Reducing Memory Energy

- Improve the locality of memory accesses

 Minimize the number of memory accesses
- Architectural and circuit techniques
- Optimizing interactions of compiler and cache architecture
- Technology changes

Cache: Bit Line Segmentation

- RAM cells in each column are organized into blocks selected by word lines
- Only the memory cells in the activated block present a load on the bit line
 - lowers power dissipation (by decreasing bit line capacitance)
 - can use smaller sense amps

Bit Line Segmentation

- Address decoder identifies
 the segment targeted by the
 row address and isolates all
 but the targeted segment from
 the common bit line
- Reduces bit line capacitance
- Has minimal effect on performance

Other Circuit Optimizations

- Pulsed Word Line (PWL) and Isolated Bit Line (IBL)
 - Limit bit line swings
- HSPICE simulation of these designs for different organizations of 0.5Kbit SRAM
- 52% reduction when using DBL, PWL and IBL techniques
- Can capture influence in analytical model

• Cache Block Buffering • Check to see if data desired is in the data

- Check to see if data desired is in the data output latch from the last cache access (i.e., in the same cache block)
- Saves energy since not accessing tag and data arrays
 - minimal overhead hardware
- Can maintain performance of normal set associative cache
- Analytical model can vary block buffer parameters

Block Buffer Cache Structure disable row decoders

and BL precharge Address issued by CPU Tag Tag Data Data last_set_# Desired word Hit

Dcache Energy

8K 4way Dcache

Influence of Hardware Optimizations: Entire Memory View

Reducing Memory Energy

- Improve the locality of memory accesses

 Minimize the number of memory accesses
- Architectural and circuit techniques
- Optimizing interactions of compiler and cache architecture
- Technology changes

Relative Energy Savings

- (Energy_Reduction[w/Optimized Code]-Energy_Reduction[w/Original Code]) / Energy_Reduction[w/Original Code])
- Energy_Reduction due to hardware schemes

Compiler Optimizations and Block Buffering

Optimizing for Block Buffers

Improves locality within block buffer

MRU Cache

- Access only the Most Recently Used way in a multi-way cache
- If it misses, access all the other ways
- If prediction is successful, can decrease the energy cost per access for other ways
- But has performance penalty and could increase system energy due to this penalty

Most Recently Used Cache

Compiler Optimizations and MRU Cache

Interaction of Compiler and Hardware Optimizations

- Block buffering saved 19% more energy when using compiler optimizations
 - Block buffer hit rates improve
 - Loop permutations had maximum impact
- MRU caches saved 21% more energy when using compiler optimizations
 - Way prediction was more successful

Reducing Memory Energy

- Improve the locality of memory accesses

 Minimize the number of memory accesses
- Architectural and circuit techniques
- Optimizing interactions of compiler and cache architecture
- Technology changes and low-power operating modes

Sensitivity to Technology Changes

Technology Factor (Em=4.95e-9)

■ datapath ■ I-cache □ D-cache □ main memory

Technology Factor (Em=2.475e-11)

Partitioned Memory Architecture

Alternatives

- All memory modules are ON all the time
- Mode Control Only
 - If not used, reduce power
 - No data/access pattern modifications
- Mode Control + Optimizations
 - Data Transformations (e.g., Clustering)
 - Loop Optimizations (e.g., Loop Splitting)

Power Modes

Experimental Setup

Compiler-Directed Approach:

Experimental Setup

Self-Monitored Approach:

Array Clustering Heuristics

- Profile-Based
- Static Analysis-Based
 - Constructive Algorithm (Graph-Based)
 - Iterative Algorithm

Module/Bank Configuration is Important!

Array Access Profile (vpenta)

Phase Number	Array Variables							
	U1	U2	U3	U4	U5	U6	U7	U8
1	X			X	X	X	X	
2		X		X	X		X	X
3		X		X	X		X	X
4	X	X	X	X	X	X	X	X
5	X	X	X			X	X	X
6	X	X	X				X	X
7		X	X					X
8		X	X					X

Iterative Algorithm (vpenta)

Bank Access Profile (*vpenta*) (unoptimized)

Phase Number	Memory Banks							
	В0	B 1	B2	В3	B4	B5	В6	B7
1	X			X	X			
2	X			X	X	X		
3	X			X	X	X		
4	X	X	X	X	X	X		
5	X	X	X	X	X	X		
6	X	X	X	X	X	X		
7	X	X	X	X		X		
8	X	X	X			X		

Bank Access Profile (*vpenta*) (optimized)

Phase Number	Memory Banks							
	В0	B1	B2	В3	B4	B5	В6	B7
1	X	X						
2	X		X	X				
3	X		X	X				
4	X	X	X	X				
5		X	X					
6		X	X					
7			X	X	X	X		
8			X	X	X	X		

Benchmark Codes

Benchmark Number	Benchmark Name	Data Size (MB)	Base Energy (mJ)
1	adi	48.0	3.38
2	dtdtz	61.8	2.55
3	bmcm	39.9	3.93
4	btrix	47.7	2.49
5	eflux	33.6	413.23
6	full_search	33.0	337.75
7	matvec	16.0	675.75
8	mxm	48.0	10.70
9	phods	33.0	1586.25
10	tomcatv	56.0	119.80
11	vpenta	44.0	506.68
12	amhmtm	48.1	7.40

Energy Savings (Mode Control only)

Energy Savings (Mode Control + Clustering)

