Reducing Memory Energy

Improve the locality of memory accesses
Minimize the number of memory accesses

Architectural and circuit techniques

Optimizing interactions of compiler and cache
architecture

Technology changes



Cache: Bit Line Segmentation

* RAM cells in each column are organized
Into blocks selected by word lines

* Only the memory cells in the activated
block present a load on the bit line
— lowers power dissipation (by decreasing bit line
capacitance)
— can use smaller sense amps



Bit Line Segmentation
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Other Circuit Optimizations

Pulsed

Word Line (PWL) and Isolated Bit

Line (IBL)

— Limit bit line swings

HSPICE simulation of these designs for
different organizations of 0.5Kbit SRAM
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Cache Block Bufferin

Check to see If data desired is in thé"data
output latch from the last cache access (i.e., In
the same cache block)

Saves energy since not accessing tag and data
arrays

— minimal overhead hardware

Can maintain performance of normal set
associative cache

Analytical model can vary block buffer
parameters



Block Buffer Cache Structure

disable row decoders
» and BL precharge

Address issued by CPU Tag | Data Tag | Data

last_set_# Hit Desired word
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Influence of Hardware Optimizations:
Entire Memory View
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Reducing Memory Energy

Improve the locality of memory accesses
Minimize the number of memory accesses

Architectural and circuit techniques

Optimizing interactions of compiler and cache
architecture

Technology changes



Relative Energy Savings

e (Energy Reduction[w/Optimized Code]-
Energy Reduction[w/Original Code]) /
Energy Reduction[w/Original Code])

 Energy Reduction due to hardware
schemes




Compiler Optimizations and Block
Buffering
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Optimizing for Block Buffers

for(1=0; I<n; |++)
for(J=0; J<n; J++)

: ﬂ][ll;

for(J=0; J<n; J++) Improves locality
for(1=0; I<n; 1++) within
.. V[I[I]; block buffer



MRU Cache

Access only the Most Recently Used way In
a multi-way cache

If it misses, access all the other ways

If prediction is successful, can decrease the
energy cost per access for other ways

But has performance penalty and could
Increase system energy due to this penalty



Most Recently Used Cache
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Compliler Optimizations and MRU
Cache
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Interaction of Compiler and
Hardware Optimizations

* Block buffering saved 19% more energy
when using compiler optimizations

— Block buffer hit rates improve
— Loop permutations had maximum impact
« MRU caches saved 21% more energy when
using compiler optimizations
— Way prediction was more successful



Reducing Memory Energy

Improve the locality of memory accesses
Minimize the number of memory accesses

Architectural and circuit techniques

Optimizing interactions of compiler and cache
architecture

Technology changes and low-power operating modes



Overall Energy (J)

Sensitivity to Technology
Changes
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Technology Factor (Em=4.95e-9)
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Technology Factor (Em=2.475e-11)
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Partitioned Memory Architecture

to/from CPU 5
A A Self-monitoring




Alternatives

 All memory modules are ON all the time

 Mode Control Only
— If not used, reduce power
— No data/access pattern modifications
 Mode Control + Optimizations
— Data Transformations (e.g., Clustering)
— Loop Optimizations (e.g., Loop Splitting)



Power Modes

3.570 nJ

0.830nJ 0.320nJ 0.005 nJ 0.000 nJ



Experimental Setup

Compiler-Directed Approach:
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Experimental Setup

Self-Monitored Approach:
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Array Clustering Heuristics

 Profile-Based

o Static Analysis-Based
— Constructive Algorithm (Graph-Based)
— Iterative Algorithm

Module/Bank Configuration is Important!



Array Access ProfileMpenta

Phase Array Variables

Number Ul U2 U3 U4 UuSs U6 U7 U8
1 X X X X X
2 X X X X X
3 X X X X X
4 X X X X X X X X
5 X X X X X X
6 X X X X X
I X X X
8 X X X




Iterative Algorithm ¢pentg
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Bank Access Profilevpentg
(unoptimized)

Phase Memory Banks
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Bank Access Profilevpentg
(optimized)

Phase Memory Banks
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Benchmark Codes

Benchmark | Benchmark Data Base
Number Name Size Energy
(MB) (mJ)
1 adi 48.0 3.38
2 dtdtz 61.8 2.55
3 bmcm 39.9 3.93
4 btrix 47.7 2.49
5 eflux 33.6 413.23
6 full_search 33.0 337.75
7 matvec 16.0 675.75
8 mxm 48.0 10.70
9 phods 33.0 1586.25
10 tomcatv 56.0 119.80
11 vpenta 44.0 506.68
12 amhmtm 48.1 7.40




Energy Savings
(Mode Control only)

Savings between 12% and 75 %
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Normalized Memory System En

Energy Savings
(Mode Control + Clustering)

As much as 50% savin g over pure mode control
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