
13

An Adaptive Application Framework with Customizable
Quality Metrics

LIU LIU, Rutgers University, USA

SIBREN ISAACMAN, Loyola University Maryland, USA

ULRICH KREMER, Rutgers University, USA

Many embedded environments require applications to produce outcomes under different, potentially chang-

ing, resource constraints. Relaxing application semantics through approximations enables trading off resource

usage for outcome quality. Although quality is a highly subjective notion, previous work assumes given, fixed

low-level quality metrics that often lack a strong correlation to a user’s higher-level quality experience. Users

may also change their minds with respect to their quality expectations depending on the resource budgets

they are willing to dedicate to an execution. This motivates the need for an adaptive application framework

where users provide execution budgets and a customized quality notion. This article presents a novel adap-

tive program graph representation that enables user-level, customizable quality based on basic quality aspects

defined by application developers. Developers also define application configuration spaces, with possible cus-

tomization to eliminate undesirable configurations. At runtime, the graph enables the dynamic selection of

the configuration with maximal customized quality within the user-provided resource budget.

An adaptive application framework based on our novel graph representation has been implemented on An-

droid and Linux platforms and evaluated on eight benchmark programs, four with fully customizable quality.

Using custom quality instead of the default quality, users may improve their subjective quality experience

value by up to 3.59×, with 1.76× on average under different resource constraints. Developers are able to ex-

ploit their application structure knowledge to define configuration spaces that are on average 68.7% smaller

as compared to existing, structure-oblivious approaches. The overhead of dynamic reconfiguration averages

less than 1.84% of the overall application execution time.

CCS Concepts: • Computing methodologies→ Modeling methodologies; • Computer systems orga-

nization → Availability; • Software and its engineering → Application specific development envi-

ronments; • General and reference→ Evaluation; Performance;

Additional Key Words and Phrases: Approximate computing, configuration management, QoS

ACM Reference format:

Liu Liu, Sibren Isaacman, and Ulrich Kremer. 2021. An Adaptive Application Framework with Customizable

Quality Metrics. ACM Trans. Des. Autom. Electron. Syst. 27, 2, Article 13 (November 2021), 33 pages.

https://doi.org/10.1145/3477428

The presented material is based upon work supported by the National Science Foundation under Grant No. 1617551 and

partially supported by the National Science Foundation under Grant No. 1730043.

Authors’ addresses: L. Liu and U. Kremer, Rutgers University, 110 Frelinghuysen Rd, Piscataway, NJ 08854; emails:

ll557@scarletmail.rutgers.edu, uli@cs.rutgers.edu; S. Isaacman, Loyola University Maryland, 4501 N Charles St, Baltimore,

MD 21210; email: snisaacman@loyola.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1084-4309/2021/11-ART13 $15.00

https://doi.org/10.1145/3477428

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

https://doi.org/10.1145/3477428
mailto:permissions@acm.org
https://doi.org/10.1145/3477428

13:2 L. Liu et al.

1 INTRODUCTION

Many applications can adapt mid-execution to give outcomes of different quality with different
resource demands. Such adaptive applications allow optimizations in which resource demands are
evaluated relative to outcome quality. Optimization may allow successful execution in resource-
constrained environments with maximized quality [25, 42] or satisfy minimal quality requirements
at minimized cost. Adaptive applications include navigation systems, video/audio players [90, 100],
object recognition, face detection, and machine learning [74]. Management of these applications
may require dynamic strategies due to the uncertainty of execution environments, particularly
regarding available resources.

Adaptive frameworks, also referred to as approximation frameworks, manage program config-
urations that are mappings of selected application program variables (“knobs”) to specific values
in their program-defined value ranges. Changing knob values impacts the cost and quality of the
produced application outcomes. Configuration management attempts to find a configuration that
results in a desired tradeoff between cost and outcome quality. In this article, we introduce an
adaptive framework that focuses on maximizing output quality for a given cost budget. Dynamic
reconfiguration is implemented by changing knob values during program execution.

A key design decision for any configuration management framework is its choice of problem
representation. The representation must be expressive enough to encode all feasible configuration
choices and allow efficient algorithms to rank these choices according to different metrics such as
execution time, energy consumption, and overall outcome quality. Applications have to be mapped
effectively to this problem representation, and metrics have to be expressed and computed as part
of or based on the representation. Any selected configuration choice has to be mapped back into
applications and their executions. For dynamic optimizations, i.e., optimizations that are performed
during application execution, the efficiency of the representation in terms of construction, enabling
selection, and final “code generation” becomes an even more important concern as compared to
purely static optimizations.

Our work recognizes that effectively dealing with the inherent complexity of managing adap-
tive applications requires the identification and exploitation of structure, both in the application
representation and in the representation of its configuration space. This structure serves as the
foundation for scalable, effective, and efficient solutions during different phases of application de-
velopment, user-defined application execution quality, and adaptive application execution.

The Knob Dependence Graph (KDG) is a representation of the configuration space of an ap-
plication and is used for offline cost/quality model construction and online optimization. Based on
the KDG, we designed and implemented Rapids,1 a new framework that provides customization
for both the developer and user. It is efficient (low overhead), portable (short retraining times), and
effective (optimal configuration selection). The contributions of this work are:

• The KDG, a graph representing each knob’s type, setting range (discrete or continuous), and
inter-knob dependencies. This is a compact, flexible way to express the adaptability of these
applications.
• A mechanism within the KDG for placeholders for a linear combination of basic quality

metrics. Users can use these to provide custom, high-level quality notions that can be traded
off during runtime.
• A mechanism for fast and accurate retraining for the weights in the KDG. This makes the

system feasible for real deployment across platforms.
• The evaluation of the effectiveness of the KDG based approach within the Rapids adaptive

program development and execution framework.

1Reconfiguration, Approximation, Preferences, Implementation, Dependencies, and Structure.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

An Adaptive Application Framework with Customizable Quality Metrics 13:3

The evaluation of Rapids is based on a benchmark of eight applications running on Linux and
Android systems. Four of these applications have fully customizable quality notions. Customized
quality results in significantly improved user-preferred quality values with 1.76× improvement
on average across a range of user-supplied resource budgets, up to 3.59×. An initial user study
indicates that higher-level quality metrics can significantly (5×) reduce a user’s effort to find a
desired quality outcome as compared to using low-level metrics and knobs.

Benchmark applications show an average configuration space reduction of 68.7%. Our two re-
training strategies further reduce the configuration space and result in a training time reduction of
87.2% or 92.4% compared to state-of-the-art approaches, while maintaining cost prediction errors
of less than 2.5%. The overhead of dynamic reconfiguration for execution time or energy consump-
tion remained below 3.2%, with 1.84% on average.

2 KEY FRAMEWORK DESIGN CHALLENGES

Most existing approaches for adaptive configuration management target applications that have
been written without reconfiguration in mind. Automatic techniques identify program variables
as “knobs,” i.e., entities that, when changed, impact the quality and cost of the application’s out-
come. This is similar in spirit to the “dusty deck” approach to automatic parallelization and vec-
torization, which has been only partially successful [52, 99, 103]. Dusty deck programs are legacy
programs that are ported to new platforms with the expectation of performance improvements
without significant source-code modifications. Prior approaches [47, 70, 96] use automated config-
uration identification to minimize application developers’ effort. However, a “dusty deck” approach
does not allow the program developer to express insights into relevant structures and behaviors
of an application.

Alternative, approximation-aware approaches use programming language extensions or run-
time libraries for configuration definition and management, making approximation part of the
semantics of the program. The application developer is responsible for writing code to imple-
ment configuration or quality management. There are many language/library-based systems (e.g.,
[6, 16, 72, 86]) with different abstractions to manage configurations and quality. However, these
systems have only limited, if any, support for reconfiguration. Most importantly, the language se-
mantics approach relies solely on the developer to hardcode a configuration management strategy,
a challenging and potentially error-prone task. In this section, we discuss key challenges for adap-
tive application frameworks and motivate the Rapids framework design decisions to address these
challenges using a new graph representation of the configuration space, the KDG.

2.1 Managing Large Configuration Spaces

As observed by many projects that address the problem of selecting the best configuration for a
particular requirement, a key problem is the size of the configuration space. The configuration
space is defined by the number of program variables or program parameters that have impact on
the quality of the program’s outcome (application program knobs), as well as their particular value
ranges. Even a single floating-point valued knob with a bounded value range can conceptually
result in an intractably large configuration space, or two knobs with large integer valued ranges
may yield configuration spaces that cannot be exhaustively explored in practice.

Large Knob Value Ranges: A sampling strategy may be a solution to this problem. However,
although keeping the configuration space at a manageable size, sampling may miss the best knob
value settings, resulting in suboptimal outcomes. In addition, a sampling-based solution may
only contain configurations that are optimal for a higher or lower resource budget than speci-
fied for the execution. In order to fully utilize the specified budget, the execution will need to

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

13:4 L. Liu et al.

reconfigure between these two configurations, which is not needed under an optimal configura-
tion that matches the resource budget.

Our Rapids framework allows continuous knob value ranges in addition to discrete ranges. All
of our eight benchmark programs have a combination of continuous and discrete knobs as specified
by the application developer.

Large Number of Knobs: Even if knobs are integer ranged with only a limited number of settings,
the cartesian product of these value ranges can yield impractically large search spaces. The pro-
posed solution for search space management due to the number of knobs is a sensitivity analysis
(e.g., [75, 76]) that eliminates knobs that are considered too expensive to change during reconfigu-
ration or only minimally impact the overall quality outcome of the program execution. Therefore,
these knobs are excluded from the configuration search space. Our framework based on the KDG

allows program developers to specify which knobs to use. Our current Rapids implementation
does not perform any automatic knob sensitivity analysis but could be extended to do so.

Dependencies among Knobs and Their Value Ranges: Even with a compact representation
of the value ranges of only the most resource- or quality-critical knobs, the search space may
still be too large or may allow undesirable knob value combinations. Undesirable knob value com-
binations may lead to program crashes [47] or may lead to program outcomes with unacceptable
user-level quality. For example, in our NavApp benchmark application (see Figure 5), a dark screen
showing a detailed map is not useful since the detailed information is not accessible to the user.
Our KDG-based framework allows different dependencies among knobs and their value ranges to
be expressed explicitly, giving significant flexibility to application developers to manage the con-
figuration search space. This includes customization of the search space for a particular target
application user group.

2.2 Customization of User-Level Quality

Existing approaches assume some pre-defined quality notion where each application “comes with”
a quality function for its output, e.g., PSNR [100] or SSIM [97] for video processing. However,
many applications produce outcomes that have different quality aspects, which we refer to as
quality sub-metrics. A family of quality notions can be defined as a weighted combination of these
quality sub-metrics. For example, a navigation application may consider a brighter screen, a more
detailed map, or a more precise localization service as a desired outcome with the highest qual-
ity and best user experience. Therefore, such applications have a highest-quality configuration.
The lowest-quality configuration can be defined as the configuration that provides the lowest
individual qualities of the different quality aspects. Both the highest- and lowest-quality config-
urations have a particular resource need, which we refer to as max and min, respectively. Execut-
ing an application with resource budgets greater than max will not improve the quality outcome
of the application, and assigning a resource budget lower than min will result in an unaccept-
able execution since the lowest-quality outcome cannot be achieved. For any execution budget
user_budget, min ≤ user_budдet ≤ max , the best configurations with respect to the individual
quality sub-metrics form a Pareto-optimal solution. While the application developer can specify
quality sub-metrics, user-level quality customization is needed to select the best configuration
within the Pareto-optimal solution space.

In our Rapids framework, users can customize quality notions by providing preferences among
the quality sub-metrics. For example, some user may prefer a brighter screen over a more precise
localization service, while another user is mostly interested in a detailed map, with the same im-
portance given to the screen brightness and localization accuracy. This quality customization has
to be performed just in time before application execution, since it may depend on a particular user
need for a specific execution with a specific resource budget.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

An Adaptive Application Framework with Customizable Quality Metrics 13:5

Fig. 1. Maximal quality loss of default configuration opt relative to optimal custom quality configuration
˜opti across different budgets. X-axis: Budget percentage acrossmin andmax range.

Benefits of Customized Quality: Previous work assumes a single quality model distributed
with the application, typically provided by the application developer. We refer to this model as
the default quality model. The benefit of a customized quality model has to be assessed relative to
this default model. Every model produces a ranking among the possible configurations induced by
a numerical value assigned to each configuration. Clearly, this numerical quality value may not
directly reflect the subjective quality experience of the end-user. Only a comprehensive user study
would be able to establish such a correlation, which is beyond the scope of this article. However,
the different rankings among configurations induced by the customized quality models indicate a
rich space of quality notions that users are able to express and explore.

In order to allow an initial benefit analysis of customized quality, we defined a family of cus-

tomized models Q̃i where each sub-metric of the default model is given a preference value or
weight between 1.0 and 2.0, with increments of 0.1, resulting in 11 possible values. The default
modelQ is the model where each sub-metric has the preference value of 1.0 with opt as its optimal
configuration. For example, a default model with two sub-metrics has a family of customized mod-

els Q̃i , 1 ≤ i ≤ 121, with the pair of preferences (1.0, 1.0) representing the default model. Note that
the preference range of [1.0, 2.0] has been chosen for illustration purposes only. Rapids can sup-
port any desired preference value ranges for sub-metrics as defined by the application developer.
The intent here is to show that even using custom quality models where the importance of a single
sub-metric can at most be doubled as compared to the default model, an optimal customized quality
configuration ˜opti may have a significantly higher custom quality value than the custom quality
value of the optimal default configuration opt . In other words, this initial benefit analysis captures

how much quality value may be lost if opt is used instead of ˜opti for a user-customized model Q̃i .
For four applications with their resource budgets between min and max, Figure 1 shows the

maximal loss in quality value of opt under the different possible custom quality models Q̃i as

compared to custom quality configurations ˜opti , with Q̃i (opt) ≤ Q̃i (˜opti). This relative magnitude
of the quality loss is captured by the following equation:

optimality_loss = 1.0 −max
i

(Q̃i (opt)/Q̃i (˜opti)). (1)

The results show that there is a substantial quality difference due to customization across all
four sample applications, in particular under intermediate budgets (30% to 60% of max budget)
where there are larger Pareto-optimal solution configuration spaces. This indicates that custom
quality models are an important tool to allow application users to express their subjective quality
preferences.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

13:6 L. Liu et al.

Quality Sub-metrics: A key challenge for any system that requires user input is to provide
enough information and at a level of abstraction that enables the user to make an informed decision.
Exposing the program knobs to the end user is therefore not a viable strategy since it would require
a deep understanding of the inner workings of the application, which typically only the developer
has.

However, the application developer can provide quality sub-metrics or quality dimensions from
which an end-user may choose to determine his/her best quality experience. These basic quality
notions may not directly map to specific knobs, but may involve more complex, combined knob
mappings. This complexity should be hidden from the application user to allow reasoning about
quality vs. resource tradeoffs at a level of abstraction that makes sense to the user.

2.3 Direct Problem Formulation vs. Control-Theoretical Approach

Current approaches [45, 47, 48, 89, 90] establish a correlation between configurations and an appli-
cation’s resource cost (performance or energy) and quality outcome through a profiling (training)
phase, where all or randomly sub-sampled [70] configurations are executed on the target machine,
and their costs and quality are measured and recorded. Based on this training information, re-
configuration is implemented using a control-theoretical approach that adjusts the application’s
configuration. Control-theoretical approaches (e.g., PID [44]) mainly target applications with dy-
namic behaviors under continuous operations where configurations are selected based on imme-
diate quality notions and system observations. There is no overall execution resource/cost budget.
Carefully designed models with their model parameters allow control-theoretical guarantees, for
example, with respect to specific convergence behaviors, but may result in sub-optimal overall
configuration selection due to locally optimal solutions [70].

Our Rapids framework targets applications where there is an a priori knowledge about the
work that has to be accomplished under a user-provided resource budget. Such problems lend
themselves to be formulated as constrained optimization problems where optimal quality solutions
can be determined directly under a budget constraint. At any point during program execution,
the optimal configuration selection will depend on the remaining work that has to be performed
under the remaining resource budget. Uncertainty is introduced due to input dependencies and
cost prediction inaccuracies. The goal of the configuration selection is to find a configuration that
can successfully finish the execution, yielding the highest output quality while fully utilizing, but
not exceeding, the remaining resource budget.

Our Rapids framework employs machine learning strategies to build cost and quality models
and uses a quadratic integer programming formulation to compute the highest-quality configu-
ration under the remaining cost budget. Adaptive reconfiguration is performed if the actual and
observed resource consumption cross a pre-defined threshold.

2.4 Effective Model Training and Porting

The cost of training is proportional to the size of the configuration space, which may lead to signif-
icant training times in practice. For example, [36] reports profiling times of more than 2 weeks for
an evaluated application. Further, the ability to port the configuration space management system
to new hardware/software platforms is important, but new hardware/software configurations may
not be known a priori. The result may be significant porting costs. Current work does not provide
effective solutions to this problem.

Our new approach uses structural information to significantly reduce the number of config-
urations needed to build the cost and quality models for the entire configuration space. This
subset of configurations is called the “representative set.” Previous work [70] determines the
representative set using random sampling of the configuration space, resulting in a fixed number

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

An Adaptive Application Framework with Customizable Quality Metrics 13:7

Fig. 2. High-level workflow of Rapids framework with phases 1 through 4 interacting with the KDG

representation.

of configurations. In our Rapids framework, the structural information in the KDG is used
to automatically compute a small representative set that allows a model to be automatically
reconstructed with a developer-provided error bound.

2.5 The Knob Dependence Graph (KDG) within the Rapids Framework Workflow

The KDG is the central data structure and key new design element in our Rapids framework. It lets
application developers specify the desired configuration space, supports automatic cost and qual-
ity model construction using machine learning, allows developers to define sub-metrics to enable
user-level quality model specification, and serves as the representation from which quadratic inte-
ger programming problem instances are automatically generated at runtime to select the optimal
configuration under a user-provided cost budget.

A high-level view of the application development and execution workflow is shown in Figure 2.
The application developer, Rapids model constructor, application user, and Rapids runtime have
their distinct roles with the KDG as their main interface. A detailed discussion of the Rapids frame-
work and its workflow is presented in Section 5.

3 THE KDG - A NEW ADAPTIVE APPLICATION REPRESENTATION

The KDG is a directed graph encoding a developer’s insights about the structure of the application
through the graph’s nodes and edges. The KDG is a representation of the configuration space of
an application and is used for offline cost/quality model construction and online optimization. It
provides the basis to formulate configuration selection as a constrained optimization problem.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

13:8 L. Liu et al.

Fig. 3. KDG nodes in NavApp.

3.1 Developers’ Insight as Structure

Rather than representing the configurable components (knobs) as a vector, the KDG allows develop-
ers to encode information including knob type, per-knob value range, and inter-knob dependency
through the graph structure. We use one of our benchmark applications NavApp as an example to
illustrate the KDG.

NavApp is a navigation application we designed that runs on the Android platform. The appli-
cation has four configurable components: (1) Screen: controls the brightness of the screen from
1% to 100%; (2) Map: controls the map display layout with three options: “basic,” “satellite,” and
“hybrid”; (3) PollingFreq: controls the polling frequency in seconds of location with three op-
tions: “5s,” “8s,” and “10s”; and (4) GPS: controls whether to use on-board the GPS module or
not.

Developer’s Insight: To ensure the readability of the map, developers may enforce some con-
straints: (1) the screen should be brighter if the layout is set to satellite or hybrid because the
backgrounds on satellite images are darker and therefore hard or even impossible to interpret on
a dark screen, and (2) a more accurate localization is required for users to interpret their current
location if a basic layout is rendered because there are fewer landmark references available to
users to orient themselves. These constraints reflect the developer’s design and assessment of a
desirable constrained configuration space based on anticipated user needs and expectations. In cur-
rent configuration management approaches, such constraints can only be implemented through
conditional statements embedded and distributed across the source code. We use the NavApp ap-
plication to illustrate how developers can use the KDG to encode the constrained configuration
space.

Nodes represent knobs and their settings. The KDG supports two types of nodes: Discrete and
Continuous. Each knob consists of a collection of Discrete nodes or a single Continuous node. Each
Discrete node within a knob is associated with a specific value setting. A Continuous node rep-
resents a possible value range of a setting. Figure 3 shows the knobs in NavApp. There are four
knobs: Screen, Map, PollingFreq, and GPS.

Edges represent dependencies between knob settings. Edges are directed with the sink depend-
ing on the source. Edges thus encode developers’ insight into inter-component dependencies. They
enable developers to further manage the configuration space and its size in order to tune system
performance or to allow only desirable user experiences. For discrete nodes, dependencies are on

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

An Adaptive Application Framework with Customizable Quality Metrics 13:9

Fig. 4. KDG nodes with edges in NavApp.

Fig. 5. KDG configuration in NavApp.

the entire node. For a continuous node, a dependency may be specified on only a range of possible
values. Such a range is referred to as a segment.

The KDG models two types of dependencies, AND and OR. AND dependencies allow a node to
be dependent on a set of different nodes that are all needed to satisfy the dependence. In contrast,
OR dependencies allow a node to require at least one node in a knob or set of knobs. That is, OR
dependencies are grouped: at least one source node has to be selected from each OR group. A node
may AND-depend on a set of independent OR groups.

In Figure 4, if a satellite image is rendered as the map layout, the screen brightness must be at
least 50%. Similarly, “Hybrid” requires at least 25% brightness to ensure readability of additional
highlighted road names and information overlays on the satellite image. “Basic” has OR dependen-
cies on 5s, 8s in PollingFreq.

Configurations are represented in the KDG as a selection of nodes or values. For knobs with
Discrete nodes, a single node will be selected, and for knobs with a Continuous node, a specific
value will be selected. Figure 5 demonstrates a particular configuration. The KDG is a compact
representation of the entire configuration space where each configuration has to satisfy the edge
dependencies. Figure 5 shows a possible configuration of Screen=75, Map=“Sat,” PollingFreq=“5s,”
and GPS=“ON.”

3.2 Cost Model

The KDG provided by the developer contains only structural information. A full KDG includes
the structure, weights (both for cost and quality models), and user preference (as weight augmen-
tation). A training phase is performed to collect a set of data points that map configurations to
corresponding costs that are used to build a regression model that in turn provides weights to the
KDG. The overall costC of a specific configuration is calculated as the sum of the contribution from
each individual discreteCc

dis
knob, each individual continuousCc

cont knob, and the contribution of

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

13:10 L. Liu et al.

the combined effects of each pair of knobs Cc
corr . We use a second-order linear regression model

to derive the first- and second-order parameter values (weights) for discrete and continuous nodes
and the pair-wise knob coefficients.

C = Cc
dis +C

c
cont +C

c
corr (2)

Node Weights in the KDG represent the contribution of a particular node to the overall cost.

For a discrete node, the weights for each node j in a knob i is represented by single value c j
i . For a

continuous node, the weight for a knob i with value range [mini ,maxi] is represented by a function
F i

c () that maps a value vi within the range to its contribution. Equations (3) and (4) show the cost
contribution of the discrete and continuous nodes, respectively. Only the selected discrete nodes

(v j
i = 1) will contribute to the overall cost.

Cc
dis =

∑

i

∑

j

c j
i ×v

j
i ,v

j
i ∈ 0, 1 (3)

Cc
cont =

∑

i

F i
c (vi),mini <= vi <=maxi (4)

Correlated Weights model the combined contribution of pairs of knobs. This design captures
knob correlations that are more complex than simple addition. For example, in a nested loop with
the two knobs representing the loop bounds, the total cost is proportional to #outer_iteration ∗
#inner_iteration. This approach can also represent situations where loop structures are nested
deeper than two levels with knobs used as bounds in at most two of the levels. Experimen-
tally, we found that modeling quadratic relations between knobs was sufficient to capture pro-
gram behaviors. Note that a numerical value v̄ is required for discrete nodes with categorical
values.

Ccorr =
∑

m

∑

n

corrn
m × (v̄m × v̄n) (5)

3.3 Custom Quality Metrics/Models and Virtual Knobs

Quality and cost metrics rank outcomes of application executions under different configurations.
A Quality metric or sub-metric Q measures an aspect of observed application outcomes. A model

Q̃ for a metric or sub-metricQ predicts the expected measurements for a configuration without ap-

plying the metric to the observed outcome. In other words, a model Q̃ approximates the measured
metric Q for a configuration.

If an application has a single, fixed quality metric, for example, PSNR [100] or SSIM [97] for
video playback, the quality model construction process will be identical to the cost model but with
cost replaced by the measured quality metric value. However, in general, quality is a subjective
metric and therefore needs application users’ involvement. If an application has at least two dis-
tinct quality sub-metrics, i.e., two distinct ways to rank configuration quality, the application has
“customizable quality.” These sub-metrics should be easily reasoned about by the application users
and may have different importance for different target users. In the presence of customizable qual-
ity, two distinct quality preferences may result in different configuration selections under the same
budget, each maximizing the distinct subjective overall quality.

Definition. Custom Quality using Sub-Metrics — An application has custom quality if the quality
Q can be represented by a function FQ over several weighted quality metrics (q1, . . .qn), n ≥ 2.
The quality metrics q1 to qn are referred to as sub-metrics. Users can provide relative preferences
on each sub-metric through preference weights before application execution.

Q = FQ ([(w1,q1), . . . (wn ,qn)]) (6)

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

An Adaptive Application Framework with Customizable Quality Metrics 13:11

Table 1. Knobs and Sub-metrics

in FaceDetect

Configurable Knobs Sub-metrics

Neighbour_Pixel,
Decomposition_Level,

Eye_Detection_Enabled

Precision,
Recall

Example. We use another application, FaceDetect, as an example to illustrate the custom qual-
ity because the quality metric in FaceDetect is a typical use case where quality is rated differently
by different users. In FaceDetect and other classification problems, F-Score is widely used as the
overall quality metric. F-score represents a family of customized metrics based on sub-metrics pre-
cision p and recall r . Users may express the relative importance of sub-metrics p or r by providing
different weights wp for precision and wr for recall in Equation (7).

Qf ace = F
Q

f ace
([wp ,p], [wr , r]) = (1 + β2) · p · r

(β2 · p) + r
,

with β =
wr

wp

(7)

The two high-level sub-metrics “Precision” and “Recall” can be easily reasoned about by ap-
plication users. Given the same output result, these two sub-metrics will have the same values
since they have a fixed evaluation strategy. However, the overall quality might be different if users
provide different weights to the sub-metrics.

Custom Quality Models: For single quality metrics Q , the quality model Q̃ can be constructed
offline similar to the cost model as discussed in Section 3.2. Each configuration measurement col-
lected from training now includes the measured quality metric in addition to the measured cost
metric. The resulting quality model has coefficients for single knobs and pairs of knobs.

Rapids supports customizable quality metrics by applying default weights to sub-metrics at
development time, allowing the user to specify sub-metric weights at execution time. For each
sub-metric qi , Rapids builds a model q̃i through training in its “offline” phase. Table 1 shows the
set of configurable knobs (left column) used to implement models for the recall and precision sub-
metrics (right column) for the example FaceDetect application.

Just before application execution, a user may customize his/her quality expectation metric Q
by providing weights wi for each sub-metric qi as shown in Equation (6). Thus, Rapids must

compute the quality model Q̃ “online” based on the known sub-metric models q̃i and the user-
supplied weights wi . Unfortunately, there is often no obvious way to use the set of knobs and

pairs of knobs coefficients of the individual sub-metric models q̃i to effectively compute Q̃ . One

approach is to express Q̃ as a mapping over weighted individual knob coefficients as illustrated in
Equation (8).

Q̃ ([k1, . . .kn]) => Q̃ ([w1 ∗ k1, . . .wn ∗ kn]) (8)

However, this straightforward extension requires the user to know how to tune the weights on
the knobs, which are program variables defined as part of an application’s implementation (e.g.,
#_Neighbour_Pixel, #_Decomposition_Level, and Eye_Detection in FaceDetect). These are appli-
cation implementation details that typically are non-intuitive to the user and hard to understand.
Therefore, a user will not be able to appreciate how these implementation-related knobs will af-
fect the overall quality, making an informed decision about the preference weights impossible.
Another approach would be to re-evaluate the execution output with the new Q and reconstruct

Q̃ . However, this requires the retaining of outputs/results obtained during training and will result

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

13:12 L. Liu et al.

in significant space and time overheads. Finally, a full retraining is also a possibility. However, this
approach is prohibitively expensive in terms of execution time.

Instead, Rapids predicts all sub-metrics for each trained configuration in the training phase and
calculates the overall quality using the developer-provided function (FQ in Equation (6)) with the
quality models q̃i instead of the quality metrics qi . This is more efficient since qi requires actual
application execution results, while q̃i only needs the configurations.

The set of calculated quality values yields the overall quality model Q̃ by solving the regression
problem as discussed above and described in more detail in Section 4.1. This approach eliminates
the overhead of backing up execution results and the re-evaluation process. Experiments show
that the overhead of dynamically constructing quality models is negligible, less than half a second
for all four of the applications we evaluated with customizable quality. This overhead occurs once,
just before application execution.

Virtual Knobs: As discussed above, nodes in the KDG are associated with application-level knobs
or objects (e.g., program variables) and their possible value settings, which together define the con-
figuration space. Both cost and quality metrics are defined over this “concrete” configuration space.
However, in order to allow application users to customize their quality experience, the knobs of a
concrete configuration may be too low level to allow users to make an informed choice. Therefore,
Rapids introduces a set of higher-level, “virtual” knobs for the sole purpose of allowing users to
reason and manage their quality expectations. The key here is that now users can fine-tune the
quality on the level of sub-metrics instead of concrete knob settings and their low-level quality
notions.

Each virtual knob corresponds to a specific sub-metric. Virtual knobs are not explicitly repre-
sented in the KDG as nodes. Application developers can define and selectively expose these metrics
as virtual knobs to users, who in turn will provide relative preferences among the exposed sub-
metrics. The idea of virtual knobs is similar to an interface between the users and the KDG. Unlike
the configurable knobs in the KDG, virtual knobs do not have quality/cost weights. In the FaceDe-
tect example, users can tune the two virtual knobs, “precision” and “recall,” and the Rapids will
automatically update the customized quality model accordingly.

4 THE KDG - ENABLING ADAPTIVE APPLICATION MANAGEMENT

The KDG enables solutions to four key problems in adaptive application management: (1) deriv-
ing the cost and quality weights that define the models at application development time, (2) ef-
ficient model construction at application development and deployment time, (3) calculating the
optimal configuration to maximize quality under a cost budget at application execution time, and
(4) supporting user-level customizable quality notions just in time before application execution.
This final problem was addressed in Section 3.3. The solutions to the other problems are discussed
below.

4.1 Weight Derivation for Model Construction

To define cost and quality models, weights are needed for discrete (c j
i in Equation (3)) and contin-

uous (F i () in Equation (4)) knobs and their pairwise correlations (corrn
m in Equation (5)). To com-

pute models with continuous knobs and a desired accuracy, continuous knobs are “discretized,”
i.e., partitioned into segments, where each segment is represented by its own linear function that
maps its knob value range to cost/quality weights (a piecewise linear functions approach). Rapids
employs second-order linear regression training to compute the weights for its knobs, coefficients
of linear cost functions for knob segments, and correlation parameters based on the observed costs

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

An Adaptive Application Framework with Customizable Quality Metrics 13:13

and quality of the corresponding exhaustive configuration space. The exhaustive space consists of
all discrete knob settings and continuous knob segments. Rapids trains the application through a
number of configurations each with the same training input and records the observed average for
each configuration. The regression tries to minimize the error between the predicted and observed
cost/quality.

Note that a continuous node is represented as a single variable with its value chosen from the
specified range. Rapids uses a piece-wise linear approach to provide finer granularity. To demon-
strate this method, considerm breaking points in the range (excluding the upper and lower bound)
in a knob. The knob is partitioned tom + 1 segments. The regression process calculates a separate
set of parameter values for each segment. The breaking points are determined by the configuration
being observed.

4.2 Training Sets for Model Reconstruction

The size of the configuration space is exponential in the number of nodes for discrete knobs and
number of segments for continuous knobs. In Section 4.1 above, we describe how to derive a dis-
cretized, exhaustive configuration space together with accurate cost and quality models repre-
sented as weights of the KDG. When porting an application to a new target hardware/software
architecture, the model construction process discussed in Section 4.1 needs to be performed again
for the new platform. This can be rather expensive. To significantly reduce the cost of retraining
the models, Rapids introduces the notion of a Representative Set (RS), a subset of configurations
that is sufficient to accurately reconstruct the entire cost/quality model at the potential cost of a
slight accuracy loss.

During the construction of the full models, the computation of the representative set is also
performed offline on the development platform. The RS computation is based on the configuration
space of the model construction and its recorded, measured observations for each configuration.
This is considered the ground truth. Rapids implements two different RS construction methods.
Our experiments show that these two strategies are both effective in significantly reducing the
training set sizes for our benchmark applications.

Partition-based RS: For each knob, Rapids first considers only its highest and lowest settings.
RS is initialized with these configurations. Rapids evaluates the prediction accuracy of the model
constructed from these configurations against the ground truth. If the developer-defined error
bound ϵ is not satisfied, Rapids partitions each knob by a factor of 2, i.e., adding one more setting
in the middle of two selected settings per knob. This process iterates until the error bound ϵ is
satisfied or a pre-defined maximum partition level is reached.

Selection-based RS: Rapids initializes RS with only two configurations, the most and least expen-
sive configuration. Subsequently, Rapids iterates through all unselected configurations and con-
structs the model using that configuration and the current RS . The one configuration that yields
the highest prediction accuracy will be added to the RS . The termination condition is the same as
above.

4.3 Selection Problem Formulation

Given a fully weighted KDG and a user-provided budget at application execution time,
Rapids computes the optimal solution by solving a Mixed-Integer-Quadratic-Constrained-

Programming (MIQCP) [22] as specified by Equation (9). The MIQCP formulation consists of
an objective function and several classes of constraints. The constraints enforce the validity of the

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

13:14 L. Liu et al.

computed solution. For example, any solution has to respect knob dependencies, can only select a
single setting per knob, and has to respect the resource/cost budget.

Maximize :
∑

i

(
C

q

dis (i)
+C

q

cont (i)

)
+
∑

m,n

C
q

corr (m,n)
(9a)

s .t .
∑

i

(
Cc

dis (i) +C
c
cont (i)

)
+
∑

m,n

Cc
corr (m,n) ≤ B (9b)

∀AND (so− > si), si − so ≤ 0 //edдes (9c)

∀OR (so1, so2, . . . son− > si), si −
∑

i

soi ≤ 0 (9d)

∀N j
i ,N

j
i = 1→ vi = v

(
N j

i

)
//node (9e)

∀S j
i , S

j
i = 1→min

S
j

i

≤ vi ≤ max
S

j

i

//seдment (9f)

∀i, j,
∑

j

S j
i ≤ 1 //sinдle node per knob (9g)

∀i, j,
∑

j

N j
i ≤ 1 //sinдle seд per knob (9h)

The optimization problem is formed as in Equation (9), where Cq is calculated with the same
approach as cost by solving the weight derivation problem but with customized overall quality
based on user-provided relative priorities of quality sub-metrics as discussed in Section 3.3. The
second line (Line 9b) ensures that the overall cost does not exceed the provided budget B. The third
and fourth lines (Line 9c, 9d) show constraints for AND and OR edges. The rest encodes the knob
values and selection constraints. Rapids solves the optimization problem using the off-the-shelf
solver gurobi [93].

In this article, we focus on the problem of maximizing the quality output given a user-provided
budget. However, the reverse problem, i.e., selecting the configuration with the lowest cost given
a lower bound on the quality, could also be solved by our framework by swapping the problem
objective on quality (Line 9a) with the cost constraint (Line 9b) and changing the new objective
function to minimizing cost and constraining the quality to be ≤ provided quality loss . However,
a discussion of this Rapids capability is beyond the scope of this article.

5 RAPIDS - A KDG-BASED FRAMEWORK FOR ADAPTIVE APPLICATIONS

Rapids provides an end-to-end framework to write and execute reconfigurable applications with
the KDG as its key representation. Rapids’s workflow consists of four main phases as shown in the
high-level Rapids overview in Figure 2 in Section 2.5: (1) application specification and implementa-
tion (done by the Developer), (2) automatic training and modeling (done by the Model Constructor),
(3) custom quality model specification and construction and budget specification (done by the User),
and (4) runtime monitoring and reconfiguration (done by the Runtime Framework). The structure
of our Rapids framework from the system implementer’s point of view is shown in Figure 6.

In the following, we use Ferret as an example application to illustrate the effort required from
the developers. Ferret is an image similarity query application returning the top-K similar images
for a query image using a Multi-Probe LSH [63] algorithm. Then, it calls a routine that computes
the Earth Mover’s Distance [84] to rank the images and return the top-K. There are three knobs
in Ferret: hash: discrete number of hash buckets per table within {2, 4, 8}; probe: probing buck-
ets in the multi-probe phase from [2, 20]; and itr : maximum iterations from [10, 500]. Through
dependencies, we enforce that fewer hash buckets require more probing buckets since more have

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

An Adaptive Application Framework with Customizable Quality Metrics 13:15

Fig. 6. Overall structure of the Rapids framework.

to be probed if a table has few buckets. Fewer buckets require larger maximum iterations to give
meaningful rank scores among poor candidates. Figure 7(a) shows the KDG structure for Ferret.

Developers’ Effort: Rapids provides a profiling platform and a runtime library that allows ap-
plication developers to communicate important application properties to the framework. Figure 7
shows some key components of the developers’ effort. To do the profiling, developers need to
prepare:

—KDG specification: A file to specify insights including knobs and their types, value ranges,
and dependencies. Rapids uses the file to generate the KDG structure to represent the config-
uration space used to train cost and quality models. An example specification for our Ferret
application is shown in Figure 7(b). The file represents the KDG of Figure 7(a).

—Evaluation module: A Python module that includes basic utility functions for the Rapids pro-
filer to use, including (a) command and command-line arguments for application execution,
(b) the optional sub-metric (qi in Equation (6)) evaluation strategy, and (c) an overall quality
function (FQ in Equation (6)). The module is implemented by extending a Rapids-provided
base class.

—Source code modifications: The developer inserts library calls into application code as shown
in Figure 7(c) to bind actions (e.g., change a variable’s value) to knobs and their settings (Lines
5∼7) and to inform Rapids about the execution progress (Line 11). FERRET_CONFIG_FILE is
auto-generated after training and contains model information. It also contains application
execution-related information including the budget and customized quality. We believe that
the additional demand on the developers is reasonable and well within their expertise.

Training and Model Construction: On the development platform, Rapids generates an exhaus-
tive training set over all knob settings (continuous knobs will be discretized), eliminating all invalid

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

13:16 L. Liu et al.

Fig. 7. Developer’s effort example.

configurations according to the developer’s KDG specification. The developer-provided Evaluation
Module is used to automatically build cost models and quality models for sub-metrics (or default
metrics), including the representative set RS as discussed in Section 4.2.

Users’ Effort and Runtime Control: Users express their overall budget and quality preferences
through a developer-provided interface. Our current interface design is discussed in Section 7. Just

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

An Adaptive Application Framework with Customizable Quality Metrics 13:17

in time before program execution, Rapids constructs the customized quality model in response to
the user’s preferences. If no customized quality is specified, the developer-defined default model
is used. During runtime, Rapids tracks the remaining resource budget relative to the remaining
work. If the application is deployed on the same machine on which it is trained, the cost model
can be used directly. If not, re-training is needed based on the representative set. The runtime sys-
tem continuously monitors the application and performs automatic re-configuration if needed to
maintain the maximum possible quality while respecting the provided budget even under changing
conditions due to system uncertainties.

6 EXPERIMENTAL EVALUATION

To assess the practical, end-to-end effectiveness of Rapids and its use of the KDG, we implemented
and evaluated a prototype system. This system includes a preliminary user interface that was used
for a limited user study to assess the potential benefits of virtual knobs and customized quality as
discussed in Section 7.

6.1 Sample Applications

The evaluation uses eight different sample applications/workloads, three of which are from widely
used benchmarks in related works (e.g., [47, 70, 89, 90]) with known quality metrics, namely Swap-
tions [13], Bodytrack [13], and Ferret [13]. SVM [94], NeuralNet (NN) [94], and FaceDetect
[17] are sample applications we adopted from public libraries. The other two, namely NavApp
and VideoApp, are developed using the Rapids framework for use in real-world deployment. The
eight workloads cover a wide range of application domains and exhibit a variety of properties (e.g.,
knob number, type, and dependency) we would expect to see in real-world applications. The ap-
plications have been chosen to illustrate the features and benefits of our Rapids framework while
allowing others to assess Rapids’s effectiveness through applications used by related work as well
as highlighting its applicability to more full-featured, real-world-style applications.

Swaptions is a financial analysis application computing iterative simulations. One continuous
knob: number of iterations to simulate, within [100,000, 1,000,000]. Quality metric: quality loss for
each swap computed using the vector distortion [82] described in Equation (10). n and wi are the
total number of elements in the vector and their weights. We use n = wi = 1. ŷ is the computed
price from the execution and y is the price when executing with the highest setting.

n∑

i=1

wi ∗ abs ((ŷi − yi)/yi) (10)

FaceDetect detects human faces from input images based on Haar Cascade. Optionally, it filters
the results by checking the presence of eyes. We use the dataset from FDDB [50] for testing. One
continuous knob and two discrete knobs: pyramid levels ranging from [5, 25], neighbor pixels to
examine {0, 4, 8}, the minimum number of eyes {0, 1, 2}. Customization: Precision and Recall . Qual-
ity metric: We adopt the standard measurement of recognition performance, the F-measure [24]
as defined in Equation (7). Users may customize this metric by changing the weights wp and
wr for virtual knobs Precision and Recall , respectively. The default quality uses wr = wp = 1
(F1-score).

SVM and NN are two commonly used supervised learning applications that classify input images
using the CIFAR-10 dataset [56]. In our experiments, they run 1,000 iterations on a set of labeled
training data and construct a simple Support Vector Machine (SVM) and an NN (fully connected
Neural Network) model for classification. The source of both applications is adapted from a popular
open course project [94]. We only consider the training phase in our experiments where both

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

13:18 L. Liu et al.

classifiers iteratively update the model parameters. For NN, we only use the default settings (one
hidden layer) for illustration purposes. However, extending the network to deeper settings will
not affect the experiment setup since all knobs we use in the experiment are independent of the
network structure. The output of the application is a prediction model (classifier), and we treat the
overall prediction accuracy on the test data as the quality. Both SVM and NN have one continuous
knob and two discrete knobs: learning rate within [1e-7,1e-5], batch size {64, 128, 256, 512, 1024},
regularization rate {5,000, 10,000, 15,000, 20,000, 25,000}. Quality metric: prediction accuracy.

Ferret is as described in Section 5. Two continuous knobs and one discrete knob. Quality metric:
We use a common ranking score measurement G-measure [11] shown in Equation (11):

err = 2 ∗ (k − z) (k + 1)

+
∑

i ∈Z
|r1 (i) − r2 (i) | −

∑

i ∈S
r1 (i) −

∑

i ∈T
r2 (i), (11)

with Q = 1 − err/k (k + 1).
Here, Z is the set of images appearing in both list1 and list2 of size z. S and T are the sets exclu-

sively in list1 and list2 of size k . r1 and r2 are the ranks of an image in list1 and list2. Customization:
Coveraдe and Rankinд are exposed as virtual knobs to users. Coveraдe is calculated by the first
addend in Equation (11). Rankinд is the rest of the equation. Coveraдe increases with “correct”
results returned, while Rankinд increases by returning results in the correct order.

Bodytrack is a computer vision application that tracks a set of human body components from
a video. One continuous and one discrete knob: number of annealing layers from [1, 5], number
of particles to track within [100, 4,000]. Dependencies: Lower annealing layers require higher par-
ticle numbers. Quality metric: The output consists of the position of different body components.
We use Equation (10) for quality and wi to be proportional to the size of the component being
tracked.

NavApp as described in Section 3.1 also demonstrates the utility of Rapids under real-world
conditions. One continuous knob and three discrete knobs. Customization: Different priorities can
be given to briдhtness , localization, and in f ormation as described in Section 3.3. Quality metric:
Weighted sum over three sub-metrics.

VideoApp is a custom-built application also designed to emulate real-world usage. It allows
users to watch a high-resolution video locally or stream lower-quality video from a remote server.
One continuous knob and three discrete knobs: screen as in NavApp, video frame rate from {15fps,
30fps, 45fps, 60fps}, video resolution from {144P, 240P, 480P, 720P}, network {On, Off}. Dependencies:
Lower frame rates require lower resolutions to avoid unreasonable situations, e.g., 720P/15fps or
240P/60fps. Also, lower resolutions require the network (high-res content should not be streamed,
but low-res saves data). Customization: Different priorities can be given to briдhtness , smoothness ,
and resolution. Quality metric: The weighted sum over resolution, frame rate, and brightness as in
NavApp to calculate the overall performance.

Table 2 shows the opportunities for approximation in all our sample applications based on the
default metric of each application. Min Cost reports the lowest cost in terms of execution time or
energy consumption of a configuration relative to the optimal, highest-quality configuration un-
der an unlimited resource budget. Min Quality reports the highest-possible-quality degradation
of a configuration under the default quality metric. The last two columns summarize the oppor-
tunity for both developers and users to participate in Rapids. The table also reflects some empir-
ical decisions made by the authors, i.e., not encoding dependencies or custom quality on certain
applications.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

An Adaptive Application Framework with Customizable Quality Metrics 13:19

Table 2. Approximation Opportunity

Min
Cost

Min
Quality

Dependency
Custom
Quality

Swaptions 10.08% 57.78% - -
FaceDetect 27.43% 41.23% - �
SVM 57.98% 49.96% - -
NN 76.55% 42.8% - -
Ferret 37.26% 54.91% � �
Bodytrack 7.51% 40.84% � -
NavApp 56.12% 22.2% � �
VideoApp 67.62% 27.7% � �

In this article, the output from the “default” optimal configuration under an unlimited resource
budget is treated as the “ground truth” and is used to evaluate the output quality of other config-
urations. Therefore, the output from the “default” configuration has always the highest quality. In
all our benchmark applications, the default configuration is also the most expensive configuration.
Theoretically, there could exist configurations that cost more, i.e., consume more resources than
the default configuration. However, a more expensive configuration with lower output quality will
never be selected as a solution of our optimization problem.

6.2 Experimental Results

For our sample applications, developers performed the offline training phase on a Linux machine
or an Android phone. Application users ran the applications on an embedded Linux board or a
separate phone. For all of our experiments, the development and target platforms were distinct.
Key specifications are:

LINUX machines Developer : 6-cores at 3.7 GHz, — 16 GB RAM at 2,666 MHz; Tarдet : Nvidia
TX1 [26], 1.9 GHz 64-bit 4-core — 2 MB L2 cache.
Android machines: Developer : Nexus-5: 2.26 GHz 4-core processor — 2 GB RAM. 4.95-inch
screen, 1080 × 1920 pixels; Tarдet : Nexus-6: 2.26 GHz 4-core processor — 3 GB RAM. 5.96-inch
screen, 1440 × 2560 pixels.

We evaluate the system with respect to our three main contributions: (1) Developers: configu-
ration space reduction from developer-encoded insights, (2) Machine: training time reduction and
the model accuracy, and (3) Users: improvement of user-preferred sub-metrics relative to default
metrics. Finally, we evaluate the runtime performance by measuring the overhead and the overall
output quality.

Pruned Search Space: Table 3 shows the space pruning and cost prediction error rate for all our
applications. Conf reports the number of all possible configurations where every combination of
knob settings is considered “valid.” KDG reports the number of “valid” configurations after devel-
opers encode dependencies using #loc lines of specification code to customize the configuration
space. RS_P and RS_S report the size of RS with an error threshold ϵ of 5%. To give a meaning-
ful comparison for knobs with continuous settings, we discretized the settings by sampling each
continuous node where the number of sampled data points is shown with a † in the third column
labeled “Conf Discrete .”

Feasibility for Real-world Applications: In the experiments described above, Rapids samples
a continuous knob to 10 discrete settings. However, the configuration space size for real-world

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

13:20 L. Liu et al.

Table 3. Search Space Pruning and Specification Effort, Discretization of Continuous Knobs

with † Samples (10), RS Calculated with Error Bound ϵ = 5%

Application Knob(#) Conf Discrete(#) Spec (#loc) KDG(#) RS_P(#) RS_S(#)

Swaptions 1 10 (10†) 2 - 2 2

FaceDetect 3 90 (3 × 3 × 10†) 4 - 54 18

SVM 3 250 (5 × 5 × 10†) 4 - 8 4

NN 3 250 (5 × 5 × 10†) 4 - 8 4

Ferret 3 300 (3 × 10† × 10†) 11 162 27 4

Bodytrack 2 50 (5 × 10†) 5 28 15 12

NavApp 4 180 (10† × 3 × 3 × 2) 7 40 12 6

VideoApp 4 320 (10† × 4 × 4 × 2) 11 24 12 4

Table 4. Search Space Pruning and Specification Effort, Discretization of Continuous Knobs

with † Samples (up to 100 Where Possible), RS Calculated with Error Bound ϵ = 5%

Application Knob(#) Conf Discrete(#) Spec (#loc) RSDG(#) RS_P(#) RS_S(#)

Swaptions 1 100 (100†) 2 - 2 2

FaceDetect 3 189 (3 × 3 × 21†) 4 - 54 21

SVM 3 2,500 (5 × 5 × 100†) 4 - 27 6

NN 3 2,500 (5 × 5 × 100†) 4 - 27 6

Ferret 3 5,700 (3 × 19† × 100†) 11 3,040 75 5

Bodytrack 2 500 (5 × 100†) 5 328 25 12

applications with continuous knobs can be theoretically infinite as discussed in Section 2.1. For
continuous knobs, Rapids constructs the performance model with piecewise linear functions, cov-
ering the entire value range, which cannot be done by discrete-only approaches that rely on sam-
pling. To investigate the impact of the search space size on representative set construction and
configuration selection, we increased the sampling granularity for continuous knobs from 10 to
100 settings. The resulting search space sizes and number of configurations in the representative
sets are shown in Table 4.

Based on our experience, this corresponds to search space sizes that can be effectively explored
for real-world applications. As discussed in Section 2, the KDG configuration search space is based
on the number, value ranges, and dependencies of knobs, which are application program variables.
In other related work, for instance, in the context of autotuners [6, 7, 98], search spaces include
many more different aspects of an application and its structure, resulting in reported search space
sizes of up to 103600 [7]. In the context of an adaptive framework with customizable quality metrics
such as Rapids, there may be tens of application knobs at best, rather than thousands or even more,
making the search space size more dependent on the individual knob ranges than the total number
of knobs. Being able to represent continuous knob value ranges in an efficient way enables Rapids
to deal with real-world configuration spaces of large sizes.

As shown in Tables 3 and 4, while configuration search space sizes increase by around one
order of magnitude, the sizes of RS_P and RS_S do not grow proportionally to the size of the
overall configuration spaces. The solution time of the dynamic configuration selection problem
depends on the total number of constraints in the problem and the complexity of the objective
function and constraints, where both are determined by the number of segments Rapids generated
in the piecewise linear approach. The number of segments is directly related to the number of
configurations in the representative set. In the case of Ferret, an almost 3× size increase of RS_P

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

An Adaptive Application Framework with Customizable Quality Metrics 13:21

Fig. 8. Required normalized training time. Lower is faster.

occurs. However, no solution time increases were observed in any of our applications, with an
average overall solution time of 5.9 ms.

It is important to note that these problems are relatively small for a tool such as gurobi [93],
and that for small problems the solution times are often dominated by communicating and/or
reading in the problem representation rather than the actual solution time itself. However, solving
a quadratic integer programming problem (MIQCP [22]) can have exponential cost. Nevertheless,
we did not observe any such increases in the problems Rapids generated. In addition, tools such
as gurobi [93] and cplex [14, 27] can be used to generate families of heuristic solutions in cases
where solution times are considered too costly. A discussion of such heuristics is beyond the scope
of this article.

These results indicate that Rapids is scalable and can handle applications with large number
of configurations without significantly increased solution complexity. For simplicity, the results
reported in the remainder of this article are based on the configurations shown in Table 3.

Reduced Training Time: Filtering out “invalid” configurations through the KDG or calculating
RS prunes the configuration space and thus reduces the training time. We report the total train-
ing time for constructing the cost model through different approaches normalized by the time re-
quired to train configurations without dependencies: (1) KDG: configurations with dependencies,
(2) Rand-20: a heuristic used in CALOREE [70] that constructs the model with 20 random configu-
rations [69], (3) RS_P(RAPIDS): partition-based RS , and (4) RS_S(RAPIDS): selection-based RS .

As shown in Figure 8, allowing developers to specify dependencies among knobs reduces the
training time by an average of 36.9%. Training 20 random selected samples (Rand-20) reduces the
training time to an average of 21.24%. The RS calculated by Rapids further reduces the training
time to 7.9% on average, which translates to up to 13× faster retraining when porting to other
devices. The significant reduction in training cost of the RS approach enables Rapids to quickly
retrain itself when applications are ported to unknown target devices.

Model Validation and Porting Efficacy: When applications are ported from the developer
machine to the user machine, a new cost model must be quickly and accurately constructed.
Rapids constructs the cost model based on a pruned space (KDG) and/or RS . However, a reduced
training set may lead to a higher prediction error. To this end, we evaluate the accuracy of such
reconstructed models on our target machines. KDG serves as the oracle with accuracy = 1.0

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

13:22 L. Liu et al.

Fig. 9. Model prediction error on target machine. Lower is more accurate.

because the model is built with all observations. When porting to and from machines described as
above, we see performance as shown in Figure 9. The figure shows the corresponding prediction
errors across all valid configurations. On average, the model constructed from Rand-20 results in
a 6.39% prediction error (averaged over 10 runs). Rand-20 performs well in simple applications
like Swaptions but has high error for complex applications. In Ferret, the inherited randomness
in Rand-20 caused the highest prediction error to be more than 100%, i.e., more than a factor of 2
relative to the observed value. Our two RS strategies have a stable average error of 3.5% for RS_S
and 3.1% for RS_P .

Custom Quality: Application developers can provide a customizable, higher-level quality notion
through virtual knobs where users can express their preferences for a particular quality outcome
at a level of abstraction that makes sense to them. In turn, Rapids automatically builds the required
quality models to support configuration selection and reconfiguration. We evaluate this benefit on
our four applications with custom quality metrics.

User-provided preferences change application behavior when selecting the optimal solution for
a budget. Users expect to see improvement on their preferred sub-metrics. For example, Figure 10
reports such behavior for Ferret. We evaluate the Coverage and Ranking sub-metrics by running
the application with budget of 0.5 * (max - min). We adjust the preference of one of the metrics
from 1.0 to 2.0 in steps of 0.1 and keep the other as 1.0. Figure 10(a) shows the improvement on
“Coverage” as its preference increases. On the other hand, “Ranking” suffers from degradation due
to the “Coverage” preference. Figure 10(b) shows similar behavior when “Ranking" is preferred.
This is expected since knob settings that benefit one sub-metric may hurt the other.

To show the impact of custom quality selections on the quality values of different sub-metrics,
we evaluated different sub-metric preferences under a range of budgets for each of our four ap-
plications with customizable quality. A sub-metric is preferred if it is assigned a preference of 2.0
while all other sub-metrics have a preference of 1.0. For each preferred sub-metric, Table 5 reports
the average improvement across all budgets relative to the default quality where all sub-metrics
are assigned the preference 1.0. The recall in FaceDetect does not change when preference in-
creases because the optimal selection with the default quality metric produces the highest recall.
Overall, improvements can be up to 3.59×, with 1.76× on average.

Reconfiguration and Overhead: For each application, Rapids constructs the performance
model based on a training set of inputs provided with the application. During runtime, the

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

An Adaptive Application Framework with Customizable Quality Metrics 13:23

Fig. 10. Sub-metric quality changes in response to preference changes for sample application Ferret under

the budget 0.5 ∗ (max − min). (a) with Coverage ((b) with Ranking) as the preferred sub-metric. X-axis:

Preference weight on preferred sub-metrics, y-axis: sub-metric quality changes relative to default quality

with 1.0 preference for all sub-metrics.

Table 5. Relative User-Preferred Sub-metrics Value Improvements

Averaged across the Min-Max Range of Cost Budgets

Preferred Sub-metrics and Improvement

Ferret
coverage ranking

3.2× 3.59×

FaceDetect
precision recall

1.13× 1×

NavApp
brightness localization information

1.45× 1.5× 1.5×

VideoApp
brightness smoothness resolution

1.29× 1.26× 1.62×

predicted and the real performance may differ for three main reasons: (1) embedded prediction
error in the model, (2) application input dependencies, and (3) dynamic runtime environment.

Rapids overcomes these issues by constantly monitoring the resource usage and performing
runtime reconfiguration if necessary. The full reconfiguration procedure in Rapids has three steps
that are common in any adaptive or decision system (e.g., [46]):

(1) Monitor/Observe (∼1 ms): Record the current execution progress and actual resource usage
for all work units executed so far. The recording frequency is tuneable by developers.

(2) Problem Solving/Decide: (a) Calculate the new budget per work unit given the current ex-
ecution progress and remaining budget (∼1 ms). (b) Generate and solve the new optimization
problem and retrieve the new configuration (∼17 ms). If no solver is available on the target device
(e.g., gurobi [93] cannot be deployed on ARM), Rapids contacts a remote server to determine the
optimal configuration based on the remaining work units and remaining budget. The overhead of
each remote reconfiguration averages 191 ms/133 ms (ARM/Android). In NavApp and VideoApp,
we report the overhead as additional energy consumption.

(3) Result Deployment/Act (∼1ms): Apply the new configuration.

Overhead Optimization: Ideally, systems like Rapids can monitor the budget usage and working
progress after every work unit to avoid wasting budget or violating budget constraints. However,

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

13:24 L. Liu et al.

Fig. 11. Reconfiguration overhead.

increased monitoring and reconfiguration leads to higher overhead. In the extreme, the majority
of the budget is occupied by problem solving or reconfiguration, leaving little of the budget for
application execution. To minimize the overhead, Rapids terminates the reconfiguration procedure
by skipping step 2b/3 if the new budget per work unit is within 5% of the previous value (i.e.,
performing Budget Optimization), and skipping step 3 if the new configuration is within 1% of the
previous value (i.e., performing Config Optimization). These thresholds were selected based on our
experimental observations and represent a compromise between successful application outcomes
and the number of reconfigurations. Developers can easily change these thresholds.

Figure 11 shows the number of reconfigurations that are actually performed by Rapids given
different monitoring frequencies. For each point on each line in the left figure, the difference be-
tween the X value (monitor frequency) and the Y value (actual performed reconfiguration) is the
number of “Solving+Deployment” (step 2/3) being skipped by the budget optimization. The differ-
ence between the left and right figure is the number of “Deployment” (step 3) being skipped by the
configuration optimization. Table 6 reports the overall Rapids overhead for all our applications. As
shown in the table, the overhead is small.

Budget Constraint Enforcement: Rapids reconfigures applications at runtime by observing
the available remaining budget and remaining work units. Rapids’s goal is to successfully execute
the entire application while not exceeding, but fully utilizing, the user-specified budget. There
are several reasons reconfiguration is needed to achieve this goal. Performance/cost models may
not be accurate due to discrepancies between training and input data, target system noise due to
varying availability of system resources, and configuration space characteristics where the ideal
configuration for a given budget is not part of the optimization space and therefore can only be
approximated. To verify that Rapids’s reconfiguration behavior can correctly honor the budget
constraint, we ran each application (six in total) under four different budgets, [0.2, 0.5, 0.8, 1.1] *

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

An Adaptive Application Framework with Customizable Quality Metrics 13:25

Table 6. Overhead in All Applications

w/ Rapids (seconds) w/o Rapids Overhead

Swaptions 461 458 1.09%
FaceDetect 92 89 3.2%

SVM 35.7 34.6 3.17%
NN 23.1 22.5 2.67%

Ferret 551 544 1.22%
Bodytrack 264 260 1.44%

NavApp* - - <0.05%
VideoApp* - - <0.05%

*NavApp and VideoApp each use energy instead of time as a metric and thus

have no times reported as overhead.

(max −min). With each budget setting, we ran the application in two different modes, with and
without Rapids reconfiguration, with up to 10 reconfiguration points equally spread across the
execution. In our experiments, a program execution is considered to be violating its budget if it
fails to successfully finish its execution within the user-provided budget with a 5% tolerance, i.e.,
execution_time ≥ 1.05 ∗ budдet . A reconfiguration will be skipped if the new budget is within 5%
of range of its previous value; i.e., Rapids performs a Budget Optimization as discussed above.

When no reconfiguration is performed, 16.6% (8 out of 48) application executions violated the
budget. For the remaining successful executions, the average budget utilization was 85.3%. With
reconfiguration enabled, Rapids performed on average 4.8 reconfigurations per execution and all
executions succeeded with an average budget utilization of 90.3%. These results demonstrate the
importance of reconfigurations.

7 APPLICATION USER INTERFACE

The current Rapids implementation includes a module that allows developers to define an applica-
tion user interface based on a basic user interface layout. The implementation uses the PySide2 [37]
software package and communicates with the Rapids runtime environment through an execution
configuration file. Developers can customize the interface to match particular characteristics of the
supported application, particularly the user-exposed virtual knobs and the quality notion used.

In order to assess the benefits of customized quality through sub-metrics, we have conducted
an initial user study based on a single application, Ferret, which has two sub-metrics, namely
coverage and ranking (see Section 6.1). Ferret has three knobs, namely hash, probe, and iteration.
The goal of this study was to provide an initial insight into the effort needed by an application
user to find a configuration that satisfies a specific (subjective) quality requirement under a given
resource budget when using either virtual knobs (high-level, customized) or application-level (low-
level, program-behavior-specific) knobs. The conducted experiments recorded (1) the steps a test
subject needed to reach a knob setting that resulted in an overall configuration that satisfied a
provided quality goal, and (2) the quality of that configuration selection relative to the optimal
possible configuration.

Each of our 15 study subjects (users) were faced with six challenges, first to be solved using
virtual knobs and then application-level knobs. Each challenge asked them to find a configuration
meeting ranking and/or coverage sub-metric values under a given execution budget. The results
show that the use of virtual knobs substantially reduces the number of steps needed to determine
a desired configuration (by 5× on average) and that the selected configurations using virtual knobs
were on average 8.3% better than if application-level knobs were used. In 2.3% of application-level

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

13:26 L. Liu et al.

knob challenges, the user was unable to find a single valid configuration under the given budget;
this never occurred when virtual knobs were used.

8 RELATED WORK

Optimization opportunities of approximations and their use in adaptive frameworks as part of
configuration management have been investigated by many research groups. One key aspect is
the notion of quality, i.e., the notion that approximation trades off resource usage for result qual-
ity, which really implies a change of the semantics of the program. However, there have been
works that follow the more the traditional approach to optimizations where the semantics can-
not be changed, and therefore consider approximation as a regular optimization transformation,
for example, by selecting lower-precision data representation without affecting the overall out-
come [10, 18, 19, 59]. However, most research targets approaches that trade quality for resource
usage and require different levels of user involvement to make the best tradeoff decisions. All these
approaches require metrics for resource usage and quality, which serve as the basis for developer-
guided or automatic approximation-level selection, i.e., configuration management. As is common
for many optimization problems, proposed solutions range from fully automatic hardware- and
software-based techniques to library-based approaches, and new program language abstractions
that enable compile-time and runtime optimizations. In the following, we highlight specific impor-
tant aspects of approximation management as they relate to our proposed framework.

Specific Approximation Techniques: There exists a large family of approximation techniques,
and these techniques can be highly application specific. For applications with iterative com-
putations, Loop Perforation [85, 89] gives approximate answers by skipping certain iterations.
Compute- and memory-intensive applications with precision tolerance can benefit from precision
scaling [4, 32, 88]. The Precimonius [83] system provides recommendations to the developer in
terms of type assignments to variables such that the accuracy of the program is within a developer-
provided error range. Memoization is also a technique used to speed up floating point calculation
by reusing results of similar computation instructions [3, 78]. Dropping inputs through sampling
is commonly used as the approximation for applications with a large set of inputs [8, 41, 62]. Simi-
larly, dropping tasks or jobs is common for applications under large multi-task frameworks, e.g., on
GPU [20] or Map-Reduce frameworks [41, 49, 58]. Rapids aims to develop a system to seamlessly
exploit approximation techniques developed by others, instead of introducing new techniques.
Each of the above techniques can potentially be encoded in Rapids as a knob.

Development Support for Approximation: Developing approximate applications requires in-
teractions with the application programmer/developer since configuration management is a se-
mantic issue. An important challenge is to reduce the burden on the developer through new pro-
gramming abstractions and automatic techniques. Most existing approaches for adaptive configu-
ration management target applications that have been written without approximation in mind. For
example, compiler-based automatic techniques [34, 47, 64, 65, 68, 95] identify program variables
or functions as “knobs.” However, recent work confirms the importance of developers’ input in
defining the configuration search space and its customization [12, 75, 76].

To help developers implement approximate applications, language/runtime-library-based ap-
proaches have received increased attention where approximation is an explicit part of a program’s
semantics. EnerJ [86] and FlexJava [72] provide data-type annotations to indicate to the com-
piler when it is safe to use an approximate value. In the case of FlexJava [72], minimal quality
requirements can be added. However, it is left to the compiler to what extent the specified approx-
imation is exploited. In Petabricks [6] program developers can provide alternative, approximate

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

An Adaptive Application Framework with Customizable Quality Metrics 13:27

implementations of functions that can be selected at runtime. Expressing possible interactions be-
tween such function knobs is not directly supported. Uncertain<T> [16] allows developers to use
probabilistic value approximations as a form of quality introspection at runtime. The developer
can conditionally execute code based on the quality requirements of approximate variables and
computations.

All these approaches have in common that configuration management can only be implemented
through explicit ad hoc code changes to encode the dependency logic. Expressing correlations be-
tween knobs and their desired values has to be done in the form of conditional statements. There-
fore, configuration management is cumbersome and potentially error prone. Also, no distinction
is made between the application developer and application user, limiting user-level customized
quality and higher-level reasoning.

Resource Consumption Prediction: Exploiting application performance degradation has been
explored by several groups. Significant research focuses on constructing the cost model. Learning-
based models [28, 51, 54, 71, 90, 91, 100] predict performance through either input or execution
features, whose accuracy is bound by the richness of the dataset. Additionally, examining each
input introduces significant runtime overhead. For example, the rendering logic for a webpage
can only be determined after extracting and evaluating the features of the page in Chamelon [31].
Control theoretical approaches [9, 36, 45, 47, 102] aim to deal with runtime disturbance. Recently,
Caloree [70] combined the learning-based and the control theory to overcome the shortages in
both strategies when used separately. However, these approaches assume that the training phase
is free, even though getting the profile for large applications may take weeks [36] due to the size
of the configuration space. A full training is required when porting applications to other devices,
limiting their applicability. Rapids chooses the learning-based approach for both scalability and
efficiency reasons. In Rapids, the piecewise-linear model complexity does not grow proportionally
to the number of available configurations because of the modeling. Also, when porting applications
to new devices, our notion of representative sets allows the reconstruction of cost and quality
models much faster with a few configurations to be retrained. This can also be extended with
other re-enforcement learning techniques to refine the model if needed.

Quality Prediction: Probabilistic and approximate programming uses probability variables and
their distributions [15, 38–40, 73, 77, 80]. The research focuses on representations of the distri-
butions and operations induced by operations on their associated probabilistic approximate vari-
ables. In the database community, approximation has been used to provide statistical error bounds
of queries [1, 101], and more recently in the context of Map-Reduce [30] applications [41, 58].
Proving and/or verifying approximation error bounds has also been the topic of ongoing research
[21, 23]. However, these approaches cannot effectively enable users to express different quality
preferences, which is one on the main contributions of our new KDG-based Rapids framework.

Custom Quality: Existing approaches further assume some pre-defined quality notion where
each application comes with a quality function for its output, e.g., PSNR [100] or SSIM [97] for
video playback applications. Akturk et al. [2] categorizes the quality metric used in common ap-
proximation applications including some of our benchmark applications (Bodytrack, Swaptions).
However, many applications have subjective quality notions, so the application user needs to be
involved in defining the quality function. For example, a face detection application may use F-
score [24] as the quality metric, which is defined as the harmonic mean of the recognition precision
and recall. However, the precision can be more important than recall when used in target recogni-
tion. On the other hand, higher recall can help the application performance when used in crowd
counting. Allowing users to express such preference requires the system to be flexible enough that

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

13:28 L. Liu et al.

the quality model can be quickly updated when such preferences change. It is too time consuming
to repeat the training process to reflect any changes to the quality notion.

Hardware Architectural Support: Hardware support for probabilistic and approximate com-
puting has also received significant attention in recent years, allowing the use of faulty hardware
[33, 43, 53, 57, 66, 67, 79, 87] or to tolerate faulty operations [35, 81]. However, these approaches
require the application developers to carefully identify the configurable components but do not al-
low developers to express more complex correlations between components and their settings. Also,
different approximation techniques require different hardware designs, e.g., approximate storage,
approximate instruction execution, and so forth. A practical developing framework [5, 29, 55] for
configurable applications with end-to-end support [92] for developers has remained an unsolved
challenge.

9 CONCLUSION AND FUTURE WORK

The KDG-based Rapids is a novel adaptive application programming framework that supports cus-
tomizable quality. In such a system, three different stakeholders must be involved in the develop-
ment and execution of an application. The developer specifies the configuration space, excluding
infeasible or undesirable configurations. The generated KDG is a compact representation of the
configuration search space. The developer also provides basic quality notions that are exposed to
the user as virtual knobs. The user customizes the quality metric using priority weights for the
virtual knobs. The offline system produces cost and quality models based on the KDG. The runtime
system just in time, i.e., before application execution, creates the customized quality model that is
used to select and implement the highest-quality configuration under the user-provided cost/re-
source budget. Porting Rapids to new platforms requires the reconstruction of the cost/quality
models. This process may be optimized through the execution/training of representative config-
urations that are sufficient to recreate a model for all possible configurations. As in other state-
of-the-art comparable approaches that use training for their model construction, Rapids requires
a full offline training step, which can take substantial amounts of time. However, Rapids trains
the application only once, and only on the reduced set of configurations represented by the KDG.
Experimental results on eight application programs show that developers can reduce the size of
the configuration space by 68.7% on average by excluding infeasible configurations. The subjective
quality experience of the users as represented by a customized quality metric is improved by up to
3.59×, indicating the opportunity and potential benefit of customized quality. The execution time
overhead due to program monitoring and reconfiguration is less than 1.84% on average relative to
the execution time of the entire application.

Based on our experience with our current prototype implementation of an application user inter-
face, we are designing a Rapids interface tool that will allow application users to easily customize
their quality metric, specify the execution budget, and launch an application. In addition, a plan-
ning tool will show the expected improvements of quality if alternative quality customizations or
cost budgets are chosen. This interface tool will be used as part of a comprehensive user study to
quantify the benefits of customizable quality and our adaptive framework in general.

Finally, optimal or close-to-optimal configuration selections across applications that run at the
same time on a target platform are an important problem. Single-application configuration systems
such as Rapids may use a context-oblivious approach and treat resource usage by other active ap-
plications as system noise or model inaccuracy, potentially resulting in dynamic reconfigurations.
However, this “local” application view of configuration selection misses its “global” and mutual
interaction with other active applications and their configuration selections. We have started in-
vestigating global techniques for configuration selections across multiple applications that share

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

An Adaptive Application Framework with Customizable Quality Metrics 13:29

the same computing resources [61]. We are planning to further improve our approach to address
the cross-application configuration selection problem.

All of the Rapids framework including the profiler, the library, the user interface tool, and all
application benchmarks are available online through GitHub [60].

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their insightful comments.

REFERENCES

[1] Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ramaswamy. 1999. The Aqua approximate

query answering system. In ACM Sigmod Record, Vol. 28. ACM, 574–576.

[2] Ismail Akturk, Karen Khatamifard, and Ulya R. Karpuzcu. 2015. On quantification of accuracy loss in approximate

computing. In Workshop on Duplicating, Deconstructing and Debunking (WDDD’15), Vol. 15.

[3] Carlos Alvarez, Jesus Corbal, and Mateo Valero. 2005. Fuzzy memoization for floating-point multimedia applications.

IEEE Trans. Comput. 54, 7 (2005), 922–927.

[4] Mohammad Ashraful Anam, Paul N. Whatmough, and Yiannis Andreopoulos. 2013. Precision-energy-throughput

scaling of generic matrix multiplication and discrete convolution kernels via linear projections. In The 11th IEEE

Symposium on Embedded Systems for Real-time Multimedia. IEEE, 21–30.

[5] Jesper Andersson, Luciano Baresi, Nelly Bencomo, Rogério de Lemos, Alessandra Gorla, Paola Inverardi, and Thomas

Vogel. 2013. Software engineering processes for self-adaptive systems. In Software Engineering for Self-Adaptive Sys-

tems II. Springer, 51–75.

[6] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edelman, and Saman Amarasinghe. 2009.

PetaBricks: A language and compiler for algorithmic choice. In Proceedings of the 30th ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI’09). ACM, New York, NY, 38–49.

[7] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey Bosboom, Una-May O’Reilly,

and Saman Amarasinghe. 2014. OpenTuner: An extensible framework for program autotuning. In 2014 23rd Inter-

national Conference on Parallel Architecture and Compilation Techniques (PACT’14). 303–315. https://doi.org/10.1145/

2628071.2628092

[8] Jason Ansel, Yee Lok Wong, Cy Chan, Marek Olszewski, Alan Edelman, and Saman Amarasinghe. 2011. Language

and compiler support for auto-tuning variable-accuracy algorithms. In International Symposium on Code Generation

and Optimization (CGO’11). IEEE, 85–96.

[9] Woongki Baek and Trishul M. Chilimbi. 2010. Green: A framework for supporting energy-conscious programming

using controlled approximation. In Proceedings of the 2010 ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI’10). ACM, New York, NY, 198–209. https://doi.org/10.1145/1806596.1806620

[10] David H. Bailey. 2008. Resolving numerical anomalies in scientific computation. Research Gate online publication.

http://www.davidhbailey.com/dhbpapers/numerical-bugs.pdf.

[11] Judit Bar-Ilan, Mazlita Mat-Hassan, and Mark Levene. 2006. Methods for comparing rankings of search engine results.

Computer Networks 50, 10 (2006), 1448–1463.

[12] Saeid Barati, Ferenc A. Bartha, Swarnendu Biswas, Robert Cartwright, Adam Duracz, Donald Fussell, Henry

Hoffmann, Connor Imes, Jason Miller, Nikita Mishra, Arvind, Dung Nguyen, Krishna V. Palem, Yan Pei, Keshav

Pingali, Ryuichi Sai, Andrew Wright, Yao-Hsiang Yang, and Sizhuo Zhang. 2019. Proteus: Language and runtime

support for self-adaptive software development. IEEE Software 36, 2 (2019), 73–82.

[13] Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D. Dissertation. Princeton University.

[14] R. Bixby. 1992. Implementing the simplex method: The initial basis. ORSA Journal on Computing 4, 3 (1992), 267–284.

[15] J. Borgstrom, A. D. Gordon, M. Greenberg, J. Margetson, and J. Van Gael. 2011. Measure transformer semantics for

Bayesian machine learning. In European Symposium on Programming (ESOP’11).

[16] J. Bornholt, T. Mytkowicz, and K. S. McKinley. 2014. Uncertain<T>: A first-order type for uncertain data. In Inter-

national Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’14). 51–66.

[17] G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools 21, 11 (2000), 120–123.

[18] Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Julien Langou, Piotr Luszczek, and Stanimire Tomov. 2007. Exploiting

Mixed Precision Floating Point Hardware in Scientific Computations. Vol. 16.

[19] Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Piotr Luszczek, and Stanimire Tomov. 2008. Using mixed precision

for sparse matrix computations to enhance the performance while achieving 64-bit accuracy. ACM Transactions on

Mathematical Software 34, 4 (2008), 1–22. https://doi.org/10.1145/1377596.1377597

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

https://doi.org/10.1145/2628071.2628092
https://doi.org/10.1145/1806596.1806620
http://www.davidhbailey.com/dhbpapers/numerical-bugs.pdf
https://doi.org/10.1145/1377596.1377597

13:30 L. Liu et al.

[20] Surendra Byna, Jiayuan Meng, Anand Raghunathan, Srimat Chakradhar, and Srihari Cadambi. 2010. Best-effort se-

mantic document search on GPUs. In Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics

Processing Units. ACM, 86–93.

[21] Michael Carbin, Deokhwan Kim, Sasa Misailovic, and Martin C. Rinard. 2012. Proving acceptability properties of

relaxed nondeterministic approximate programs. In Proceedings of the 33rd ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (PLDI’12). ACM, New York, NY, 169–180. https://doi.org/10.1145/2254064.

2254086

[22] IBM Knowledge Center. [n.d.]. MIQCP: Mixed Integer Programs with Quadratic Terms in the Constraints.

https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.1/ilog.odms.cplex.help/CPLEX/UsrMan/topics/discr_

optim/mip_quadratic/03_introMIQCP.html.

Proving programs robust. In European Software Engineering Conference and the ACM SIGSOFT Symposium on the

Foundations of Software Engineering (ESEC-FSE.11).

[23] Swarat Chaudhuri, Sumit Gulwani, Roberto Lublinerman, and Sara Navidpour. 2011. Proving programs robust. In Eu-

ropean Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering

(ESEC-FSE’11).

[24] Nancy Chinchor. 1992. MUC-4 evaluation metrics. In Proceedings of the 4th Conference on Message Understanding.

Association for Computational Linguistics, 22–29.

[25] Ionut Constandache, Shravan Gaonkar, Matt Sayler, Romit Roy Choudhury, and Landon Cox. 2009. Enloc: Energy-

efficient localization for mobile phones. In IEEE INFOCOM 2009. IEEE, 2716–2720.

[26] NVIDIA Corporation. 2017. NVIDIA Jetson TX1 developer kit. http://www.nvidia.com/object/embedded-systems-

dev-kits-modules.html.

[27] IBM ILOG Cplex. 2009. V12. 1: User’s manual for CPLEX. International Business Machines Corporation 46, 53 (2009),

157.

[28] Valentin Dalibard, Michael Schaarschmidt, and Eiko Yoneki. 2017. BOAT: Building auto-tuners with structured

Bayesian optimization. In Proceedings of the 26th International Conference on World Wide Web. International World

Wide Web Conferences Steering Committee, 479–488.

[29] Rogério De Lemos, Holger Giese, Hausi A. Müller, Mary Shaw, Jesper Andersson, Marin Litoiu, Bradley Schmerl,

Gabriel Tamura, Norha M. Villegas, Thomas Vogel, et al. 2013. Software engineering for self-adaptive systems: A

second research roadmap. In Software Engineering for Self-Adaptive Systems II. Springer, 1–32.

[30] J. Dean and S. Ghemawat. 2004. MapReduce: Simplified data processing on large clusters. In Symposium on Operating

System Design (OSDI’04).

[31] Mian Dong and Lin Zhong. 2011. Chameleon: A color-adaptive web browser for mobile OLED displays. In Proceedings

of the 9th International Conference on Mobile System, Applications, and Services (MobiSys’11). 85–98.

[32] Peter Düben, Sreelatha Yenugula, John Augustine, K. Palem, Jeremy Schlachter, Christian Enz, T. N. Palmer, et al. 2015.

Opportunities for energy efficient computing: A study of inexact general purpose processors for high-performance

and big-data applications. In 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE’15). IEEE,

764–769.

[33] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. 2012. Architectural support for disciplined approximate pro-

gramming. In International Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS’12).

[34] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. 2012. Architecture support for disciplined approx-

imate programming. In ACM SIGPLAN Notices, Vol. 47. ACM, 301–312.

[35] Yuntan Fang, Huawei Li, and Xiaowei Li. 2012. SoftPCM: Enhancing energy efficiency and lifetime of phase change

memory in video applications via approximate write. In 2012 IEEE 21st Asian Test Symposium. IEEE, 131–136.

[36] Anne Farrell and Henry Hoffmann. 2016. MEANTIME: Achieving both minimal energy and timeliness with approx-

imate computing. In 2016 USENIX Annual Technical Conference (USENIX ATC’16). 421–435.

[37] Qt for Python. 2020. Qt for Python. https://wiki.qt.io/Qt_for_Python.

[38] W. R. Gilks, A. Thomas, and D. J. Spiegelhalter. 1994. A language and program for complex Bayesian mod-

elling.Journal of the Royal Statistical Society, Series D (The Statistician) 43, 1 (1994), 169–177.

[39] N. D. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, and J. B. Tenenbaum. 2008. Church: A language for

generative models. In Conference in Uncertainty in Artificial Intelligence (UAI’08). 220–229.

[40] A. Gordon, T. Henzinger, A. V. Nori, and S. K. Rajamani. 2014. Probabilistic programming. In International Conference

on Software Engineering (ICSE’14).

[41] I. Gori, R. Bianchini, S. Nagarakatte, and T. D. Nguyen. 2015. ApproxHadoop: Bringing approximations to MapReduce

frameworks. In International Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS’15). 383–397.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

https://doi.org/10.1145/2254064.2254086
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.1/ilog.odms.cplex.help/CPLEX/UsrMan/topics/discr_optim/mip_quadratic/03_introMIQCP.html
http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
https://wiki.qt.io/Qt_for_Python

An Adaptive Application Framework with Customizable Quality Metrics 13:31

[42] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agarwal, Alec Wolman, and Arvind Krishnamurthy. 2016.

MCDNN: An approximation-based execution framework for deep stream processing under resource constraints. In

Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services (MobiSys’16).

ACM, New York, NY, 123–136.

[43] Rajamohana Hegde and Naresh R. Shanbhag. 1999. Energy-efficient signal processing via algorithmic noise-tolerance.

In Proceedings. 1999 International Symposium on Low Power Electronics and Design (Cat. No. 99TH8477). IEEE, 30–35.

[44] Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M. Tilbury. 2004. Feedback Control of Computing Systems.

John Wiley & Sons, Inc., Hoboken, NJ.

[45] H. Hoffmann. 2015. JouleGuard: Energy guarantees for approximate applications. In Symposium on Operating Systems

Principles (SOSP’15).

[46] Henry Hoffmann, Martina Maggio, Marco D. Santambrogio, Alberto Leva, and Anant Agarwal. 2011. SEEC: A Gen-

eral and Extensible Framework for Self-Aware Computing. Technical Report MIT-CSAIL-TR-2011-046. Massachusetts

Institute of Technology, Cambridge MA.

[47] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant Agarwal, and Martin Rinard. 2011. Dy-

namic knobs for responsive power-aware computing. In ASPLOS’11. Newport Beach, California.

[48] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and M. Rinard. 2011. Dynamic knobs for responsive

power-aware computing. In Proceedings of the 16th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS’11). ACM, New York, NY, 199–212.

[49] Guangyan Hu, Sandro Rigo, Desheng Zhang, and Thu Nguyen. 2019. Approximation with error bounds in spark. In

2019 IEEE 27th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication

Systems (MASCOTS’19). IEEE, 61–73.

[50] Vidit Jain and Erik Learned-Miller. 2010. FDDB: A Benchmark for Face Detection in Unconstrained Settings. Technical

Report UM-CS-2010-009. University of Massachusetts, Amherst.

[51] Pooyan Jamshidi, Miguel Velez, Christian Kästner, Norbert Siegmund, and Prasad Kawthekar. 2017. Transfer learning

for improving model predictions in highly configurable software. In 2017 IEEE/ACM 12th International Symposium

on Software Engineering for Adaptive and Self-Managing Systems (SEAMS’17). IEEE, 31–41.

[52] Ken Kennedy and John R. Allen. 2002. Optimizing Compilers for Modern Architectures: A Dependence-based Approach.

Morgan Kaufmann Publishers Inc., San Francisco, CA.

[53] D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke. 2015. Rumba: An online quality management system for approx-

imate computing. In International Symposium on Computer Architecture (ISCA’15). 554–566.

[54] J. C. Knight and N. G. Leveson. 1986. An experimental evaluation of the assumption of independence in multiversion

programming. IEEE Transactions on Software Engineering 12, 1 (1986), 96–109.

[55] Jeff Kramer and Jeff Magee. 2007. Self-managed systems: an architectural challenge. In 2007 Future of Software Engi-

neering. IEEE Computer Society, 259–268.

[56] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features from tiny images. Technical Report,

University of Toronto.

[57] Parag Kulkarni, Puneet Gupta, and Milos Ercegovac. 2011. Trading accuracy for power with an underdesigned mul-

tiplier architecture. In 2011 24th Internatioal Conference on VLSI Design. IEEE, 346–351.

[58] N. Laptev, K. Zeng, and C. Zaniolo. 2012. Early accurate results for advanced analytics on MapReduce. Proceedings

of the VLDB Endowment 5, 10 (2012), 1028–1039.

[59] Xiaoye S. Li, James W. Demmel, David H. Bailey, Greg Henry, Yozo Hida, Jimmy Iskandar, William Kahan, Suh Y. Kang,

Anil Kapur, Michael C. Martin, Brandon J. Thompson, Teresa Tung, and Daniel J. Yoo. 2002. Design, implementation

and testing of extended and mixed precision BLAS. ACM Transactions on Mathematical Software 28, 2 (June 2002),

152–205.

[60] Liu Liu. 2019.RAPIDS Repository on Github. https://github.com/niuye8911/rapidlib-linux.

[61] Liu Liu, Sibren Isaacman, and Ulrich Kremer. 2020. Global cost/quality management across multiple applications. In

Proceedings of the 28th ACM Joint Meeting European Software Engineering Conference and Symposium on the Founda-

tions of Software Engineering (ESEC/FSE’20).

[62] Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Benjamin G. Zorn. 2012. Flikker: Saving DRAM refresh-

power through critical data partitioning. ACM SIGPLAN Notices 47, 4 (2012), 213–224.

[63] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. 2007. Multi-probe LSH: efficient indexing for high-

dimensional similarity search. In Proceedings of the 33rd International Conference on Very Large Data Bases. VLDB

Endowment, 950–961.

[64] Divya Mahajan, Amir Yazdanbakhsh, Jongse Park, Bradley Thwaites, and Hadi Esmaeilzadeh. 2015. Prediction-based

quality control for approximate accelerators. In 2nd Workshop on Approximate Computing across the System Stack

(WACAS’15).

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

https://github.com/niuye8911/rapidlib-linux

13:32 L. Liu et al.

[65] Lawrence McAfee and Kunle Olukotun. 2015. EMEURO: A framework for generating multi-purpose accelerators

via deep learning. In 2015 IEEE/ACM International Symposium on Code Generation and Optimization (CGO’15). IEEE,

125–135.

[66] J. S. Miguel, M. Badr, and N. E. Jerger. 2014. Load value approximation. In International Symposium on Microarchitec-

tures. 127–139.

[67] S. Misailovic, M. Carbin, S Achour, Z. Qi, and M. Rinard. 2014. Chisel: Reliability- and accuracy-aware optimiza-

tions of approximate computational kernels. In International Conference on Object Oriented Programming Systems

Languages and Applications (OOPSLA’14). 309–328.

[68] Asit K. Mishra, Rajkishore Barik, and Somnath Paul. 2014. iACT: A software-hardware framework for understanding

the scope of approximate computing. In Workshop on Approximate Computing Across the System Stack (WACAS’14).

52.

[69] Nikita Mishra. 2018. Personal communication.

[70] Nikita Mishra, Connor Imes, John D. Lafferty, and Henry Hoffmann. 2018. CALOREE: Learning control for pre-

dictable latency and low energy. In Proceedings of the 23rd International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS’18). Association for Computing Machinery, New York, NY,

184–198.

[71] Nikita Mishra, John D. Lafferty, and Henry Hoffmann. 2017. ESP: A machine learning approach to predicting appli-

cation interference. In Proceedings of the International Conference on Autonomic Computing (ICAC’17).

[72] Jongse Park, Hadi Esmaeilzadeh, Xin Zhang, Mayur Naik, and William Harris. 2015. Flexjava: Language support for

safe and modular approximate programming. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering. ACM, 745–757.

[73] S. Park, F. Pfenning, and S. Thrun. 2005. A probabilistic language based on sampling functions. In ACM Symposium

on Principles of Programming Languages (POPL’05). 171–182.

[74] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,

V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn:

Machine learning in Python.Journal of Machine Learning Research 12 (2011), 2825–2830.

[75] Yan Pei, Swarnendu Biswas, Donald S. Fussell, and Keshav Pingali. 2019. SLAMBooster: An application-aware online

controller for approximation in dense SLAM. In 28th International Conference on Parallel Architectures and Compila-

tion Techniques (PACT’19). IEEE, 296–310.

[76] Yan Pei, Swarnendu Biswas, Donald S. Fussell, and Keshav Pingali. 2020. A methodology for principled approxima-

tion in visual SLAM. In Proceedings of the ACM International Conference on Parallel Architectures and Compilation

Techniques (PACT’20). Association for Computing Machinery, New York, NY, 373–386.

[77] A. Pfeffer. 2001. IBAL: A probabilistic rational programming language. In International Joint Conference on Artificial

Intelligence (IJCAI’01). 733–740.

[78] Abbas Rahimi, Luca Benini, and Rajesh K. Gupta. 2013. Spatial memoization: Concurrent instruction reuse to correct

timing errors in simd architectures. IEEE Transactions on Circuits and Systems II: Express Briefs 60, 12 (2013), 847–851.

[79] Abbas Rahimi, Amirali Ghofrani, Kwang-Ting Cheng, Luca Benini, and Rajesh K. Gupta. 2015. Approximate associa-

tive memristive memory for energy-efficient GPUs. In Proceedings of the 2015 Design, Automation & Test in Europe

Conference & Exhibition. EDA Consortium, 1497–1502.

[80] N. Ramsey and A. Pfeffer. 2002. Stochastic lambda calculus and monads of probability distributions. In ACM Sympo-

sium on Principles of Programming Languages (POPL’02). 154–165.

[81] Ashish Ranjan, Swagath Venkataramani, Xuanyao Fong, Kaushik Roy, and Anand Raghunathan. 2015. Approxi-

mate storage for energy efficient spintronic memories. In 2015 52nd ACM/EDAC/IEEE Design Automation Conference

(DAC’15). IEEE, 1–6.

[82] Martin Rinard. 2006. Probabilistic accuracy bounds for fault-tolerant computations that discard tasks. In Proceedings

of the 20th Annual International Conference on Supercomputing. ACM, 324–334.

[83] Cindy Rubio-González, Cuong Nguyen, Hong Diep Nguyen, James Demmel, William Kahan, Koushik Sen, David H.

Bailey, Costin Iancu, and David Hough. 2013. Precimonious: Tuning assistant for floating-point precision. In Pro-

ceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis (SC’13).

Association for Computing Machinery, New York, NY, Article 27, 12 pages.

[84] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. 2000. The earth mover’s distance as a metric for image retrieval.

International Journal of Computer Vision 40, 2 (2000), 99–121.

[85] Mehrzad Samadi and Scott Mahlke. 2014. CPU-GPU collaboration for output quality monitoring. In 1st Workshop on

Approximate Computing across the System Stack. 1–3.

[86] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and Dan Grossman. 2011.

EnerJ: Approximate data types for safe and general low-power computation. In ACM Conference on Programming

Language Design and Implementation (PLDI’11).

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

An Adaptive Application Framework with Customizable Quality Metrics 13:33

[87] Adrian Sampson, Jacob Nelson, Karin Strauss, and Luis Ceze. 2014. Approximate storage in solid-state memories.

ACM Transactions on Computer Systems (TOCS) 32, 3 (2014), 9.

[88] Byonghyo Shim, Srinivasa R. Sridhara, and Naresh R. Shanbhag. 2004. Reliable low-power digital signal processing

via reduced precision redundancy. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 12, 5 (2004),

497–510.

[89] Stelios Sidiroglou, Sasa Misailovic, Henry Hoffmann, and Martin Rinard. 2011. Managing performance vs. accuracy

trade-offs with loop perforation. In ESEC/FSE’11.

[90] Xin Sui, Andrew Lenharth, Donald S. Fussell, and Keshav Pingali. 2016. Proactive control of approximate programs.

In Proceedings of the 21st International Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS’16). ACM, New York, NY, 607–621.

[91] Xin Sui, Andrew Lenharth, Donald S. Fussell, and Keshav Pingali. 2016. Proactive control of approximate programs.

ACM SIGOPS Operating Systems Review 50, 2 (2016), 607–621.

[92] Rasha Tawhid and Dorina Petriu. 2008. Integrating performance analysis in the model driven development of

software product lines. In International Conference on Model Driven Engineering Languages and Systems. Springer,

490–504.

[93] Mixed Integer Programming Tool. 2017. Gurobi Optimizer 7.25. http://www.gurobi.com/products/gurobi-optimizer.

[94] Stanford University. [n.d.]. Convolutional Neural Networks for Visual Recognition. http://cs231n.stanford.edu/index.

html.

[95] Vassilis Vassiliadis, Konstantinos Parasyris, Charalambos Chalios, Christos D. Antonopoulos, Spyros Lalis, Nikolaos

Bellas, Hans Vandierendonck, and Dimitrios S. Nikolopoulos. 2015. A programming model and runtime system for

significance-aware energy-efficient computing. In ACM SIGPLAN Notices, Vol. 50. ACM, 275–276.

[96] Shu Wang, Chi Li, Henry Hoffmann, Shan Lu, William Sentosa, and Achmad Imam Kistijantoro. 2018. Understand-

ing and auto-adjusting performance-sensitive configurations. In Proceedings of the 23rd International Conference on

Architectural Support for Programming Languages and Operating Systems. ACM, 154–168.

[97] Zhou Wang, Ligang Lu, and Alan C. Bovik. 2004. Video quality assessment based on structural distortion measure-

ment. Signal Processing: Image Communication 19, 2 (2004), 121–132.

[98] R. Whaley, Antoine Petitet, and Jack Dongarra. 2001. Automated empirical optimizations of software and the ATLAS

project. Parallel Computing 27 (2001), 3–35. https://doi.org/10.1016/S0167-8191(00)00087-9

[99] Michael Joseph Wolfe. 1990. Optimizing Supercompilers for Supercomputers. MIT Press, Cambridge, MA.

[100] Ran Xu, Jinkyu Koo, Rakesh Kumar, Peter Bai, Subrata Mitra, Sasa Misailovic, and Saurabh Bagchi. 2018. Videochef:

Efficient approximation for streaming video processing pipelines. In 2018 USENIX Annual Technical Conference

(USENIX ATC’18). 43–56.

[101] K. Zeng, Shi Gao, B. Mozafari, and C. Zaniolo. 2014. The analytical bootstrap: A new method for fast error estimation

in approximate query processing. In ACM SIGMOD’14. 277–288.

[102] Huazhe Zhang and Henry Hoffmann. 2016. Maximizing performance under a power cap: A comparison of hardware,

software, and hybrid techniques. In (ASPLOS’16).

[103] Hans Zima and Barbara Chapman. 1991. Supercompilers for Parallel and Vector Computers. ACM, New York, NY.

Received February 2021; revised July 2021; accepted July 2021

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 13. Pub. date: November 2021.

http://www.gurobi.com/products/gurobi-optimizer
http://cs231n.stanford.edu/index.html
https://doi.org/10.1016/S0167-8191(00)00087-9

