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Why Low Power?
 Power consumption/dissipation in Watts
— sets packaging limits
— determines power ground wiring designs
— Impacts signal noise margin and reliability analysis

 Energy consumption in Joules

— energy = power * delay (joules = watts *
seconds)

— lower energy number means less power to perform
a computation at the same frequency

— determines battery life in hours



Why worry about power ?
-- Battery Size/Weight
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over the next 5 years: 30 to 40%
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Where Does Power Go in CMQOS?

 Dynamic Power Consumption
— charging and discharging capacitors
e Short Circuit Currents

— short circuit path between supply rails
during switching

* Leakage Current (currently ~2%)
— leaking diodes and transistors



Dynamic Power Consumption
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Power = Energy/transition * f = C_ * V2 *

Data dependent - a function of switching activity!



Motivation

Abstraction Analysis Analysis Analysis Analysis Power
Level Capacity Accuracy Speed Resources Savings
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Architectural Level Analysis
Considerations

e Computationally efficient

— requires predefined analytical and transition-sensitive energy
characterization models

— design only to RTL (with some idea as to the kind of
functional units planned)
e Simulation based so can be used to support
architectural, compiler, operating system, and
application level experimentation

« WattWatcher (Sequence), ICPower (Solution Ware),
PowerCompiler (Synopsys), academic tools (Wattch -
Princeton, Avalanche - Princeton/NEC, Polis/Ptolemy -
taly/NEC, SimplePower - PSU)




SimplePower Framework
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Architecture
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Energy Characterization

e Transition-sensitive energy models
— single energy tables: e.g., Adders
— multiple energy tables: e.g., Register files
— system level interconnect

e Analytical energy models
— cache and main memory



Transition-Sensitive Energy Model

e Must first design and layout a functional unit and
then simulate It to capture switch capacitances
— Bit-independent — bus lines, pipeline registers
» one hit switching does not affect other bit slices’ operations

— Bit-dependent — ALU, MAC, decoders
» one hit switching does affect other bit slices’ operations

e Once constructed, the models can be reused In
simulations of other architectures built with the same
technology



Switch Capacitance Table

Previous :  Current Switch
Input Vector Input Vector Capacitance

0...00 0...00 cap _ o

0...00 | 0...01 cap .,

1...11 § 1...11 capn, ,n,




Table Construction Issues

e Table can get huge to construct and store -
22" entries

e EXisting clustering solutions reduce number
of entries but increase error margin

e Hierarchical partitioning techniques
— Much smaller tables

— Reuse of same table for different instances of
the component



Reglster File Example
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Validation of Register File Energy Model
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System Model




Memory System Energy Model

Energy dissipated by bitlines: precharge, read and
write cycles

Energy dissipated by wordlines: when a particular
row Is being read or written

Energy dissipated by address decoders

Energy dissipated by peripheral circuits -
comparators, cache control logic etc.

Off-chip main memory energy Is based on per-
access cost




Analytical Energy Model

e On-chip cache Example
Energy = Ebus + Ecell + Epad

Ecell =B*(wl_length)*(bl_length+4.8)*(Nhit + 2*Nmiss)

wl_length = m*(T + 8L + St)

bl _length = C/(m*L)

Nhit = number of hits; Nmiss = number of misses;
C=cache size; L = cache line size in bytes;

m = set associativity; T = tag size in bits;

St = # of status bits per line;

B =1.44e-14 (technology parameter)



Energy Optimization:
Tools and Techniques

Mahmut Taylan Kandemir
Department of CSE, Microsystems Design Lab
Penn State University (www.cse.psu.edu/~mdl)

PENNSTATE




Model Validation and
Performance

e HSPICE validation for each of the modules

e 0.1ns for each input transition compared to
~9 minutes for analysis using HSPICE -
register file

« Validated overall approach against current
measurements for a commercial Merged
DSP Processor - within 8.9% average error



Compliler Framework

Benchmark source

A 4

[ GCC ]
l assembly code
GAS ]

[ - 4 )
iobjectcode

[ GLD ] SimplePower

SimplePower executable>\ J




Datapath Energy Distribution
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Pipeline Registers

« Consume a lot of energy because they are clocked
every cycle
— Clock energy (B

» energy dissipated when the register is clocked with stable data

— Data energy (B

« energy dissipated when the register is clocked and the data has
changed so that the register changes state

— Typically the data rate ffis much lower than the clock
rate (f)
« Also impacts clock energy since a large portion of
clock energy is used to drive the sequential
elements



Pipeline Registers

Pipeline registers consume a large percentage of datapath
power

— 40% for 0.3%

Pipeline registers have large width
Pipeline registers are clocked every cycle
Not all clockings are necessary

— use the decoded control signals to selectively gate the
clock of pipeline register fields

— only simple extra logic necessary
— can be built into the clock buffer circuit



Gated Pipeline Registers
Instr:  SW $rl, 0($r2)

EXE/MEM MEM/WB
mem/wb=cntl >
—» Address MemData’
—>
RtData D3 >
» Data >
AluOut R
- —
WriteregO >
RegwriteO
clk — )

EXE MEM WB
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Other Datapath Optimizations

e Choice of functional unit
— Trade speed for energy
— Number of pipeline stages
 Influence of instruction scheduling
— Energy vs. performance trade-offs [WVLSI'00]
— Register re-labeling optimization [DAC’00]



Memory System Energy

Distribution
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Reducing Memory Energy

Improve the locality of memory accesses
— Minimize the number of memory accesses

Architectural and circuit techniques

Optimizing interactions of compiler and cache
architecture

Technology changes



Compliler Framework
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Improving Locality:

Loop Transformations

e Linear loop transformations

00
00
00

00

D permutation
0 skewing
0 reversal

0 scaling

* |teration space (loop) tiling

* Multi-loop transformations
— Loop fusion/fission



Example: Loop Permutation

anges data access from
column to row order; thus

for(1=0: I<n; I++) Improving locality (array
S elements in one cache line are
for(J=0; J<n; J++) now accessed sequentially)

[1]=VII]ll]l; « Improves both cache
performance and energy

« Might lead to complex loop
for(J=0; J<n; J++) bounds/subscript functions; thus

for(1=0: I<n; I++) Increasing datapath energy
ULIJ[I=VIIN];



Example: Loop Tiling

for(1=0; I<n; [++) * Breaks up arrays too big
for(J=0; J<n; J++) to fit into cache
U[1][J] = V[I][J] * |Improves both cache
performance and energy
@ (better data reuse)
for(11=0; ll<n; I1+=T) * Increases datapath
for(JJ=0; JJ<n; JJ+=T) energy. more loops,
for(I=11; I<N+T-1; [+4) more comparisons,

for(J=JJ; J<JJ+T-1; J++) more branch ops
UlI][J] = VII[J]



Example: Loop Fusion/Fission

for(1=0; I<n; |++)  Reduces the number of
U[I]+=X*V[l]; memory accesses
for(1=0; I<n; 1++) « Normally used along

FUSiOT@-F:U[I]ﬁHlSiOH with scalar

replacement

 |nstruction cache
energy might increase

for(1=0; I<n; |++)
{ UllJ+=X*VII];

Ull]+=U[I]*U[l];
}



Example: Loop Unrolling

for(I=0; l<n; I++) « Unroll outer loop b times
for(J=0; J<n; J++)
for(K:O; K<n: K++) SO that W[K][J] can be
UlNI1+=VIIK*WIK][J]; accessed from the RegFile
o e Improves both cache
performance and energy
for(1=0; I<n; l+=b) (fewer accesses)

for(J=0; J<n; J++) :
for(K=0; K<n: K++ * Can improve datapath

{Ul][I]+=VI[I][K]* energy
Ol RF=VIFT e Can increase Icache energy

U[i+i3-.1][J]+:V[|+b-
L[KP*WIK][J];

}



Memory System Energy
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Datapath Energy Consumption
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Energy consumed (mJ)

800
700
600
500
400
300
200
100

Memory System Energy
Consumption

!

]

B

tomcatv

btrix

mxXm

vpenta

adi

4K 2way Dcache, 8K 1way Icache

@ Original
B Optimized




Datapath Energy Consumption (mxm)
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Memory System Energy (mxm)
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Datapath Energy (J) - mxm

100x100 integer arrays, T=20, 4KB direct mapped cache
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Sensitivity to the Tile Size
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