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Increasingly, spatial awareness plays a central role in many distributed and mobile
computing applications. Spatially aware applications rely on information about the
geographical position of compute devices and their supported services in order to support
novel functionality. While many spatial application drivers already exist in mobile
and distributed computing, very little systems research has explored how best to program
these applications, to express their spatial and temporal constraints, and to allow efficient
implementations on highly dynamic real-world platforms. This paper proposes the
SARANA system architecture, which includes language and run-time system support for
spatially aware and resource-aware applications. SARANA allows users to express spatial
regions of interest, as well as trade-offs between quality of result (QoR), latency and cost.
The goal is to produce applications that use resources efficiently and that can be run on
diverse resource-constrained platforms ranging from laptops to personal digital assistants
and to smart phones. SARANA’s run-time system manages QoR and cost trade-offs
dynamically by tracking resource availability and locations, brokering usage/pricing
agreements andmigrating programs to nodes accordingly. A resource costmodel permeates
the SARANA system layers, permitting users to express their resource needs and QoR
expectations in units that make sense to them. Although we are still early in the system
development, initial versions have been demonstrated on a nine-node system prototype.

Keywords: mobile computing; programming interfaces; run-time systems
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1. Introduction

Today’s mobile systems are reaching a turning point. Until recently, common
operation has involved one mobile device (e.g. a laptop) seeking to remain
connected with mostly fixed infrastructure, or sometimes two mobile devices
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(e.g. cellular telephones) seeking to communicate or share data with each other.
Increasingly, however, new mobile applications are emerging in which larger
confederations of mostly mobile devices might collaborate to share information
or resources. For example, many social networking applications involve
cooperative information or resource sharing across a collection of cellular
telephone or mobile device users (Shen & Li 2007). Distributed gaming scenarios
often involve people with handheld devices communicating data and game
status while ranging widely across a region (Wipeer 2007). While collaborative
applications on wireless devices already exist (Aalto et al. 2004; Wipeer 2007),
there still remain considerable difficulties in programming them to work resiliently
across a large range of conditions.

These collaborative applications have several key characteristics in common.

—Dynamic confederations of devices. The applications represent loose
collaboration between a fairly large number (tens or hundreds) of mobile
devices. By loose collaboration, we mean that (much like a peer-to-peer
system in other domains) the devices have chosen to come together to share
resources or information, but each device is entitled to drop out at any
time, or to refuse to share some of its resources. These collaborative groups
have very dynamic membership, and each device in the group may have
independent policy goals.

—Resource awareness. For distinct nodes to be willing to collaborate, there
must be mechanisms for allowing them to estimate resource usage and account
for the time and energy costs involved in offering a service to another node.

— Spatial awareness. Another key attribute is that spatial information (i.e.
current positions of the nodes and their relationship to each other) is usually
needed as a ‘first-class’ citizen in the system design.

Given the predominance of these mobile applications, and the difficulty in
programming them using traditional languages, this paper argues for language
and run-time system constructs specifically aimed at supporting them. In
particular, this paper introduces SARANA, currently being developed to provide
support for a spatially aware, resource-aware networking architecture.

At the language level, SARANA’s key features are (i) support for programmers
to express geographical regions of interest and computation/communication
patterns based on such regions, and (ii) support for programmers to express
policies to guide trade-offs of quality of result (QoR), performance, energy costs
and other resource costs. Programmers need only to specify abstractly the QoR
rather than hardwiring application-specific attributes such as the number or
addresses of devices to be involved in the computation. Likewise, SARANA allows
applications to avoid including explicit resource-cost management logic, while still
ensuring that program executions adhere to a predetermined cost target.

SARANA’s run-time system guides the decisions on how many mobile devices
to contact, based on programmer-specified preferences about QoR trade-offs
between result quality, latency and cost. While individual nodes can always opt
out of the confederation, SARANA allows the computation to adapt resiliently
to variations in neighbour count, battery levels, communication latencies and
other ‘facts of life’ in mobile computing. SARANA’s run-time cost management
determines which and how many remote devices will be used in the computation
Phil. Trans. R. Soc. A (2008)
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so as to meet (if possible) the programmer’s QoR requirement within the
imposed cost constraint. In addition, the run-time system brokers relationships
between nodes. It selects possible candidate nodes for execution or sharing, based
on both geography and resource availability. It also performs dynamic cost
feedback management; that is, it dynamically adjusts cost estimates and remote
node candidates as an application is in progress. This allows SARANA to get the
best possible QoR within a cost budget, while abiding by each node’s choice to
opt out of remote computations.

The remainder of this paper is organized as follows. Section 2 gives more
details of the SARANA system, couched in the context of a driver example
patterned after the ‘Amber Alert’ emergency system in the USA. Section 3
describes the SARANA programming language. Section 4 gives an overview of
the SARANA run-time system. Section 5 offers comparisons with related work,
and §6 gives our conclusions.
2. Driving example: Amber Alert

In order to illustrate the different features of SARANA, we describe here an
example of its use for an Amber Alert system. Amber Alert is a system in the
USA that is used to notify the population when a child is kidnapped. It creates a
cross-medium announcement targeting specific geographical regions to aid the
search for the kidnapper, the child, or a particular vehicle or license plate
number. Typically, notifications are made via television or radio broadcasts and
highway information signs. In addition, individual cellphone users may ‘opt in’ to
receive Amber Alerts as SMS messages. Citizens with information concerning the
situation are urged to call the police. In our case, we show how SARANA could
be used to create a more dynamic and intelligent version of the Amber Alert
system. The application combines spatial awareness, in-network processing and
cost/QoR trade-offs. A partial listing of SARANA code is shown in figure 1.

(a ) Amber Alert problem overview

A typical Amber Alert search profile might be an announcement that people in
a particular region should be looking for a red four-door sedan, with a particular
license plate number. A photograph of the kidnapped child, or a sketch of the
likely suspect, may also be provided.

— Spatial awareness. An Amber Alert is issued for a particular physical region,
such as a city, county or state. Our goal is to harness resources within this
region, such as cameras and cellphone users, to help identify the missing child
or car. Spatial awareness allows Amber Alert to focus within the region of
interest, not using resources far from the incident.

—Resource awareness. Any given target region is likely to have many
distributed cameras and compute devices. These cameras may be fixed,
such as traffic surveillance cameras, or mobile, such as those in nearly every
cellphone today. Our goal is to launch code on several cellphones and camera
nodes in order to harness these cameras as distributed search resources. Since
launching everywhere would be very resource hungry, we must abide by cost
or credit constraints.
Phil. Trans. R. Soc. A (2008)

http://rsta.royalsocietypublishing.org/


Figure 1. Sketch of Amber Alert driver application.

P. Hari et al.3702

 on 24 June 2009rsta.royalsocietypublishing.orgDownloaded from 
—Quality-of-result trade-offs. The Amber Alert application illustrates the sorts
of QoR trade-offs that many such distributed applications face. A broadcast to
every relevant node in the region of interest might be low latency, but high
cost. A parsimonious sequential query of each camera in the city would be
lower cost, but with longer latency and lower likelihood of success. SARANA’s
run-time system will balance these goals by deciding how many nodes to
launch and by sampling these nodes across the region of interest.

In our example, we assume that the entire program terminates after 3 hours,
i.e. the search is aborted. At this point, if the suspect has not yet been found,
police could relaunch the program with a new larger region of interest.
(b ) SARANA code example

The code for Amber Alert is shown in figure 1. Every 30 s, a picture is taken
across a sampled subset of cameras (line 8). Determining which cameras to use
(and how many) is a key aspect of SARANA’s QoR-based run-time system. Each
camera image is then processed by a computation node within a physical
neighbourhood, if available, which has the needed image understanding code
installed (line 14). This local in-networking processing reduces communication
costs and avoids contention.

The image understanding code receives and processes the image using particular
Amber Alert search attributes. If the search attributes match the image content,
the camera image is distributed to a set of Amber Alert participants near the
Phil. Trans. R. Soc. A (2008)
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camera (line 19). (To simplify the example, the physical neighbourhood has been
hard-coded into the program, but it could be adaptive or a dynamic parameter.)
Here, individuals in close proximity to the potential target sighting can confirm or
refute the positive identification of the target, and give additional information,
if possible (e.g. the license plate number). In order to keep the example small,
we omit the code that allows Amber Alert participants to annotate images
with additional information. All potential target matches are collected in a data
structure (carInfo) and displayed at the emergency centre that originally
initiated program execution (line 23).

The obtain construct (line 24) in our Amber Alert code allows the user
to specify an acceptable quality of a program execution. In this example, the
programmer wishes to contact 10 Amber Alert participants for each image
that has been identified as showing the search target. The rationale here
could be that getting information from 10 people will help to confirm a positive
identification. Having too many responses to the displayed image would produce
redundant information and would lead to a significant waste of precious
resources, such as battery life and an Amber Alert participant’s time (social
cost). The SARANA run-time system seeks to satisfy all obtain QoR requests
while not exceeding the specified overall budget.
(c ) QoR possibilities for Amber Alert

To accomplish the QoR goal, the run-time system has to pick a number
of cameras (line 8) and a number of Amber Alert participants (line 20) for
each successfully matched camera image. All this must be done in a dynamic
environment where the costs for services such as taking or analysing a
photograph may vary and are not known at program invocation time. As
described further in §3, the SARANA run-time system is novel in its use of
incremental execution of nested spatial iterations, together with a probing
strategy that determines the overall costs of a single iteration, or a small set
of iterations. Based on this probe information, the overall execution cost is
limited to within a preset budget while honouring the quality constraints
specified in the obtain construct.
3. Language and compiler overview

SARANA’s main program abstraction is a space–time region of virtual network
nodes that provide specific services within a physical space and within a time
interval. This space–time region is called a spatial view. The spatial view
definition is declarative in nature, i.e. it does not instantiate any mapping between
virtual and physical nodes. This is done through the iterator (visiteach).

Conceptually, the body of a visiteach statement is executed on every
network node in a given space. In practice, the actual number of remote nodes
that can be used will be limited by the availability of various system resources. In
SARANA, resources are assigned costs and applications are given credits with
which to ‘purchase’ them. Proper management of a credit budget is not an easy
task, owing to the inherent unpredictability and volatility of ad hoc networks.
The programmer may attempt to estimate the numbers and prices of remote
Phil. Trans. R. Soc. A (2008)
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nodes through performance testing and tuning, but the actual environment faced
by the application after deployment may differ radically from that of the test-
bed. An ‘iteration controller’ is intended to mediate between the application and
the policy controller to handle the dynamic trade-offs of QoR and cost within
SARANA budgets. In a SARANA program, QoR is defined with the obtain
construct. QoR expressions may contain quantities such as the sizes of collections
produced by the program or the number of times that a particular remote service
is invoked. In the current implementation, a time constraint can be imposed as
an overall deadline. If QoR is given as an expression, the run-time system will
attempt to maximize the value of that expression. We are exploring incremental
execution strategies in which some of the budget is spent on initially sampling
nodes across the space; depending on the results of this initial probe, additional
budget may be spent to get improved quality.

We are currently implementing a prototype of the SARANA compiler as an
extension of the JAVA compiler in the JAVA Development Kit v. 1.7, but have
already explored our language and run-time features with modest, hand-built
SARANA programs.
4. SARANA’s run-time system

The key idea behind SARANA is to hide from application programmers the low-
level issues related to communication, resource management and dynamic resource
discovery/optimization, while still allowing them to express abstract QoR prefe-
rences regarding how these issues affect the quality of their program output.

The execution of a SARANA application begins at the launch node. Based on
its available credit budget and local energy resources, the application will contact
a certain number of remote nodes. To decide which nodes to contact, it queries
a ‘directory server’ to find nodes that meet the desired criteria in terms of
resources available as well as spatial position. It then issues launch requests and
waits to gather the results.

On the other side, the ‘launchees’ have the same set of active components, but
they function differently. When the launchee receives a request to locally execute
a task, it first checks with the local policy controller to see if it has sufficient
resources to satisfy the request. If permission is granted, it next determines
whether or not necessary code modules reside on the node; if any are missing, the
code module distribution manager must request them. Finally, it spawns the task
as a new SARANA process/application and monitors its execution. The spawned
task may further wish to contact remote nodes to launch subtasks on them. If
this happens, the launchee becomes at the same time a launcher, with activities
as previously described.

(a ) Directory server

The run-time QoR libraries query the directory server for discovering nodes
that meet the location and resource constraints for execution. SARANA
therefore includes a directory service that is updated periodically by active
nodes with their location, the services that they might provide (e.g. camera,
image analysis), and costs for each service. Thus far, we have implemented two
directory services. One is based on a centralized scheme and the other is a
Phil. Trans. R. Soc. A (2008)
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distributed hash table approach. The directory server is, on its own, a rich
research problem with interesting issues related to implementing the ‘range
queries’ needed to support SARANA’s service model. We are currently exploring
distributed search structures to support these queries.

Of significant interest is that the directory only needs to be approximately
correct, in terms of service availability or node communication address. If node
addresses are stale (e.g. owing to mobility), packets will be dropped, but the QoR
approach allows the system to be resilient to this. Service availability can also be
somewhat stale, because once a node is contacted for SARANA execution, it can
still choose not to participate at that time. This resilience to staleness offers more
flexibility in how the directory server is implemented and kept consistent.

(b ) Policy controller

Applications running on SARANA track resource usage for accounting
purposes. Given our execution structure, we use a three-tiered approach to
track available resources, with increasing accuracy as the application approaches
the execution location. The directory server, described above, gives a rough
estimation of resources. The policy controller provides an estimate of device cost
before execution. Finally, the policy controller provides the true cost after task
completion. It also updates system information regarding the node’s location and
resource availability. This approach provides a reasonable trade-off between
accuracy and overhead.

The policy controller predicts the cost of the task before device execution in
order to provide an updated estimate for the system. Since the correlation
between resource usage and different executions of the same task is strong, we
choose a history-based approach to learn the cost of each task. In our approach, a
cache holds previous credit usages of the same task, with histories of old tasks
evicted if left unused for a certain interval.
5. Related work

Being a broad effort encompassing language, systems and resource monitoring
issues, SARANA draws from many prior research topics. We discuss the most
closely related projects here.

(a ) Languages and compilers

In recent years, programming support for sensor networks has become a
hot research area (Hill et al. 2000; Levis 2002; Blum et al. 2003; Boulis &
Han 2003; Gay et al. 2003; Liu 2003; Welsh 2004; Whitehouse et al. 2004;
Kothari et al. 2007; Newton & Morrisett 2007). Several prior works such as
Regiment, Hood and others have similar objectives as SARANA, but focus on the
context of tightly connected sensor networks, where nodes are specifically
deployed to collaborate, rather than SARANA’s loose confederation of nodes
that occasionally choose to share services. Spatial Programming (Borcea et al.
2004) and SpatialViews (Ni et al. 2005) are related spatial programming efforts.
One key distinction between them and SARANA is that they do not allow the
cost-based adaptations of code execution that SARANA does. The high-level
Phil. Trans. R. Soc. A (2008)
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SARANA model is built on SpatialViews for convenience, but introduces
novel QoR specifications previously unavailable. The use of a cost model as
part of the language has also been proposed previously by Mainland et al. (2004)
at Harvard.

(b ) Mobile computing infrastructure

The mobile phone industry is well known for closed hardware and proprietary
software that make it difficult for third parties to develop software for these
devices. Nonetheless, significant prior work has offered software development kits
(SDKs) for such platforms. These include the Open Handset Alliance’s Android
(Google Inc. 2007), Qualcomm’s BREW (Qualcomm 2007), Apple iPhone’s SDK
(Apple 2007) and OpenMoko (2007). The key difference between SARANA and
these SDKs is that SDKs simplify the programming of a single mobile phone,
while SARANA eases distributed programming of a mobile computing substrate
consisting of many mobile phones. SARANA can be developed on top of such
SDKs, to simplify the development of SARANA’s run-time system itself.

Various other systems support features similar to those of SARANA. For
example, Combine (Ananthanarayanan et al. 2007) is an infrastructure for
supporting collaborative downloading on wireless mobile devices. Like SARANA,
it uses credits for tracking execution and energy costs of collaborative appli-
cations. However, it is targeted towards the specific application of collaborative
downloading, while SARANA is broader in scope. Likewise, Slingshot (Su 2005)
supports remote code distribution and replication, with goals similar to that of
the code module distribution manager of SARANA, but at a coarser granularity
of entire applications.

(c ) Cluster and volunteer computing

Moving from the wireless domain into more high-infrastructure wired
environments, there have been other prior works on run-time system support
for automatically scheduling tasks onto large clusters. These include Google’s
MapReduce (Dean 2004) and Microsoft’s Dryad (Isard et al. 2007). Clearly,
similarities exist between SARANA and these run-time systems: they all
schedule execution of tasks onto compute nodes and manage the transfer of input
and output data. Since SARANA targets mobile devices, it tackles problems that
are not major issues in a data centre environment: diverse geographical locality,
bandwidth constraints, extreme heterogeneity of systems and user budgets, and
failures being the norm rather than a rarity.

Likewise, volunteer computing is where the general public volunteer their
computing and networking resources for scientific research projects (Bayanihan
Computing Group 2007; Berkeley Open Infrastructure for Network Computing
2007; Seti@Home 2007), creating a distributed computing substrate. Similar to
SARANA, volunteer computing is enabled by a run-time system infrastructure
that autonomically schedules and launches applications onto volunteered
computers. An incentive mechanism is also employed to promote the continued
donation of resources. At a superficial level, SARANA’s deployment scenario
(i.e. mobile, handheld nodes in a geographical region versus largely fixed PCs
across countries) cultivates a differing set of design choices for its run-time
system. A stronger contrast, however, lies in the tight coupling between
Phil. Trans. R. Soc. A (2008)
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SARANA’s programming language, compiler and run-time system. SARANA’s
integration with the programming language provides an opportunity to ease
distributed programming beyond what is possible with a development library.
6. Status and conclusions

Overall, this paper has argued for a holistic approach in supporting spatially
aware, resource-aware mobile distributed applications. A key aspect of our
approach is support for QoR trade-offs. The SARANA language supports
programmer abstractions to specify spatial regions, as well as trade-offs between
quality, resource costs and latency. Underneath this abstraction, the SARANA
run-time system provides best-effort results subject to cost, energy and
connectivity constraints.

Although our system development is still under way, we have tested our ideas
using a preliminary nine-node test-bed, as well as simulations of larger-scale
deployments. Our preliminary results show that SARANA’s ability to respond
dynamically to measured execution costs and to adjust execution choices
dynamically is much more efficient than that of other less abstract approaches. In
particular, across a range of possible cost distributions, SARANA is better able
to use up available credits without exceeding the budget and is able to produce
higher-quality results in turn.

Overall, this work demonstrates the value of language-level QoR abstractions
for mobile systems, paired with run-time optimizations. While ‘hard-wired’
application-specific approaches remain an option, they rarely prove as agile in
finding high-quality solutions across a range of dynamic settings. This work
represents an important step towards easing the programming of truly robust
and portable mobile distributed applications.

This work has been supported in part by the US National Science Foundation through grants
CNS-0615175 and CNS-0614949. In addition, we acknowledge further partial support from
Nokia Research.
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