile (glider angle and speed), data logging requirements (frequency,
volume, and sampling rate), and communication (satellite phone, underwater acoustic modem).

Need for More Sensors, More Data Storage, and QoR Specifications Marine biologists
and oceanographers have an ever increasing demand for new sensors, including optical and chemical
sensors. These sensors consume a significant amount of energy, and require a large amount of non-
volatile data storage currently not available on the gliders. On the Slocum, much of the acquired
data has to be communicated through a serial RS-232 connection which severely restricts the amount

of data that can be logged. Not all sensors can be active all the time since this would significantly
tax the battery resources. Scientists have to be able to express quality-of-result (QoR) tradeoffs with
respect to power and energy constraints. For example, it may be better to gather readings of an
energy-expensive sensor in bursts, instead of evenly spreading out the readings over a particular time
interval, assuming that the sensor readings cannot be performed all the time. Such information has
a semantic content that cannot be derived by any “smart” compiler or operating system, therefore
requiring the programmer, in our case the marine scientist, to provide the appropriate specifications.
A similar need for QoR tradeoffs are encountered in dynamic networks of mobile devices, such as
smart phones. We already have some experiences with such QoR specifications in the context of our
NSF funded collaborative Sarana project [6] and SpatialViews project [11, 10].

Insufficient Dynamic Control The glider should be able to react to dynamic phenomena in
the oceans, which is not sufficiently supported in the current Slocum programming architecture. To
change its behavior, the glider has to surface, contact the control center, and either download new
mission parameters, or a new mission file. This procedure has significant overhead, both in terms of
time and battery power. If the phenomena is highly dynamic and has only a small feature size, such
as a cross-shelf intrusion event [9, 2, 16], the glider may not be able to find it again.

No Underwater Communication Underwater communication can enable many important glider
capabilities, including underwater navigation and swarming behavior. Groups of gliders may support
each other by sharing sensor information, allowing such groups to be treated as a single instrument,
but with different individual sensor sets. Communication can also be used to support an underwater
location service, which is crucial for under-ice exploration where resurfacing and getting a GPS
position is not possible. Acoustic communication modems, such as WHOTI’s Micro-Modem, can be
deployed within the Slocum glider [5]. We will get access to at least two glider mounted acoustic
modems soon, allowing us to begin experimentation with communication optimizations.

Limited Autonomous Operation The current operation model requires the gliders to surface
and connect to the mission control center every three to twelve hours. Substantial amounts of sensor
data are uploaded to the control center to allow scientists, or a control program (the Dock-Server
[13]) to analyze the data and perform corrective actions, if necessary. Much of this data exchange
could be saved if the glider had sufficient data processing capabilities to analyze its sensor data on-
board. However, global connectivity is still crucial for providing the glider with context information
that it cannot derive by itself, such as an approaching bad weather front, or a nearby Gulf Stream
eddy that it could use to get a “free ride”.

In some cases, a more autonomous behavior is important for the survival of the glider itself. In
March of 2008, the Iridium satellite phone [8] connection was disrupted for 5 days, leaving gliders
without contact to the control center. The glider went into a holding pattern, flying between two
fixed waypoints while trying to establish a satellite connection approximately every 3 hours. Luckily,
no glider ran out of battery (in which case it would just drift at the surface), drifted into any shipping
lanes, or came close to a shore line, all of which may have resulted in a total loss. A more intelligent,
autonomous glider would have been able to better deal with such an emergency situation. Finally,
for under-ice arctic exploration, autonomous behavior is vital since communication to the control
center is not possible and the glider needs to rely on its own capabilities.

T'S-5500 TS-7800
CPU: x86 at 133MHz ARMY9 at 300MHz or 500MHz

Memory: 64MB 128MB
Storage: 1 CF 1 FullSD, 1 MicroSD, 2 SATA
USB: 2 2
Serial Ports: 3 Up to 10
Analog to Digital: 8 12-bit channels 5 10-bit channels
Active Power: 2.TW 3.42W (300MHz), 4.14W (500MHz)
OS: Linux 2.4 Linux 2.6

Table 1: Our current single-board computer systems (SBC) that can be installed in the Slocum
Glider.

3 New Programming Architecture

Clearly, in order to enable any significant change to the current programming architecture, new
computer hardware is needed as part of the glider infrastructure.

We chose an ARM-based (TS-7800) and an x86-based (TS-5500) Linux board as our initial
development infrastructure alternatives [14]. Table 1 contains the hardware specifications of both
single board computers. The reported power measurements were taken under load using a Tektronix
TDS 3014 Oscilloscope. These single board systems have several serial and USB interfaces for sensors
and run a commodity operating system that provides for rich driver support as well as an easy
development environment. Depending on the sensor, power, logging and processing requirements, it
may be advantageous to choose one board over the another. For example, floating point operations
are significantly faster on the x86, while the ARM board has more RAM and more serial interfaces.
Other single board systems will likely be considered in the future depending on the particular needs
of the sensor sets or mission objectives.

Figure 2(a) shows the ARM board within the glider’s payload bay, mounted below one of the
Motorola-based glider systems, called the “science persistor”. The second Motorola board, the “flight
controller”, is responsible for controlling most of the glider, with the exception of a few sensors which
are controlled by the science persistor. The flight controller and the science persistor are connected
via a serial RS-232 interface.

One key objective of our overall design is to enable a new programming architecture without
significant changes to the underlying, existing hardware/software infrastructure. The main moti-
vation for this decision is two-fold. First, the existing system is well designed to deal with basic
safety issues through the layered control system that ensures the physical integrity of the glider.
Our new architecture will have control over the glider only when these safety issues are not violated.
For example, the underlying system handles hardware failures, water intrusions, and some form of
obstacle avoidance, and ensures that the glider can be recovered in any severe failure situation. This
safety feature is crucial since each glider costs between $150K - $200K, depending on the sensor
configuration. Secondly, the development and testing of the existing glider system took tens of “man
years”, resulting in a robust commercial product with many customers. Being backward compatible
with respect to the existing system will allow current users to gracefully migrate to our new system
without loosing the investment into their existing “mission files”.

Our initial design that satisfies the above objective is shown in Figure 3. We wrote a “dummy
mission” file that defines a new behavior as part of a layered control system. This new behavior
(“hookbeh”) dynamically generates new subbehaviors triggered by values in the “sensor array” data
structure. The sensor array is a key data structure of the existing layered control system and can
be considered the data memory of the flight controller. Our new architecture extends the sensor

Rurcegs YYRC

Tz, OLY

(a) An ARM-based TS-7800 (b) Sealed and decompressed glider in a “bench-top” flight
Linux board. The new board is configuration. The payload bay is located in the middle sec-
mounted in the lower half of the tion of the glider.

payload bay.

Figure 2: New single-board Linux system and our bench-top testbed.

array. If a subbehavior flag is set, our “hookbeh” will dynamically insert a corresponding new
behavior into the existing layered control stack using parameter values stored in predefined fields in
the sensor array. The particular selection of subbehaviors that can be triggered can be thought of
as the new instruction set architecture (ISA) of the glider. Once “executed”, the subbehaviors are
removed. During each execution cycle (approx. 4 seconds), multiple subbehaviors may be created and
executed. From now on, we will refer to the new single-board computer as SBC. It has control over
the glider by reading from, and writing instruction flags and parameters into the sensor array. The
particular selection of possible subbehaviors, i.e., the particular ISA may be application dependent
and can be tailored and specialized for given mission characteristics. Since these new instructions
together with their parameters have to be communicated from the SBC to the flight controller via
a rather limited serial link, we will investigate efficient instruction/ISA encodings, and parameter
setting optimization strategies. The existing sensor array is implemented as an array of double
precision numbers. Using a double precision entry for each instruction flag is rather expensive due
to memory space and necessary communication bandwidth for setting the flag over the serial link.
In addition to ISA compression and specialization, we are currently investigating optimizations that
preset parameters, or reuse parameters across different invocations of the same subbehavior, i.e.,
execution of the same instruction. Our new runtime system executing on SBC targets this new ISA.

The proposed new programming architecture allows the execution of existing “old” mission files
by running such a mission file instead of our “dummy mission”. Another advantage of this approach
is that we may define different dummy missions that wrap or package our “hookbeh” with different
higher-priority behaviors that may limit or overwrite particular glider actions.

Dummy mission

behavior: abend
behavior: surface
behavior: hookbeh
behavior: dive_to

behavior: prep

Sensor array

Domain specific language

mission yo_for_some_time
slate keep_doing_yo
begin
flightroute noheading
flightprofile yo(5.0, 25.0, 0.454, 0.454)
sensors missiontime
events
case missiontime >= 200 exit
end

[]

Compiler
dive_to flag
climb_to_flag
PARSER i
dive_to_arg1 prog. N Glider Library
CMD STACK i dive_to_arg?2 hookprog
dive_to Glider Run-Time

LAYERED CONTROL

System

DYNAMIC CONTROL

DEVICESCHEDULER DRIVER DRIVER

H DRIVER i

SBC

SENSOR PROCESSING

Flight Controller Science

Figure 3: The new programming architecture; from left to right: flight controller with skeleton
mission and layered control implementation; science computer; SBC, our new Linux board, with
a domain specific programming language, runtime system, and compiler; SBC is connected to the
flight controller via a RS-232 link through the science persistor.

3.1 Domain Specific Language

A good domain-specific language design provides programming abstractions that allow marine sci-
entists and oceanographers to express their programs with abstractions that they easily understand
and can reason about. At the same time, these abstractions should allow the compiler to catch
programming errors as early as possible, and to generate efficient code for our new Slocum ISA. The
usability and expressiveness of the language is currently being evaluated in close collaboration with
Dr. Glenn’s and Dr. Schofield’s research groups at the Institute for Coastal and Marine Sciences at
Rutgers University.

The initial language proposal combines the notion of a finite state machine, spatial regions, and
layered control. The specification of QoR tradeoffs are not yet included. Figure 5 shows a program
sketch of a thermocline tracking application. A thermocline is a layer of water where the water
temperatures change dramatically. Figure 4(a) shows the thermocline off the coast of New Jersey.
The shown data has been collected by a Slocum glider (not equipped with our new infrastructure).
A desired tracking behavior is illustrated in Figure 4(b). Instead of flying through the entire water
column, the glider should track the thermocline as it changes. This tracking behavior, or any dynamic
adaptation of the glider behavior in response to a changing sensor value, is not supported by the
current Slocum programming architecture.

The thermocline tracking program consists of spatial declarations, followed by definitions of
behaviors. The spatial declarations represent the convex hull of all points listed in way-point list. At
this point, a way-point may be specified by a GPS location. The avoid keyword is followed by regions

Tracking thernocline 26Bsecs-1468secs

N I
i 1
o I
| i
L
1

f i

I o
A AL
[ho| | | It I
|1 | 1

i ||‘ 1] L\

MISOS

4 23:40:23 — 4 12:1630 GMT

#ﬂw,ﬁ"l,"ﬂ ' %

1 |
1 \l | I\I
i ‘I}

20
74100 74000 -7E00 7400 -FAS00 72200 7100
Longituda

a 288 488 688 888 1888 1288 1488 1688 1888 20808 2288

Seconds into Hission

(a) Actual measured thermocline off the (b) Simulated tracking of thermocline. The thermocline is is
coast of New Jersey by a non-tracking an approximation of the data in the narrow region between
glider. the two black lines in the subfigure to the left.

Figure 4: Example: Thermocline tracking application.

that should not be visited by the glider. If the glider happens to be in such a region, normal glider
operation will be stopped, and the glider will try to leave the region. If successful, normal glider
operation will be resumed. During normal glider operation, the glider is in a particular state. In
each state, the glider has a particular flight destination (flightroute) and a particular flight profile
to get it to the destination (flightprofile). In the thermocline example, the glider can be either in
a state where it looks for a thermocline (TargetArea), is tracking a thermocline (ThermoTracking),
or needs to contact the control center (contactControlCenter). Transitions between these states
are specified within events. Events may depend on sensor values. In the example, all sensors are
capitalized. The new glider runtime system evaluates events periodically. If an event is recognized, a
state transition may happen as specified in the action body of the event, either as a regular transition
(goto) or as a nested transition (call). Subbehaviors form a behavior stack. State transitions from
subbehaviors can be initiated by a return, which returns the execution to the behavior that invoked
the current behavior as a subbehavior. In our example, if the ThermoTracking behavior loses the
thermocline, it returns to the behavior TargetArea that searches again for the thermocline. The
behavior contactControlCenter establishes contact with the mission control center. It is typically
periodically invoked as specified by the user (example: yo.surface(180) in behavior TargetArea ,
or invoked as a subbehavior if an error condition arises.

Current Prototype Implementation

One of the main challenges in the implementation of the new programming architecture was the
need for backward compatibility with the existing programming environment. As a result, all desired
glider actions are expressed by generating new behaviors in the existing layered control system, and
by reading and writing new fields in the sensor array. The layered control system and sensor array
both live on the flight controller. We wrote a new behavior (“hookbeh”) that is expressed within the
old programming system as part of a mission file. Its job is to create and delete new subbehaviors

mission ID MO01-April2008-TrackThermalBoundary;

regions regionTarget=(<way-pointl>,<way-point2>, <way-point3>, <way-point4d>)
restricted Area=(<way-point5>,<way-point6>, <way-point7>)
shippingLane=(<way-point8>,<way-point9>, <way-point10>, <way-point11>)
avoid regions: restrictedArea, shippingLane

mission plan: startWith TargetArea(regionTarget)

state TargetArea(Region regionT) begin

behavior flightroute — system.searchSweep(regionTarget);

flightprofile — yo.dive(2, 200, 26, 26); yo.surface(180); // surface every 180 minutes
sensors CDT = CDT.setParms(0.5, lazy(5)); // every 0.5 secs, lazy log every 5-th reading

LOC; TIME; SUR;
events

case SUR.atSurface():

if (!sufficientProgress(LOC.getLocation(), TIME.getTime(), regionT) {
call contactControlCenter(); }

case CDT.getTemperatureHistoryVariance(20) > 3 { goto ThermalTracking(3) };

end

state ThermoTracking(int temperatureDifference) begin

behavior flightroute — system.trackCondition();
flightprofile — trackThermalBoundary.track(temperatureDifference); trackThermalBoundary.surface(120);
sensors CDT = CDT.setParms(0.5, lazy(5)); // every 0.5 secs, lazy log every 5-th reading
LOC; TIME; SUR;
events
case SUR.atSurface(): return(); // allows system to update time and location (GPS)
case CDT.getTemperatureHistoryVariance(20) <= 3 { return() };
end

state contactControlCenter begin

behavior flightroute — system.getToSurfaceAndStay();
flightprofile — {yo.getToSurface()}; yo.floatAtSurface();

sensors PHONE = PHONE.connect();

events
case PHONE.connected() {
char *commBuffer = PHONE.receiveData(...)
// receive commands and follow pre-defined communication protocol
return();
case PHONE.timeout() {ABORT_-MISSION}
end

Figure 5: Program sketch of thermocline tracking.

within the layered control system based on values in the sensor array set by the new SBC. A new
driver layer had to be implemented that allows the SBC to read and write sensor values. The SBC
is connected to the science computer via a 115200 baud serial connection, which in turn connects
to the flight controller via a 9400 baud serial interface. The necessary new driver layer is the main
bottle-neck of the current implementation resulting in read/write delays of sensor values of up to 8
seconds.

The basic runtime system that executes on the SBC implements a stack-based finite state
machine as discussed in Section 3.1. The entire runtime system is written in C. It periodically
evaluates pre-conditions of actions stored as function pointers in an event-list data structure. If
an event pre-condition is satisfied, the corresponding actions are executed. Such actions typi-
cally include calls to the glider runtime library. The glider runtime library provides abstractions
for state changes (e.g.: system.goto(), system.call(), system.return(), system.abort()), higher-level
glider behavior (e.g.: yo.dive, yo.getToSurface()), and sensor operation (e.g.: CDT.setParms(),
CDT.getTemperature()). New sensors, including communication, can easily be integrated into our
new programming architecture by extending the glider runtime library.

We have implemented a limited subset of the domain specific language outlined in Figure 5,
a basic glider runtime library, and support for complex missions such as a thermocline tracking
application. The lex/yacc based compiler translates the domain-specific language program into an
abstract syntax tree (AST) representation. In the code generation phase, the compiler generates a
specialized version of the runtime system from the AST. The resulting C program is compiled using
the standard gcc tool chain. When the generated executable is invoked on the SBC, it takes over

the control of the glider.

Experimental Results

For our experimentation, we used a “shoe-box” system and an actual glider with our SBC inside.
The shoe-box is a simulation environment that contains the two Motorola based computer systems
of the glider, namely the flight controller and science computer. Both are connected via a serial
RS232 interface. Navigational motors (buoyancy pump, pitch motor, fin motor) and sensors with
their readings are simulated in this environment. The shoe-box system allows us to debug our
new programming architecture without using an actual glider. When our SBC is deployed within
the glider, it receives its power from the glider’s battery banks. All sensors are active and the
navigational motors can be operated. This requires that the entire glider is decompressed to an
airpressure of 6 psi. This means that no cables can be used to connect to our SBC from outside the
glider. Instead, we use a wireless 802.11 connection to log onto our SBC in the bench-top testing
configuration. Some sensor readings still need to be simulated in the bench-top environment, such
as depth and water temperature. Other sensors are active, but produce “bogus” data since they are
designed to take measurements in the water.

A basic thermocline program was written in our new domain specific language and compiled using
our prototype compiler. The resulting executable was installed on the SBC and tested in a bench-
top, sealed and decompressed glider as shown in Figure 2(b). For the experiment, our thermocline
program was activated after 260 seconds into the mission, and disabled after 1460 seconds. The flight
profile during the first 260 seconds, and after 1460 seconds are that of a non-tracking glider. The
experimental results are shown in Figure 4(b). Our thermocline program was successfully compiled,
and executed on the new SBC allowing the glider to do something that the current programming
architecture does not support.

3.2 Resource Awareness

Effective resource management, in particular battery power, is of crucial importance in our glider
environment. Figure 6 shows the average power dissipation of several common sensors together with
the navigational motors of the glider. The presented numbers were obtained through actual physical
measurements using our Tektronix TDS-3014 oscilloscope. Since the glider needed to be sealed and
decompressed for the measurements, only whole system measurements were possible. The reported
figures are differential power measurements relative to a baseline power level of the system in an
idle state. In addition to power issues, the 9400 baud serial connection between the flight controller
and science computer is a crucial resource and performance bottleneck. All these resources need to
be managed effectively in order to ensure that the glider can reach its full potential as a scientific
instrument.

It may not be possible to run all sensors all the time, or to use a flight path that requires the
buoyoncy pump and pitch motor to be activated frequently, in particular at high depths. The power
consumption of the buoyancy pump may vary by up to a factor of six for the same amount of water
displacement depending on the water pressure at different depths. Techniques are needed that will
balance the overall energy requirements across multiple sensors, selecting a flight path and sensor
reading frequency that optimizes the expected benefit of the sensor readings. This will require input
from the user via QoR language specifications.

In order to save communication costs and costs due to frequent surfacing, we will investigate
the benefit of data set analysis techniques that will only require contact with the control center if
an unexpected situation is encountered. Typically, data sets of the order of 20K to 100K bytes are
communicated to the control center after a diving phase lasting between three and twelve hours.

10

Power Consumption of Four Glider Sensors and Navigational Motors

Power (watts)

2

1 I

0 — - L .
FL.

CTD BB3 3 AUVB Fin Pitch Buoyancy

(a) Power Measurement Setup. (b) Physical Power Measurements

Figure 6: Measured average power of a set of glider sensors and glider navigation equipment. From
left to right: CDT - conductivity, temperature, depth; BB3 - bio-optical sensor to measure water
clarity; FL3 - flurometer to test for chlorophyll-a, uranine, or rhodamine; AUVB - Fluorometer
(laser); Fin - fin motor; Pitch - pitch motor; Buoyancy - buoyancy pump.

By allowing the on-board processor to make the decision what to do next instead of the remote
control center, the energy required for communication and for surfacing can be significantly reduced.
We physically measured the average power needed to upload different file sizes from the glider to
the contol center via the Iridium satellite phone link. For all file sizes, the average power was
approximately 6 W with a transmittion rate of 180 bytes/second. The transmission times for files of
size 20K and 100K were a little less than two minutes and around ten minutes, respectively.

Since the energy consumption of the buoyancy pump and some sensors (e.g.: the laser in the
AUVB fluorometer needs to be kept at a fixed temperature) depend on environmental conditions
such as water depth and water temperature, an accurate power/energy management strategy will
need on-line power measurements. Both of our current SBC alternatives have an analog to digital
capture function by way of an on-board AVR microcontroller. The voltage measurement resolution
on the TS-5500 is 12 bit, and 10 bit on the TS-7800. On the TS-7800, this translates to a voltage
measurement resolution of 3 mV. We are currently in the process of instrumenting the power supply
of the buoyancy pump with a 0.1 Ohm current sensing resistor. In addition to the voltage drop at
this resistor, we will measure the overall supply voltage of the battery. An actual glider deployment
with our power measurement infrastructure is scheduled within the next month.

4 Future Work

We have currently scheduled boat and crew time for one glider at the end of July to test our
thermocline application and to perform on-board power measurements of the buoyancy pump. The
glides will be deployed in 30m of water approximately 30km off the shore of New Jersey. This will
be the first real test of our new programming architecture. Other goals in the near future are the
extension of the current compiler to handle more of our proposed language features and to extend
the glider library to support acoustic underwater communication and some basic form of swarming
behavior.

11

Acknowledgements

We would like to thank Scott Glenn, Oscar Schofield, and David Aragon from the Institute of
Coastal and Marine Sciences at Rutgers for their support and help. In particular, we appreciate
David’s advice and patience while teaching us how to use and operate the Slocum glider.

References

1]

2]

[10]

[11]

[12]

J. Bellingham and J. Leonard. Task configuration with layered control. In TJARP Workshop on
Mobile Robots for Subsea Environments, Monterey, CA, May 1994.

P.E. Biscaye, C. N. Flagg, and P. G. Falkowski. The shelf edge exchange processes experiment,
SEEP-II: An introduction to hypotheses, results and conclusions. Deep-Sea Research Part 11,
41:231-252, 1994.

R. Brooks. A robust layered control system for a mobile robot. IEEE Journal of Robotics and
Automation, RA-2(1):14-23, March 1986.

R. Davis, E. Eriksen, and C. Jones. Autonomous buoyancy-driven underwater gliders. In:
Technology and Applications of Autonomous Underwater Vehicles, G. Griffiths (Ed), Taylor €
Francis, London, pages 37-58, 2002.

L. Freitag, M. Grund, S. Singh, J. Partan, P. Koski, and K. Ball. The WHOI micro-modem:
An acoustic communications and navigation system for multiple platforms. In IEEE Oceans
Conference, Washington, D.C., 2005.

P. Hari, K. Ko, E. Koukoumidis, U. Kremer, M. Martonosi, D. Ottoni, L-S. Peh, and P. Zhang.
SARANA: Language, compiler, and runtime system support for spatially-aware and resource-
aware mobile computing. Philosophical Transactions of the Royal Society A, 2008. to appear.

LLC. Hydroid. Remus auv, http//www.hydroidnc.com/products.html. Pocasset, MA.
Iridium Satellite LLC. Iridium satellite phones, http://www.iridium.com. Bethesda, MD.

M. S. Lozier. and G. Gawarkiewicz. Cross-frontal exchange in the middle atlantic bight as
evidenced by surface drifters. Journal of Physical Oceanography, 31:2498-2510, 2001.

Y. Ni. Programming Ad-Hoc Networks. PhD thesis, Department of Computer Science, Rutgers
University. Technical Report DCS-TR-594, January 2006.

Y. Ni, U. Kremer, A. Stere, and L. Iftode. Programming ad-hoc networks of mobile and resource-
constrained devices. In Proceedings of the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI’05), Chicago, IL, June 2005.

Webb Research. Slocum glider, http//www.webbresearch.com/slocum.htm. Falmouth, MA.

O. Schofield, L. Creed, J. Graver, C. Haldeman, J. Kerfoot, H. Roarty, C. Jonees, D. Webb,
and S. Glenn. Slocum gliders: Robust and ready. Journal of Field Robotics, Wiley Periodicals,
Inc., 24(6):473-485, 2007.

Technology Systems. http://www.embeddedarm.com. Foutain Hills, AZ.

K. Valavanis, D. Gracanin, M. Matijasevic, R. Kolluru, and G. Demetriou. Control architectures
for autonomous underwater vehicles. IEEE Control Systems Magazine, 7(6):48-64, December
1997.

12

[16] P. G. Verity, J. E. Bauer, C. N. Flagg, D. J. DeMaster, and D. J. Repeta. The ocean margins
program: an interdisciplinary study of carbon sources, transformations, and sinks in a temperate
continental margin system. Deep-Sea Research Part II: Topical Studies in Oceanograph, 49:4273—
4295, 2002.

13

