
Reversible Computation and

Reversible Programming Languages

Tetsuo Yokoyama 1

Department of Software Engineering, Nanzan University
Seirei-cho 27, Seto city, Aichi 489-0863, Japan

Abstract

A reversible programming language supports deterministic forward and backward computation. This tuto-
rial focuses on a high-level reversible programming language Janus. In common with other programming
paradigms, reversible programming has its own programming methodology. Janus is simple, yet powerful,
and its constructs can serve as a model for designing reversible languages in general.

Keywords: Reversible computing, Reversible programming languages

1 Introduction

Conventional computing models such as Turing machines and random access ma-

chines (RAMs) destroy information at each computational step. The symbol written

on the tape in the previous state will be overwritten by the new symbol, and the

value written on the registers will be updated into the new one. At the first sight,

we tend to think the destruction of information is necessary to computation. How-

ever, it was shown by Landauer that any irreversible computation can be simulated

by reversible computation by adding the extra storage to remember the history of

computation [16]. Moreover, this garbage information can be erased by its inverse

computation [2]. Thus, in theory we can simulate any irreversible computation with

reversible computation provided that a given storage is infinite.

When a conventional computation is physically performed information destruc-

tion has a physical cost in the form of heat dissipation. Conversely, if no bit is erased

during computaion, in theory there is no lower bound of heat dissipation for the

computation. Therefore, the research of reversible computing has some potential

1 Email: tetsuo@se.nanzan-u.ac.jp
2 This work is partly supported by EPSRC grant EP/G039550/1, JST CREST and Nanzan University
Pache Research Subsidy I-A-2 for the 2009 academic year.

Electronic Notes in Theoretical Computer Science 253 (2010) 71–81

1571-0661 © 2010 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2010.02.007
Open access under CC BY-NC-ND license.

mailto:tetsuo@se.nanzan-u.ac.jp
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

applications such as the low-power CMOS and quantum computing. Note that any

quantum computing is necessary to be reversible.

This tutorial focuses on a high-level reversible programming language Janus.

In common with other programming paradigms, reversible programming has its

own programming methodology. We define the language and give its syntax and

operational semantics.

2 The Reversible Language Janus

The imperative language Janus appears to be the first reversible structured pro-

gramming language: it was invented by Lutz and Derby [17], but remained unpub-

lished for two decades. The language presented here extends our original formal-

ization [32] and has been presented in [30]. Janus is simple, yet powerful, and its

constructs can serve as a model for designing reversible languages in general. The

main difference from conventional programming languages is that all assignments

and control constructs are purely reversible, and the language’s inverse semantics

can be accessed by uncalling procedures (i.e., executing them backward).

2.1 Example Program: Fibonacci Pairs

To provide a flavor of reversible programming, we show a Janus procedure for com-

puting Fibonacci pairs. Given an integer n, the procedure fib computes the (n+1)-th

and (n+2)-th Fibonacci number. For example, the Fibonacci pair for n = 4 is (5, 8).

Returning a pair of Fibonacci numbers makes the otherwise non-injective Fibonacci

function injective. Variables n, x1, x2 are initially set to zero. Parameter passing

is pass-by-reference.

procedure fib(int x1,int x2,int n)

if n=0 then x1 += 1

x2 += 1

else n -= 1

call fib(x1,x2,n)

x1 += x2

x1 <=> x2

fi x1=x2

procedure fib_fwd(int x1,int x2,int n)

n += 4

call fib(x1,x2,n) // forward execution

procedure fib_bwd(int x1,int x2,int n)

x1 += 5

x2 += 8

uncall fib(x1,x2,n) // backward execution

T. Yokoyama / Electronic Notes in Theoretical Computer Science 253 (2010) 71–8172

Syntax Domains

prog ∈ Progs

p ∈ Procs

q ∈ PIds

s ∈ Stms

e ∈ Exps

x ∈ Vars

d ∈ Vdecs

t ∈ Types

c ∈ Cons

� ∈ ModOps

⊗ ∈ Ops

Grammar

prog ::= pmain p∗ Janus program

d ::= x | x[c] scalar and array

t ::= int | stack data types

pmain ::= procedure main () (int d | stack x)∗ s main procedure

p ::= procedure q(t x, . . . ,t x) s procedure definition

s ::= x �= e | x[e] �= e assignments

if e then s else s fi e | conditional

from e do s loop s until e | loop

push(x,x) | pop(x,x) | stack modification

local t x = e s delocal t x = e | local variable block

call q(x, . . . ,x) | uncall q(x, . . . ,x) | procedure invocation

skip | s s statement sequence

e ::= c | x | x[e] | e ⊗ e | empty(x) | top(x) | nil expression

c ::= -2147483648 | · · · | 0 | 1 | · · · | 2147483647 integer constant

(−231 to 231 − 1)

� ::= + | - | ^ operator

⊗ ::= � | * | / | % | & | | | && | || | operator

< | > | = | != | <= | >=

Fig. 1. Syntax of Janus

The implementation of procedure fib looks conventional, but consists only of re-

versible assignments (+=, -=) and a reversible conditional with entry and exit test

(if...fi). Here, x1 <=> x2 swaps two values. 3

As a result, procedure fib is reversible. It can be invoked with either its standard

or inverse semantics. Setting n to 4 and calling fib in procedure fib_fwd (assuming

variables x1 and x2 are set to zero), computes the Fibonacci pair x1 = 5 and x2 = 8.

Setting x1 to 5 and x2 to 8 and uncalling fib in procedure fib_bwd, computes the

pair’s index n = 4. This shows how the same procedure definition can be used for

deterministic forward and backward computation.

T. Yokoyama / Electronic Notes in Theoretical Computer Science 253 (2010) 71–81 73

���
�� ��

��e1

t

f

� s1

��
�

�
�e2

t

f

�

� s2
�

if e1

then s1

else s2

fi e2

(a) Conditional

�
�
�

�
�e1

t

f

� s1

�
��
�� ��

��e2
t

f

�s2
�

�

from e1

do s1

loop s2

until e2

(b) Loop

Fig. 2. Reversible structured control flow

2.2 The Language

A Janus program consists of a main procedure followed by a sequence of procedure

definitions (Fig. 1). 4 Reversible statements are the basic constructs of Janus. A

statement is a reversible assignment, a reversible control flow operator (conditional,

loop), a stack operation (push, pop), a local variable block, a procedure invocation

(call, uncall), a skip or a statement sequence. The main procedure consists of

variable declarations and a statement, and has no parameters. A variable declaration

defines an integer variable, a one-dimensional integer array, or an integer stack.

Arrays are indexed by integers starting from zero. The type primitives are 32-bit

signed integers and stacks. Variables and array elements are initially zero-cleared

and stacks are empty. To keep things simple there are no global variables. The

logic value true is represented by any non-zero integer and false by zero.

2.2.1 Assignments and Expressions

A reversible assignment updates an integer variable or an array element. The vari-

able x on the left-hand side of an assignment must not appear in the expression e on

the right-hand side. Similarly, array variable x must not appear in the expression e

on either side of the assignment. This, together with the reversible modify operator

� (addition, subtraction, bitwise exclusive-or), makes the execution of assignments

reversible (discussed later). An assignment is the only way of changing the value of

a variable.

The expression on the right-hand side of an assignment or in a control-flow

predicate can be a constant, a variable, an indexed variable, a binary expression,

an is-empty predicate for stacks, the top element of a stack, or an empty stack. A

binary operator ⊗ is an arithmetic (+,-,*,/,%), bitwise (&,|,^), logical (&&,||), or

relational operator (<,>,=,!=,<=,>=). Note that a logical binary operator regards a

zero operand as false and any non-zero operand as true, interprets its operands as

either false or true, and evaluates to 1 (true) or 0 (false). A binary bitwise operation

performs the logical operation on each bit position of its operands.

T. Yokoyama / Electronic Notes in Theoretical Computer Science 253 (2010) 71–8174

2.2.2 Structured Control Flow

Reversible control flow requires entry and exit predicates (pre- and post-conditions).

A reversible conditional has two predicates (Fig. 2(a)): a test at the entry (e1) and

an assertion at the exit (e2) of the conditional. Predicate e2 must be true when the

control flow reaches the assertion along the true-edge (labeled t) and false when

the control flow reaches the assertion along the false-edge (labeled f); otherwise the

operation is undefined (abnormal stop). Statements s1 and s2 are the then- and

else-branches, respectively. The assertion (marked with a circle in the diagram to

distinguish it from a test) makes the conditional backward deterministic; in the

backward direction an assertion acts as a test and a test as an assertion. Assertions

are an operational part of a programs in the same way as tests.

A reversible loop has two predicates (Fig. 2(b)): an assertion at the entry (e1)

and a test at the exit of the loop (e2). Initially, assertion e1 must be true and then

s1 is executed. The loop terminates if test e2 is true; otherwise, s2 is executed, after

which e1 must be false. The assertion is only initially true. The loop is repeated

as long as assertion and test are false , and terminates when the test is true. This

makes the loop backward deterministic.

2.2.3 Dynamic Allocation of Storage

A stack is an abstract data type that is equipped with the operation push(c,s),

which adds element c to stack s and zero-clears c, and the operation pop(c,s),

which moves one element from stack s to a zero-cleared c. Popping an element

from an empty stack, or into a non-zero-cleared variable is undefined. Operations

push(c,s) and pop(c,s) are inverse to each other. In expressions the predicate

empty(s) tests whether stack s is empty, top(s) returns the value of the topmost

element on stack s, and nil is the empty stack.

A local variable block consists of a local variable allocation, a statement, and lo-

cal variable deallocation. A local variable block allocates memory for local variables

and initializes them with the values of the corresponding expressions, and a variable

deallocation specified by delocal releases the memory, where the value of the vari-

able must meet the value of a given expression. Variable x of type t is allocated and

the value of e1 is assigned to x. Under the new store, statement s is executed. The

value of x should now be equal to the value of e2, and can be deallocated (otherwise,

the behavior is undefined). If x is already in scope on entry, it is hidden and a fresh

x is used during the local block structure. As in the assignment operations, x must

not occur in e1 and e2. Local variables are allocated and deallocated only in this

structured way.

2.2.4 Procedure Calls and Uncalls

Procedure calls provide an elegant and convenient way to access the inverse se-

mantics of Janus and to run a procedure backward. A procedure call executes the

3 The swap operator x1 <=> x2 is syntactic sugar for the statement sequence x1 ^= x2; x2 ^= x1; x1 ^=
x2.
4 Some of the original operators [17] were changed into C-like notation.

T. Yokoyama / Electronic Notes in Theoretical Computer Science 253 (2010) 71–81 75

v ∈ Vals = Z32 ∪ StackZ

l ∈ Lvals = { a, b, . . . , a[0], a[1], . . . , b[0], . . . }

σ ∈ Stores = Lvals ⇀ Vals

Γ ∈ Pmaps = PIds ⇀ Procs

Fig. 3. Semantic values

procedure body in the local store of formal parameter variables. A procedure un-

call invokes inverse computation of the procedure. All parameters are passed by

reference. As usual, the number of parameters in a call must correspond to the

number designated in the procedure declaration and the types of the actual param-

eters should meet those of the formal parameters. The actual parameters must be

variable names in the scope of the procedure invocation. To avoid problems with

aliasing, we prohibit passing the same reference to more than a single parameter.

2.3 Operational Semantics

The semantics of Janus programs is specified by the rules shown in Fig. 4. The

operational semantics have three main judgments: the evaluation of expressions,

the execution of statements and execution of programs. Before going into details,

we shall briefly describe the semantic values (Fig. 3) along with some notation.

Preliminaries

Let Z32 designate the set of 32-bit signed integers. A value v is an integer in Z32 or

an integer stack in StackZ. Integer stacks are inductively defined by

StackZ = {nil} ∪ {hd :: tl | hd ∈ Z32 ∧ tl ∈ StackZ}

where nil designates the empty stack and hd :: tl designates a non-empty stack with

top element hd ∈ Z32 and remainder stack tl ∈ StackZ. A left-value l is a variable

name, or an indexed variable name. The store σ is a partial function from left-values

to values. The application of a store σ to a left-value l is denoted by σ(l).

Update σ[l �→ v] denotes the same mapping as σ except that l maps to

v. We write a syntactic substitution replacing x1, . . . , xn with e1, . . . , en as

[e1/x1, . . . , en/xn], which is defined on expressions and statements. A procedure

map Γ is a partial function from identifiers to procedure definitions.

Evaluation of Expressions

A judgment

σ 	expr e ⇒ v

defines the meaning of expressions where σ is a store, e an expression, and v a

value. We say that under store σ, expression e evaluates to value v. Evaluation of

expressions does not cause side effects on the store. Some definitions are (others

T. Yokoyama / Electronic Notes in Theoretical Computer Science 253 (2010) 71–8176

Evaluation of Expressions

σ �expr c ⇒ [[c]]
Con

σ �expr nil ⇒ nil
Nil

σ �expr x ⇒ σ(x)
Var

σ �expr e ⇒ v

σ �expr x[e] ⇒ σ(x[v])
Arr

σ �expr e1 ⇒ v1 σ �expr e2 ⇒ v2 [[⊗]](v1, v2) = v

σ �expr e1 ⊗ e2 ⇒ v
BinOp

σ[x �→ vhd :: vtl] �expr top(x) ⇒ vhd

Top

σ[x �→ nil] �expr empty(x) ⇒ 1
EmptyTrue

σ[x �→ vhd :: vtl] �expr empty(x) ⇒ 0
EmptyFalse

Execution of Statements

σ �expr e ⇒ v v2 = [[�]](v1, v)

σ[x �→ v1] �stmt x �= e ⇒ σ[x �→ v2]
AssVar

σ �expr el ⇒ vl σ �expr e ⇒ v v2 = [[�]](v1, v)

σ[x[vl] �→ v1] �stmt x[el]�= e ⇒ σ[x[vl] �→ v2]
AssArr

σ �expr e1 � 0 σ �stmt s1 ⇒ σ′ σ′ �expr e2 � 0

σ �stmt if e1 then s1 else s2 fi e2 ⇒ σ′
IfTrue

σ �expr e1 ⇒ 0 σ �stmt s2 ⇒ σ′ σ′ �expr e2 ⇒ 0

σ �stmt if e1 then s1 else s2 fi e2 ⇒ σ′
IfFalse

σ �expr e1 � 0 σ �stmt s1 ⇒ σ′ σ′ �loop (e1, s1, s2, e2) ⇒ σ′′

σ �stmt from e1 do s1 loop s2 until e2 ⇒ σ′′
LoopMain

σ �expr e2 � 0

σ �loop (e1, s1, s2, e2) ⇒ σ
LoopBase

σ �expr e2 ⇒ 0 σ �stmt s2 ⇒ σ′ σ′ �expr e1 ⇒ 0 σ′ �stmt s1 ⇒ σ′′ σ′′ �loop (e1, s1, s2, e2) ⇒ σ′′′

σ �loop (e1, s1, s2, e2) ⇒ σ′′′
LoopRec

σ[x �→ vhd , xs �→ vtl] �stmt push(x,xs) ⇒ σ[x �→ 0, xs �→ vhd :: vtl]
Push

σ′ �stmt push(x,xs) ⇒ σ

σ �stmt pop(x,xs) ⇒ σ′
Pop

Γ(q) = procedure q(t1 y1, . . . ,tn yn) s

σ �stmt s[x1/y1, . . . , xn/yn] ⇒ σ′

σ �stmt call q(x1, . . . ,xn) ⇒ σ′
Call

σ′ �stmt call q(x1, . . . ,xn) ⇒ σ

σ �stmt uncall q(x1, . . . ,xn) ⇒ σ′
Uncall

σ �stmt skip ⇒ σ
Skip

σ �stmt s1 ⇒ σ′ σ′ �stmt s2 ⇒ σ′′

σ �stmt s1 s2 ⇒ σ′′
Seq

σ �expr e ⇒ v σ′ �expr e′ ⇒ v′ xnew 	∈ σ ∪ σ′

σ[xnew �→ v] �stmt s[xnew/x] ⇒ σ′[xnew �→ v′]

σ �stmt local t x=e s delocal t x=e′ ⇒ σ′
LocMem

Execution of Programs

pmain = procedure main() t1 d1 · · · tn dn s Γ = gen(p1 · · · pk)

{d1 �→ initt1
, . . . , dn �→ inittn

} �Γ
stmt s ⇒ σ

�prog pmain p1 · · · pk ⇒ σ
Main

Fig. 4. Operational semantics of Janus programs

T. Yokoyama / Electronic Notes in Theoretical Computer Science 253 (2010) 71–81 77

are similar):

[[+]](v1, v2) = v1 +32 v2

[[^]](v1, v2) = v1 xor v2
[[=]](v1, v2) =

{
0 if v1 �= v2

1 if v1 = v2

The subscript of binary operator in the form ⊗32 defines modular arithmetic on Z32

such that v1 ⊗32 v2
def
= ((v1 ⊗ v2) + 231 mod 232) − 231. xor is bitwise exclusive-or

on the 32-bit binary representation of data. For example, adding one to 232 − 1

constitutes an overflow 	 2147483647 + 1 ⇒ −2147483648 and since the least

significant bit representation of 2 and 5 are 10 and 101, we have 	 2 ^ 5 ⇒ 6.

Execution of Statements

A judgment

σ 	Γ
stmt s ⇒ σ′

defines the meaning of statements where σ and σ′ are stores, Γ a procedure map,

and s a statement. As the procedure map Γ is fixed for a given program, we shall

usually omit it from the judgment form, writing simply 	stmt . We say that under

store σ, the execution of statement s yields the updated store σ′. We call σ the

input and σ′ the output.

The meaning of an assignment is defined by the rules AssVar and AssArr. We

distinguish between assignments to integer variables and to array variables. The

assignment operator �= stands for one of +=, -= and ^=.

The meaning of a conditional is defined by the rules IfTrue and IfFalse,

and which rule applies depends on the value of e1 and e2 (cf. Fig. 2). We use

σ 	expr e � 0 for σ 	expr e ⇒ v, where v �= 0. The meaning of a loop is defined by a

main rule for the entry of the loop, a rule for exiting, and a rule for iteration. Rule

LoopMain requires assertion e1 when entering a loop (cf. Fig. 2). The statement

sequence s1 s2 · · · s2 s1 that is executed by the loop is specified by the two judgments

indexed by loop. The execution exits the loop if the test e2 is true following rule

LoopBase, otherwise the loop continues by rule LoopRec.

A procedure call executes the procedure body under the current store, where

the formal parameters x1, . . . , xn appearing in the body are replaced by the actual

parameters y1, . . . , yn. We use pass-by-reference parameter passing mode. The rule

Call relates an input store σ with an output store σ′ following execution of the

procedure body. Conversely, a procedure uncall relates σ and σ′ with the opposite

stores of a call: the input store σ of a call is the output store of an uncall, and

vice versa. Thus, an uncall effectively reverses the direction of execution for the

procedure body.

This is an important mechanism of reversible languages, and capturing the con-

cept by switching input and output store for inverse constructs is a promising se-

mantics technique. We use the same technique in defining a pop as the inverse of a

push (cf. rules Push and Pop).

The Skip rule leaves the store unchanged. The execution of a statement sequence

is defined by rule Seq. For local variable allocation in rule LocMem, we add a fresh

T. Yokoyama / Electronic Notes in Theoretical Computer Science 253 (2010) 71–8178

variable xnew to the store. Note that the arbitrary choice of the name of xnew does

not affect the determinism of the rule. The store size does not change over the local

block structure, in the sense that dom(σ) = dom(σ′).

Execution of Programs

A judgment

	prog prog ⇒ σ

defines the meaning of programs where prog is a program and σ a store. We say

that executing program prog gives the output σ. Rule Main defines the execution

of programs, where the main procedure body is executed with store initialization

values initint = 0, initstack = nil . If ti di is an array declaration int x[c], each cell

x[0], . . . , x[c− 1] is initialized to initint = 0. Function gen generates a procedure

map from a list of procedure declarations.

2.4 Power of Reversible Languages

Reversible programming languages are sufficiently different from classical program-

ming languages, so that it is not obvious that the results from classical program-

ming languages hold in the reversible paradigm. Since reversible languages cannot

compute non-injective functions, Janus is not universal. However, Janus with un-

bounded size stacks is r-Turing complete [31], meaning that any reversible Turing

machine (RTM) can be simulated without returning the irrelevant garbage informa-

tion. Here, an RTM is a Turing machine with forward and backward deterministic

transition rules. As RTM does [14], the reversible language can compute all the

injective functions computable by Turing machines. If we allow the garbage output

extraneous to the intended output, any irreversible function can be embedded into

reversible programs [16].

In classical programming languages, it is well known that structured and un-

structured programs have the same expressive power and any unstructured pro-

grams can be transformed into a structured programs of the same behavior [4].

This also holds in reversible programming languages and any unstructured reversible

programs can be transformed into structured Janus programs (the Structured Re-

versible Program Theorem) [31].

A Janus program without unbounded size stacks is guaranteed to be terminat-

ing [31]. Note that this does not always hold in classical programming languages

and the halting problem is undecidable over classical Turing machine.

Because of backward determinism, in reversible languages, program inversion is

realized by lightweight local inversion and has unique solution [32].

Each programming paradigm has its own methodology. Reversible programming

also has its own techniques [30,32]. For example, Janus can implement Janus in-

terpreter and the tower of this reversible self-interpreter constitutes non-standard

hierarchy. Any level of self-interpreters can be both inverted and uncalled. A re-

versible self-interpreter for the original Janus and a tower of reversible interpreters

were reported in [32].

T. Yokoyama / Electronic Notes in Theoretical Computer Science 253 (2010) 71–81 79

3 Further Reading

Several introductory articles and surveys on reversible computing have been pub-

lished (e.g., [13,24,9,20,3]). The concept of reversibility has been studied by using

various computation models, including reversible Turing machines [2,21], reversible

cellular automata [20], reversible flowchart [31], reversible combinatory logic [6],

reversible process calculi [25], reversible Boolean logic circuits [10,5], and reversible

finite automata [26].

Several reversible programming languages have been proposed. Especially, re-

versible languages that ensure the reversiblity of programs by reversibly composing

reversible primitives are as follows. To our knowledge, Janus [17] is the first re-

versible language, which has been recently formalized by the authors [30,32]. Given

R [8] source code, R compiler generates PISA code, which runs on the reversible

processor Pendulum [29,1]. Gries’ invertible language [12], an injective functional

language Inv [22] and (E)SRL [18] also belong to this language class. Saving a

trace of computation enables embedding irreversible computation into reversible

computation [16]. Reversible languages using such reversible simulation also have

been extensively studied [27,33,15]. The simulation technique has been successfully

applied to several computation models [28,10,6,31].

One of closely related concept to reversible programming languages is program

inversion [11]. Generalized program inversion generates a semi-inversed program, in

the sense that given some of the original inputs and outputs it returns the remaining

inputs and outputs [23,19]. Bidirectional languages, which also have the concept of

forward and backward semantics, are desined for the view updating problem [7,22].

Acknowledgement

The authors wish to thank Irek Ulidowski for his comments on the earlier version

of this tutorial paper.

References

[1] Axelsen, H., R. Glück and T. Yokoyama, Reversible machine code and its abstract processor
architecture, in: V. Diekert, M. V. Volkov and A. Voronkov, editors, Computer Science – Theory and
Applications, Proceedings, LNCS 4649 (2007), pp. 56–69.

[2] Bennett, C. H., Logical reversibility of computation, IBM J. Res. Dev. 17 (1973), pp. 525–532.

[3] Bennett, C. H., Notes on the history of reversible computation, IBM J. Res. Dev. 32 (1988), pp. 16–23.

[4] Böhm, C. and G. Jacopini, Flow diagrams, Turing machines and languages with only two formation
rules, Commun. ACM 9 (1966), pp. 366–371.

[5] De Vos, A., Y. Van Rentergem and K. De Keyser, The decomposition of an arbitrary reversible logic
circuit, Journal of Physics A: Mathematical and General 39 (2006), pp. 5015–5035.

[6] Di Pierro, A., C. Hankin and H. Wiklicky, Reversible combinatory logic, Mathematical Structures in
Computer Science 16 (2006), pp. 621–637.

[7] Foster, J. N., M. B. Greenwald, J. T. Moore, B. C. Pierce and A. Schmitt, Combinators for bi-directional
tree transformations: A linguistic approach to the view update problem, ACM Trans. Prog. Lang. Syst.
29 (2007), Article 17, pp. 1–65.

T. Yokoyama / Electronic Notes in Theoretical Computer Science 253 (2010) 71–8180

[8] Frank, M. P., “Reversibility for Efficient Computing,” Ph.D. thesis, EECS Dept., MIT, Cambridge,
Massachusetts (1999).

[9] Frank, M. P., Introduction to reversible computing: Motivation, progress, and challenges, in: Computing
Frontiers, Proceedings (2005), pp. 385–390.

[10] Fredkin, E. and T. Toffoli, Conservative logic, International Journal of Theoretical Physics 21 (1982),
pp. 219–253.

[11] Glück, R. and M. Kawabe, Derivation of deterministic inverse programs based on LR parsing, in:
Y. Kameyama and P. J. Stuckey, editors, Functional and Logic Programming, Proceedings, LNCS
2998 (2004), pp. 291–306.

[12] Gries, D., “The Science of Programming,” ch. 21: Inverting Programs, Texts and Monographs in
Computer Science, Springer, Heidelberg, 1981 pp. 265–274.

[13] Hayes, B., Reverse engineering, American Scientist 94 (2006), pp. 107–111.

[14] Jacopini, G., P. Mentrasti and G. Sontacchi, Reversible Turing machines and polynomial time reversibly
computable functions, SIAM Journal on Discrete Mathematics 3 (1990), pp. 241–254.

[15] Kluge, W. E., A reversible SE(M)CD machine, in: P. Koopman and C. Clack, editors, Implementation
of Functional Languages, Proceedings, Selected Papers, LNCS 1868 (2000), pp. 95–113.

[16] Landauer, R., Irreversibility and heat generation in the computing process, IBM J. Res. Dev. 5 (1961),
pp. 183–191.

[17] Lutz, C., Janus: a time-reversible language, Letter to R. Landauer (1986).
http://www.cise.ufl.edu/~mpf/rc/janus.html

[18] Matos, A. B., Linear programs in a simple reversible language, Theor. Comput. Sci. 290 (2003),
pp. 2063–2074.

[19] Mogensen, T. Æ., Semi-inversion of guarded equations, in: R. Glück and M. Lowry, editors, Generative
Programming and Component Engineering, Proceedings, LNCS 3676 (2005), pp. 189–204.

[20] Morita, K., Reversible computing and cellular automata — A survey, Theor. Comput. Sci. 395 (2008),
pp. 101–131.

[21] Morita, K. and Y. Yamaguchi, A universal reversible Turing machine, in: J. Durand-Lose and
M. Margenstern, editors, Machines, Computations, and Universality, Proceedings, LNCS 4664 (2007),
pp. 90–98.

[22] Mu, S.-C., Z. Hu and M. Takeichi, An injective language for reversible computation, in: D. Kozen,
editor, Mathematics of Program Construction, Proceedings, LNCS 3125 (2004), pp. 289–313.

[23] Nishida, N., M. Sakai and T. Sakabe, Partial inversion of constructor term rewriting systems, in:
J. Giesl, editor, Term Rewriting and Applications, Proceedings, LNCS 3467, 2005, pp. 264–278.

[24] Pan, W. and M. Nalasani, Reversible logic, Potentials, IEEE 24 (2005), pp. 38–41.

[25] Phillips, I. and I. Ulidowski, Reversing algebraic process calculi, Journal of Logic and Algebraic
Programming 73 (2007), pp. 70–96.

[26] Pin, J.-E., On the language accepted by finite reversible automata, in: T. Ottmann, editor, International
Colloquium on Automata, Languages and Programming, Proceedings, LNCS 267 (1987), pp. 237–249.

[27] Stoddart, B., R. Lynas and F. Zeyda, A reversible virtual machine, in: I. Ulidowski, editor, Reversible
Computation, Preliminary Proceedings, 2009, pp. 18–32.

[28] Toffoli, T., Computation and construction universality of reversible cellular automata, Journal of
Computer and System Sciences 15 (1977), pp. 213–231.

[29] Vieri, C. J., “Reversible computer engineering and architecture,” Ph.D. thesis, MIT (1999).

[30] Yokoyama, T., H. Axelsen and R. Glück, Principles of a reversible programming language, in:
Computing Frontiers, Proceedings (2008), pp. 43–54.

[31] Yokoyama, T., H. Axelsen and R. Glück, Reversible flowchart languages and the structured reversible
program theorem, in: L. A. I. Damg̊ard, L. A. Goldberg, M. M. Halldórsson and A. I. I. Walukiewicz,
editors, International Colloquium on Automata, Languages and Programming, Proceedings, LNCS
5126, 2008, pp. 258–270.

[32] Yokoyama, T. and R. Glück, A reversible programming language and its invertible self-interpreter,
in: ACM/SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation,
Proceedings, ACM Press, 2007, pp. 144–153.

[33] Zuliani, P., Logical reversibility, IBM J. Res. Dev. 45 (2001), pp. 807–818.

T. Yokoyama / Electronic Notes in Theoretical Computer Science 253 (2010) 71–81 81

http://www.cise.ufl.edu/~mpf/rc/janus.html

	Introduction
	The Reversible Language Janus
	Example Program: Fibonacci Pairs
	The Language
	Operational Semantics
	Power of Reversible Languages

	Further Reading
	Acknowledgement
	References

