Outline

Why Low-Power?
Experimental Framework
Estimating Energy Consumption

Improving Energy Consumption
— Hardware Optimizations

— Software Optimizations

— Combined Techniques

Energy Behavior of Java Codes
Conclusions

Ongoing Work at Penn State
References

Why Low Power?
 Power consumption/dissipation in Watts
— sets packaging limits
— determines power ground wiring designs
— Impacts signal noise margin and reliability analysis

 Energy consumption in Joules

— energy = power * delay (joules = watts *
seconds)

— lower energy number means less power to perform
a computation at the same frequency

— determines battery life in hours

Why worry about power ?
-- Battery Size/Weight

a1
o

||||||||||||||||||||||||||||||||

Rechargable Lithium

Ni-Metal Hydrid(/
Nickel-M

70 75 80 85 90 95
Year

AN
o

w
o

N
o

'L

Nominal Capacity (Watt-hours / Ib)

o
(o))
ol -

Expected battery lifetime increase
over the next 5 years: 30 to 40%

From Rabaey, 1995

Where Does Power Go in CMQOS?

 Dynamic Power Consumption
— charging and discharging capacitors
e Short Circuit Currents

— short circuit path between supply rails
during switching

* Leakage Current (currently ~2%)
— leaking diodes and transistors

Dynamic Power Consumption

vdd

Ol
Vin Vout

1 - ==ch I

f
Energy/transition = C, * V52 * Py_ 4 0-1

Power = Energy/transition * f = C_ * V2 *

Data dependent - a function of switching activity!

Motivation

Abstraction Analysis Analysis Analysis Analysis Power
Level Capacity Accuracy Speed Resources Savings
Most Worst Fastest Least Most

Behavior (System) /\

Architectural (RTL)

Logic (Gate)
Transistor (Switch) | V i V i

Least Best Slowest Most Least

Architectural Level Analysis
Considerations

e Computationally efficient

— requires predefined analytical and transition-sensitive energy
characterization models

— design only to RTL (with some idea as to the kind of
functional units planned)
e Simulation based so can be used to support
architectural, compiler, operating system, and
application level experimentation

« WattWatcher (Sequence), ICPower (Solution Ware),
PowerCompiler (Synopsys), academic tools (Wattch -
Princeton, Avalanche - Princeton/NEC, Polis/Ptolemy -
taly/NEC, SimplePower - PSU)

SimplePower Framework

Analytical
Energy
Models

Processor
Core

Switch Cap
Tables

Main Memory

Icache Dcache

Cache and Bus Simulator

¥ ¢

/ Memory /
Energy

RTL Energy Estimation

Interface

......
.....
. ‘e

0.8 Q.35 S 4

.
- = - —a—av .
. .
. .
. .
. .
. .
. .
. .
. .
. .

Bus
Energy

Core
Energy

Architecture

“Conip gignels and desred The witth of 4 s0oniod @gnal s 1 1 nol indiogied offawiss.

muj l Ll E. ragrasars o ng pord

15 Sad il
it = [l nazruserds |aieh
O NTHE
_ [+ o
| |t LR .L
I3 | = 8 omi i b .
- I P .
m P bl Ll -
i _onil
"
e |1 qﬁm—
[Alikiesl
L B H
HLLTFLR
-- = = L
|l:

Wew W M ATH

:
AL 1]

‘55"
U s 7 s i el
i '@“ L T'_ ALl —
— ;I\’ IJ'|_.-‘1'- % Ak - I'-E‘-":l MEMDATY .

T " Lot

1

W 1 edl
il || !

.u |) J LI L
n e = 1
Ej\y - ‘ o] ., =

Energy Characterization

e Transition-sensitive energy models
— single energy tables: e.g., Adders
— multiple energy tables: e.g., Register files
— system level interconnect

e Analytical energy models
— cache and main memory

Transition-Sensitive Energy Model

e Must first design and layout a functional unit and
then simulate It to capture switch capacitances
— Bit-independent — bus lines, pipeline registers
» one hit switching does not affect other bit slices’ operations

— Bit-dependent — ALU, MAC, decoders
» one hit switching does affect other bit slices’ operations

e Once constructed, the models can be reused In
simulations of other architectures built with the same
technology

Switch Capacitance Table

Previous : Current Switch
Input Vector Input Vector Capacitance

0...00 0...00 cap _ o

0...00 | 0...01 cap .,

1...11 § 1...11 capn, ,n,

Table Construction Issues

e Table can get huge to construct and store -
22" entries

e EXisting clustering solutions reduce number
of entries but increase error margin

e Hierarchical partitioning techniques
— Much smaller tables

— Reuse of same table for different instances of
the component

Reglster File Example

L E RN NENENNENNEENENEEENEENNEEEEEEENK, JKEKXKKK]
00

Write Pl
Decoder 0132 Write Data Drivers
Write 5:32 Cé)
Decoder =
Read . 32X 32
ea S
5:32 1)
Decoder o Cell Array
d S
R =
°a 5:32 7
Decoder
R Read Sense Amps
ead 532 | i p
Decoder

ccc

Bit Dependent Cells Bit Independent Cells

Validation of Register File Energy Model

15

10 -

HSPICE Power Consumption

0 5 10 15

Estimated Power Consumption

System Model

Memory System Energy Model

Energy dissipated by bitlines: precharge, read and
write cycles

Energy dissipated by wordlines: when a particular
row Is being read or written

Energy dissipated by address decoders

Energy dissipated by peripheral circuits -
comparators, cache control logic etc.

Off-chip main memory energy Is based on per-
access cost

Analytical Energy Model

e On-chip cache Example
Energy = Ebus + Ecell + Epad

Ecell =B*(wl_length)*(bl_length+4.8)*(Nhit + 2*Nmiss)

wl_length = m*(T + 8L + St)

bl _length = C/(m*L)

Nhit = number of hits; Nmiss = number of misses;
C=cache size; L = cache line size in bytes;

m = set associativity; T = tag size in bits;

St = # of status bits per line;

B =1.44e-14 (technology parameter)

Energy Optimization:
Tools and Techniques

Mahmut Taylan Kandemir
Department of CSE, Microsystems Design Lab
Penn State University (www.cse.psu.edu/~mdl)

PENNSTATE

Model Validation and
Performance

e HSPICE validation for each of the modules

e 0.1ns for each input transition compared to
~9 minutes for analysis using HSPICE -
register file

« Validated overall approach against current
measurements for a commercial Merged
DSP Processor - within 8.9% average error

Compliler Framework

Benchmark source

A 4

[GCC]
l assembly code
GAS]

[- 4)
iobjectcode

[GLD] SimplePower

SimplePower executable>\ J

Datapath Energy Distribution

100%

80%

60% I
40%

O Datapath Mux
O Arithmetic Units

M Pipeline Registers

7

@ Register File

20%

Energy Distribution

0% | |

Pipeline Registers

« Consume a lot of energy because they are clocked
every cycle
— Clock energy (B

» energy dissipated when the register is clocked with stable data

— Data energy (B

« energy dissipated when the register is clocked and the data has
changed so that the register changes state

— Typically the data rate ffis much lower than the clock
rate (f)
« Also impacts clock energy since a large portion of
clock energy is used to drive the sequential
elements

Pipeline Registers

Pipeline registers consume a large percentage of datapath
power

— 40% for 0.3%

Pipeline registers have large width
Pipeline registers are clocked every cycle
Not all clockings are necessary

— use the decoded control signals to selectively gate the
clock of pipeline register fields

— only simple extra logic necessary
— can be built into the clock buffer circuit

Gated Pipeline Registers
Instr: SW $rl, 0($r2)

EXE/MEM MEM/WB
mem/wb=cntl >
—» Address MemData’
—>
RtData D3 >
» Data >
AluOut R
- —
WriteregO >
RegwriteO
clk —)

EXE MEM WB

2.5

1.5

Energy (nJ

0.5

Influence of Selective Gating
(Datapath Energy)

btrix

@ Original
Bl Gated

vpenta

adi

L §

eflux

Other Datapath Optimizations

e Choice of functional unit
— Trade speed for energy
— Number of pipeline stages
 Influence of instruction scheduling
— Energy vs. performance trade-offs [WVLSI'00]
— Register re-labeling optimization [DAC’00]

Memory System Energy

Distribution

Memory Energy Distribution

100%

80%

60%

40%

20%

0%

EDmemory
B Imemory
OPads
[ODcache
M Icache
EBuses

Cd

tomcatv

btrix
mxm

vpenta

8K 4way Dcache, 8K 1way Icache

Reducing Memory Energy

Improve the locality of memory accesses
— Minimize the number of memory accesses

Architectural and circuit techniques

Optimizing interactions of compiler and cache
architecture

Technology changes

Compliler Framework

Benchmark source

v

Source to source
translation

V<«
[GCC]
assembly to assembl
assembly code y* L translation
[GAS] -

object code i
[GLD]

i >
SimplePower executable

High-level Compiler
Optimizations

Low-level Compiler
Optimizations

-

SimplePower

\

J

Improving Locality:

Loop Transformations

e Linear loop transformations

00
00
00

00

D permutation
0 skewing
0 reversal

0 scaling

* |teration space (loop) tiling

* Multi-loop transformations
— Loop fusion/fission

Example: Loop Permutation

anges data access from
column to row order; thus

for(1=0: I<n; I++) Improving locality (array
S elements in one cache line are
for(J=0; J<n; J++) now accessed sequentially)

[1]=VII]ll]l; « Improves both cache
performance and energy

« Might lead to complex loop
for(J=0; J<n; J++) bounds/subscript functions; thus

for(1=0: I<n; I++) Increasing datapath energy
ULIJ[I=VIIN];

Example: Loop Tiling

for(1=0; I<n; [++) * Breaks up arrays too big
for(J=0; J<n; J++) to fit into cache
U[1][J] = V[I][J] * |Improves both cache
performance and energy
@ (better data reuse)
for(11=0; ll<n; I1+=T) * Increases datapath
for(JJ=0; JJ<n; JJ+=T) energy. more loops,
for(I=11; I<N+T-1; [+4) more comparisons,

for(J=JJ; J<JJ+T-1; J++) more branch ops
UlI][J] = VII[J]

Example: Loop Fusion/Fission

for(1=0; I<n; |++) Reduces the number of
U[I]+=X*V[l]; memory accesses
for(1=0; I<n; 1++) « Normally used along

FUSiOT@-F:U[I]ﬁHlSiOH with scalar

replacement

 |nstruction cache
energy might increase

for(1=0; I<n; |++)
{ UllJ+=X*VII];

Ull]+=U[I]*U[l];
}

Example: Loop Unrolling

for(I=0; l<n; I++) « Unroll outer loop b times
for(J=0; J<n; J++)
for(K:O; K<n: K++) SO that W[K][J] can be
UlNI1+=VIIK*WIK][J]; accessed from the RegFile
o e Improves both cache
performance and energy
for(1=0; I<n; l+=b) (fewer accesses)

for(J=0; J<n; J++) :
for(K=0; K<n: K++ * Can improve datapath

{Ul][I]+=VI[I][K]* energy
Ol RF=VIFT e Can increase Icache energy

U[i+i3-.1][J]+:V[|+b-
L[KP*WIK][J];

}

Memory System Energy
Distribution

Influence of Compiler

100%

80%

60%

40%

20%

0%

Optimizations

T
@©

tomcatv
btrix

mxm

vpenta

8K 4way Dcache, 8K 1way Icache

E Dmemory
E Imemory
O Pads

[0 Dcache
M Icache

O Buses

Datapath Energy Consumption

3
2.5
2
@ Original
B Optimized

. .

o
&

Relative Energy Consumption
[N
o1

i

tomcatv btrix mxm vpenta adi

o

Energy consumed (mJ)

800
700
600
500
400
300
200
100

Memory System Energy
Consumption

!

]

B

tomcatv

btrix

mxXm

vpenta

adi

4K 2way Dcache, 8K 1way Icache

@ Original
B Optimized

Datapath Energy Consumption (mxm)

2.5

1.5
34.3mJ

Relative Datapath Ene |

0.5 A

orig loop unrolled tiled tlu

Memory System Energy (mxm)

mxm - 4K cache

1.2
1 1

- @ original
> 0.8 1 W loop
© Cunrolled
0 O tiled
W 0.6 1
> M loop+unrolled
= M loop+tiled
S 0.4 | -
o M tiled+unrolled
= _‘ Otiled+loop+unrolled

Sl .

0 iS EER B

1-way 2-way 4-way

1.6
1.4
1.2

0.8
0.6
0.4
0.2

Overall Energy (mxm)

100x100 integer arrays, T=20, 4KB direct mapped cache

untiled

= < = x x

@ energy (J)

=,

Datapath Energy (J) - mxm

100x100 integer arrays, T=20, 4KB direct mapped cache

0.06
0.059

0.058

0.057

0.056

0.055

0.054
0.053
0.052 |

I I I I I I I I I I I I
— — x r— é _X x

Duntled @1 Bj Bk Hij @ik Ejk Tijk

untiled

Sensitivity to the Tile Size
(mxm)

4 KB direct mapped cache, 100x100 integer arrays

=P
>~ O

y

=

N
|

© oo

N OO 0O B

IIII
]

Overall Energy (J)

O
N
|
[

o

untiled
I

J

K

J

ik

k

ijk

Do5m10020025m@50

