Inter-program Compilation for Disk Energy
Reduction*

Jerry Hom and Ulrich Kremer

Rutgers University, Department of Computer Science,
Piscataway, NJ 08854, USA,
{jhom, uli}@cs.rutgers.edu

Abstract. Compiler support for power and energy management has
been shown to be effective in reducing overall power dissipation and en-
ergy consumption of individual programs, for instance through compiler-
directed resource hibernation and dynamic frequency and voltage scaling
(DVS). Typically, optimizing compilers perform intra-program analyses
and optimizations, i.e., optimize the input program without the knowl-
edge of other programs that may be running at the same time on the
particular target machine. In this paper, we investigate the opportuni-
ties of compiling sets of programs together as a group with the goal of
reducing overall disk energy. A preliminary study and simulation results
for this inter-program compilation approach shows that significant disk
energy can be saved (between 5% and 16%) over the individually, disk
energy optimized programs for three benchmark applications.

1 Introduction

Handheld computers have come a long way from just being a sophisticated ad-
dress book and calendar tool. Handheld computers or pocket PCs feature rather
powerful processors (e.g. 400MHz XScale), 64MB or more of memory, wireless
Ethernet connections, and devices such as cameras, speakers, and microphones.
They are able to run versions of standard operating systems such as Linux and
Windows. However, as compared to their desktop PC counterparts, pocket PCs
have significantly less resources, in particular power resources, and less com-
putational capabilities. While pocket PCs will evolve further in terms of their
resources and capabilities, they will always be more resource constrained than
the comparable desktop PCs, which will evolve as well. As a result, users of
pocket PCs have to be more selective in terms of the programs that they wish to
store and execute on their handheld computer. Such a program set may include
a web browser, an mpeg player, communication software (e.g. ftp), a voice recog-
nition system, a text editor, an email tool, etc. Typically, a user may only run
a few of these programs at any given point in time. Figure 1 shows an example
of possible subsets of programs executing simultaneously on a handheld PC or
PDA. Only program combinations that occur frequently or are considered im-
portant are represented as explicit states. For example, running a web browser,

* This work has been partially supported by NSF CAREER award #9985050.

an audio player, and an email program at the same time may occur frequently
enough to promise a benefit from inter-program analysis and optimizations. State
transitions are triggered by program termination and program activation events.
The state marked ”777” is a catch-all state that allows internal transitions and
represents all combinations of simultaneous program executions that are not con-
sidered interesting enough to be analyzed and optimized as a group. The graph
shows the underlying assumption of our presented work, namely that a typical
usage pattern of a handheld PC or PDA can be characterized by a limited num-
ber of program subsets where the programs in a subset are executed together.
This makes optimizing particular states or program combinations feasible. The
graph can be determined through program traces or other means. Techniques
and strategies to determine such a graph are beyond the scope of this paper.

web browser
email
game

audio player

video player

SRy JEp

phone

Fig. 1. Example finite state machine. Nodes represent subsets of applications executing
simultaneously. Transitions are triggered by program activation and termination events.
The catch-all state marked ”?77” allows internal transitions and represents all non-
interesting program combinations

A compiler is able to reshape a program’s execution behavior to efficiently
utilize the available resources on a target system. Traditionally, efficiency has
been measured in terms of performance, but power dissipation and energy con-
sumption have become optimization goals in their own right, possibly trading-off
power and energy savings for performance. One effective technique to save power
and energy is resource hibernation which exploits the ability of devices to switch
between different activity states, ranging from a high activity (active) to a deep

sleep state. As a rule of thumb, the lower the activity state, the more power and
energy may be saved, but the longer it will take to bring back the device into
the fully operational, active state. Each transition between an activity state has
a penalty, both in terms of performance and power/energy.

An energy-aware compiler optimization can reshape a program such that the
idle times between successive resource accesses are maximized, giving opportu-
nities to hibernate a device more often, and/or in deeper hibernation states.
This compilation strategy has been shown to work well in a single process en-
vironment[1,2], but may lead to poor overall results in a multiprogramming
environment. In a multiprogramming setting, one program may finish accessing
a resource and direct the resource to hibernate during some time of idleness.
During this time, a second program needs to access the resource. In the worst
case, each program alternately accesses a resource such that the resource never
experiences significant amounts of idleness. In effect, one program’s activity pat-
tern interferes with another program’s idle periods and vice versa. To alleviate
this problem, some inter-program or inter-process coordination is necessary.

Operating systems techniques such as batch scheduling coordinate accesses
to resources across active processes. Requests for a resource are grouped and
served together instead of individually, potentially delaying individual requests
for the sake of improved overall resource usage. In contrast to operating systems,
compilers have often the advantage of knowing about future program behavior
and resource requirements. Instead of reacting to resource requests at runtime,
a compiler can insert code into a set of programs that will proactively initiate
resource usage across the program set at execution time. This is typically beyond
the ability of an operating system since it requires program modifications and
knowledge about future resource usage.

In this paper, we investigate the potential benefits of an inter-program opti-
mization strategy for disk power and energy management. This paper focuses on
a compiler/runtime library based approach, although an OS only, or a combined
OS and compiler approach is also possible. An initial study of a compiler only
vs. OS only strategy for inter-program optimizations is currently underway.

By considering multiple programs, the compiler applies a synchronization
optimization which we call inverse-barrier. Previous work has shown that appli-
cations which read data from disk in a streamed fashion (i.e., periodic access)
can utilize large disk buffers to save energy[1]. These disk buffers are local to each
application and serve to increase the idle period between disk accesses. Hence
each application has a unique disk access interval associated with the size of
its buffer. Having longer intervals between disk accesses creates opportunities to
hibernate the disk. This intra-program optimization works well for applications
running in isolation, but when multiple such applications execute simultane-
ously, some of the intra-program optimization’s effects are negated. That is, the
disk idle period of one application is interrupted by a disk access from another
application. This will occur whenever the intervals between accesses by multiple
applications are different.

Simulation experiments using physical traces of three intra-program opti-
mized applications show significant energy savings when applying the inverse-
barrier optimization. The inverse-barrier also proves more effective at saving
energy and maintaining performance than using barrier synchronization.

2 Related Work

This research is related to a few OS level techniques. In order for inter-program
compilation to be useful, it should apply optimizations which span across ap-
plications. The initial idea began from the notion of a programming mechanism
called a barrier to delay disk accesses in order to cluster them as well as in-
crease the idle time between accesses. To be useful, the OS must support such
a programming paradigm with a scheduling policy. Indeed, co-scheduling is one
example and a well-known technique for scheduling processes in a distributed
group at the same time[3]. One aspect is to schedule associated processes at
the same time thereby letting processes make progress within their scheduled
timeslot. Since our work relies on idleness to save energy, we desire processes
to synchronize by scheduling their resource accesses together and maximizing
idleness.

Our mechanism for synchronizing accesses, inverse-barrier, is similar to im-
plicit coscheduling for distributed systems[4]. Dusseau et al. introduce a method
for coordinating process scheduling by deducing the state of remote processes
via normal inter-process communication. The state of a remote process helps the
local node determine which process to schedule next. Inverse-barrier applies this
idea to coordinate resource accesses by multiple processes on a single system.

More recently, Weissel et al. developed Coop-I/0 to address energy reduction
by the disk[5]. Coop-I/O enables disk operations to be deferrable and abortable.
By deferring operations, the OS may batch schedule them at a later time until
necessary. The research also shows some operations may be unnecessary and
hence the abortable designation. However, the proposed operations require ap-
plications to be updated by using the new I/O function calls. In contrast, our
technique utilizes compiler analysis to determine which operations should be re-
placed. The modification cost is consolidated to the compiler optimization and
a recompile of the application.

In terms of scheduling paradigms, this work resembles basic ideas from the
slotted ALOHA system[6,7]. The essential idea is to schedule access between
multiple users to a common resource (e.g. radio frequency band) while elimi-
nating collisions or when multiple host transmit on the same frequency at the
same time. For our purposes, a collision takes on almost the opposite notion of
a disk request without any other requests close in time. Rather than scheduling
for average utilization of the disk, optimizing for energy means scheduling for
bursts of activity followed by long periods of idleness.

A form of inter-program compilation has been applied to a specific problem
of enhancing I/O-intensive workloads[8]. Kadayif et al. use program analysis
to determine access patterns across applications. Knowledge of access patterns

allows the compiler to optimize the codes by transforming naive disk I/O into
collective or parallel I/O as appropriate. The benefit manifests as enhanced
I/0O performance for large, parallel applications. We aim to construct a general
framework suitable for developing resource optimizations across applications to
reduce energy and power consumption.

3 Intra- vs. Inter-program Optimizations

Handheld computing devices may be designed as general purpose, yet each user
may desire to run only a certain mix of applications. If this unique set of ap-
plications remains generally unchanging, compiling the set of applications to-
gether with inter-program scheduling can enhance performance and cooperation
by synchronizing resource usage. A further goal is to show how new energy op-
timizations may be applied for resource management.

Consider a scheduling paradigm across programs on a single processor. The
proposed optimizations augment the paradigm with user-transparent barrier and
inverse-barrier mechanisms to resemble thread scheduling. Barrier semantics en-
force the notion that processes or threads (within a defined group) must pause
execution at a defined barrier point until all members of the group have reached
the barrier. The notion of an inverse-barrier applies specifically to resources.
That is, when a process or thread reaches an inverse-barrier (e.g. by accessing a
resource), all members of the group are notified to also access the resource. Syn-
chronizing resource accesses eliminates any pattern of random access and allows
longer idle periods where the resource may be placed in a low power hibernation
mode.

An example of an intra-program optimization is a transformation to create
large disk buffers in memory thereby increasing the disk’s idle time for hiberna-
tion. While application transformations have been shown to benefit applications
executed in isolation[1], running such locally optimized programs concurrently
squander many of the benefits because the access pattern from each process dis-
rupts the idle time of the resource. This intra-program optimization considers
each program by itself while an inter-program optimization now considers all
programs in a group and augments them to cooperate in synchronizing accesses
to a resource.

Program cooperation can be accomplished in at least two ways: (1) delay
resource access until all group members wish to use it or (2) inform all group
members to use the resource immediately. The first method is similar to a barrier
mechanism in parallel programming and can be used by programs which lack
deadlines. The second method has the notion of an inverse-barrier and can be
used by programs with deadline constraints such as real-time software.

Programs using a barrier cooperate in a passive fashion. When a program
wants to access a resource, it will pause and wait until all members in its group
also wish to access the resource. When all members reach the barrier, then
they all may access the resource consecutively. To avoid starvation, each waiting

process has a timer. If the timer expires, the process will proceed to access the
resource.

Programs using an inverse-barrier cooperate actively to synchronize resource
accesses. When a program needs to access a resource, it will notify all members
in its group to also access the resource immediately. This has the effect of refill-
ing a program’s disk buffer earlier than necessary which ensures that deadlines
are satisfied. This synchronization mechanism can be communicated via signals
among all processes. Only those processes with an appropriately included signal
handler will follow suit in accessing the resource. Uninterested processes may
simply ignore the signal.

The signal mechanism is also used in our current compilation framework to
inform active programs about other active, simultaneously executing programs.
The compiler generates signal handling code within each program that imple-
ments state transitions between interesting groups of applications. Each time a
program is about to terminate, it sends a signal to inform other active processes
about its termination event. The appropriate signal handlers in the remaining
active programs will then make the corresponding state transition. Each time
a program begins execution, it sends a signal to inform other active programs
about its presence. In return, active programs will send a signal informing the
“"new” process about the state that they are in, i.e., inform the program about its
current execution group. This way, a program is aware of its group execution con-
text, and can perform appropriate optimizations in response to inverse-barrier
signals.

4 Experiments and Results

This benefit analysis builds upon previous work and examines three streaming
applications mpeg_play, mpg123, and sftp. The MPEG video and audio decoders
are examples of real-time applications where they must have low latency access
to the disk. They cannot afford to wait for other applications before accessing
the disk. On the other hand, ftp is a silent process, mostly invisible to the user,
and can tolerate pauses with the understanding that throughput performance is
traded off with energy savings.

From these three applications, there are three experiments with interesting
results: 1) all three applications, 2) video with audio, 3) audio with ftp. Com-
bining video with ftp is expected to produce similar results as (3). Although the
original experiments operated on the same file, each run produced slightly differ-
ent traces because of the dynamic nature of the disk profiling at program startup.
However, the variance from each set of runs was minor and demonstrates the
stability of the profiling strategy. All experiments used disk traces from Heath
et al.[1] for hand simulating the behavior of these programs executing at the
same time with and without inter-program optimizations applied.

The disk traces were modified to better simulate the more interesting, steady
state conditions while the applications are running simultaneously. The duration
of the traces from the three programs vary considerably. For example, the trace

for mpg123 lasted 425 seconds while mpeg_play and sftp were 106 and 232 seconds,
respectively. The shorter traces were extended to be roughly time equivalent to
mpg123. Since each program was optimized to produce periodic disk accesses,
extending the execution time is merely a matter of using larger data files. Hence,
the traces were extended by “copying and pasting” multiples of disk access pe-
riods.

A second modification deals with the buffer sizes. The buffer size is calculated
at runtime after some profiling steps. A prudent calculation would divide the
buffer size by n where n is the number of applications compiled with this disk
buffer optimization. Otherwise, if all applications used its maximums buffer size,
thrashing may occur when such applications are actually executed together.
Thus, the disk access intervals for each application was divided by either 2 or 3
for the experiments.

These particular applications lightly stress the CPU, and the experiments
assume that the CPU meets all deadlines (e.g. decoding frames) for all applica-
tions running simultaneously. The CPU can decode all frames of video and audio
while copying blocks of data for file transfer without degrading performance. De-
graded performance might result in dropped frames. However, the physical disk
is constrained to serving one process at a time. Thus, if more than one process
issues a disk request at the same time, they will be queued and interleaved. In
effect, disk access time by processes cannot be overlapped and hidden.

The results of these experiments are closely tied to system parameters. A
different disk will change the mix of thresholds in determining when to switch
power states, but the essential premise is the potential to save energy by utilizing
low power states. Table 1 summarizes the parameters measured on a real disk[1].
When transitioning from idle to standby, the disk spends 5.0 seconds in the
transition state. When waking up from standby to idle or read, the disk takes
1.6 seconds. The idleness threshold at which transitioning to standby becomes
profitable is 10.0 seconds. That is, when the system knows the next disk access
is greater than 10.0 seconds, the system should tell the disk to transition to
standby.

Table 1. Disk states and power levels

Disk States Power (W)
wakeup 3.0
read 1.8
idle 0.9
transition 0.7
standby 0.2

The first experiment combines all three applications. The respective disk
access periods are Prpeg_play = 11.7, Prpgi23 = 13.7, and Ps i = 23.5; all times
in seconds. Figure 2 shows the disk access traces of each application. The top

row of Figure 3 shows an overlay of all disk accesses. The bottom row shows
the synchronization when using inverse-barrier scheduling. Net energy savings is

5.4%.

mpeg_play & mpg123 & sftp

sfjpfl O O 0 0 O 0 0 0 0 O 0 0 0 0 0 0 M@ o
MPgl23 1+ + ++ +++++++++++++++++++ 4+ +++H

mpeg_p|ay OOOOOOOOODOODOOOOOOVOVOOOOODOOOOOOOOOOOE

0 50 100 150 200 250 300 350 400 450
Time (seconds)

Fig. 2. Disk access traces for mpeg_play, mpg123, and sftp

mpeg_play & mpg123 & sftp

combined < GO+EHO 8140 EXHTFACH €14 AOGHEO IO E1d THMCIO €10 FEHTIOCRD

inv-barrier 88l B Bo B BO B BOBOBDOBOBDODOBDOBOBOBO DO BRI —

0 50 100 150 200 250 300 350 400 450
Time (seconds)

Fig. 3. Running all three applications simultaneously. Comparison of disk access pat-
terns with inverse-barrier optimization for synchronization. Inverse-barrier scheduling
saves 5.4% energy

The second experiment combines mpeg_play with mpg123. The disk access pe-
riods are Prpeg_play = 17.6 and Pp,pg123 = 20.6. Figure 4 illustrates the idleness
interference patterns of just two applications vs. inverse-barrier synchronization.
A similar pattern can be seen with the third experiment in Figure 5. Here, the
disk access periods are Prpg123 = 20.6 and P,y = 35.2. The energy saved in
these two experiments are 15.9% and 9.8%, respectively.

There is a key difference between the inverse-barrier and barrier mechanisms.
An OS may employ a barrier mechanism to delay resource accesses for appli-

mpeg_play & mpg123

combined $#4 © & OF O+O+O H © S H HOHTO 1O D & OF HHO+O 4O D &

inv-barrier $e-4 ¢ ¢ ¢ ¢ ¢ ¢ & & & & S & S S > S S > > & O ¢

0 50 100 150 200 250 300 350 400 450
Time (seconds)

Fig. 4. Comparison of two applications’ (mpeg_play, mpg123) disk access patterns.
Inverse-barrier scheduling saves 15.9% energy

mpgl23 & sftp

combined B+ € + @ +[+ +O+ B + F +0+ 48+ H + OF +03F+

inv-barrierfB+ @ B B @ B B @ B B @ B @ @B @ @ @ @ 8 3+ -

0 50 100 150 200 250 300 350 400 450
Time (seconds)

Fig. 5. Comparison of two applications’ (mpg123, sftp) disk access patterns. Inverse-
barrier scheduling saves 9.8% energy

cations which can tolerate such latencies. For example, sftp has few constraints
about deadlines since it operates by best effort semantics over an unreliable net-
work. If an OS uses this assumption to schedule sftp with barriers at disk accesses
(i.e., delaying until next access by another application), there will certainly be a
performance delay. This mode of operation can still save energy by batching the
disk access but also depending on how much delay is involved. The difference
with inverse-barrier is the pre-emptive action to ensure that buffers are always
sufficiently full. At every synchronized disk access, each process can check the
data capacity of its buffer and decide whether to read more data. Another opti-
mization during the buffer check might compute the differential between resource
access periods. For instance, if a process has a resource access period more than
twice as long as the current period, it can afford to skip every other resource
access and maintain a non-empty buffer.

The last experiment explores the behaviors of barrier scheduling; Figure 6
illustrates the difference. In terms of execution time, sftp finishes over two min-
utes later using the barrier vs. the inverse-barrier. Compared to the baseline of
running all applications together under normal scheduling, the barrier method
expends 2.4% more energy. Barrier scheduling is only slightly more expensive in
energy vet can impact performance. In this case, sftp’s performance is delayed
by 31.4%. Under inverse-barrier scheduling, there is no performance loss while
showing modest energy savings.

mpeg_play & mpg123 & sftp

combined g

inv-barrier gess B 86 B BIO B B B B BB B o B o B Bl Bo Bl —

barrier e8¢ SBIe OB OB SBOSBOOBOOBOSHOOBO® O O O O M -

0 100 200 300 400 500 600
Time (seconds)

Fig. 6. Comparison of intra-program buffered I/O optimizations, with inter-program
inverse-barrier scheduling, and with barrier scheduling on sftp. Barrier scheduling
causes sftp to finish 132 seconds later, a 31.4% performance delay, while using 2.4%
more disk energy overall

5 Analysis of Potential Energy Savings

Investigating the upper bounds on energy savings gives an indication whether
this avenue of research is worthwhile. Exploring the involved parameters can pro-
vide insights into how this technique is beneficial. Towards that end, consider a

situation of two programs, A and B, optimized to exhibit periodic resource ac-
cess behavior. Inter-program compilation with inverse-barrier scheduling results
in our optimized execution, but how much can it possibly save over the previous
intra-program optimization, which has already shown large disk energy savings?
We can approximate this with an analytical examination of the cases where
the intra-program execution deviates from the optimal case where all programs
access a resource at the same time (i.e., in batch mode). Our inter-program op-
timization results in such an optimal case. Thus, the difference represents the
potential energy savings.

Refer to Table 2 for a list of involved parameters. The following description
of these parameters are illustrated in Figure 7. Hence, P4 and Pp represent the
period between resource accesses by programs A and B; assume PTA < Pp < Py
and let AP = P4 — Pg. Each program accesses the resource for an amount of
time, R4 and Rp. The rise and fall in the graphs of programs A and B merely
indicate a resource access. Only one resource is considered, so its corresponding
hibernation threshold time will be designated simply H. If a resource will be idle
for at least H, then hibernation will be beneficial and assumed to be initiated.
Consequently, we assume min(P;) > H; otherwise any chance for hibernation is
gone.

Table 2. Analytical parameters

Variable Description

P; resource access Period of program 1
R; length of access (Read) time by program i
H; Hibernation threshold of resource 4
E; average Energy use in case ¢
—>

>
\:I
=
Y
I

L LT

Fig. 7. Resource access patterns of programs A and B

There are three ways to categorize the resource access patterns, demonstrated
by the three accesses of A (A!, A% A3) along with the four accesses of B (B!,
B2, B3, B*). Al is optimal because it is clustered with B!. Since the resource will
not be used again within H of A', hibernation may be initiated immediately.
A? is sub-optimal because it occurs within H of B2. The accesses are mildly
offset, and the resource consumes extra energy by remaining in the idle power
state. A is out-of-phase because it occurs after H of B3, and B* occurs after
H of A3. The effect is that B®’s and A>’s hibernation periods are immediately
interrupted. There is little opportunity to save energy during the respective
hibernation periods. The next question is, what percentage of time do each of
the three cases occur?

The optimal case, opt, can be expected to occur IAD—JE% of the time. If A and B
have a synchronized access, then each respective access afterward will be offset by
AP. They will coincide again after % accesses. The sub-optimal case is expected
to occur sub-opt = (max(%, 1) — opt)% of the time. The first term refers to
all accesses within H of an access, including the optimal case. Subtracting the
optimal case gives just the sub-optimal case. Lastly, the out-of-phase case occurs
out = (1 — (opt + sub-opt))% of the time, or simply the remaining percentage of

time after subtracting the optimal and sub-optimal cases.

The next step toward estimating potential energy savings is calculating the
average energy consumed during the three cases and computing the differences.
The energy usage for each case can be obtained from a power consumption profile
which is a simple graph showing the amount of time spent in the various power
states. In the non-optimal cases, there may be many instances of the graphs
corresponding to different timing offsets between accesses. These are averaged
to produce one profile graph for each of the sub-optimal and out-of-phase cases.
Figure 8 shows what a sample power profile may look like. The average energy
usage of each case, F;, is now a matter of summing the power levels over time.

Power
Levels

Wakeup

Read

Idle —I—I_I—

Transition
Standby [

Time

Fig. 8. Sample power profile graph

Finally, with the average energy use of all three cases (Eopt, Esub—opts Eout),
an upper bound on potential energy savings can be computed. Energy savings
over the sub-optimal case is AEup—opt = Esub—opt — Eopt, and the out-of-phase

case is AE,yt = Eout — Eopt. These cases occur sub-opt and out percent of the

: - ABqup—opt .
time. Thus, the upper bound is (sub-opt * #} + (out * %) Applying

this analysis to the experiment of running mpeg_play and mpg123 together un-
der inter-program optimization, the upper bound is estimated at 26.2% while
actual savings is 15.9%. The upper bound can never be reached because of the
small overhead involved during program startup for profiling to initialize the
disk buffers. For this experiement, the startup overhead accounted for 5.8% of
the total execution time.

6 Summary and Future Work

Inter-program optimization is a promising new compilation strategy for sets of
programs that are expected to be executed together. Such sets occur, for in-
stance, in resource restricted environments such as handheld, mobile comput-
ers. Resource usage can be coordinated across all programs in the set, allow-
ing additional opportunities for resource hibernation over single program, i.e.,
intra-program, optimizations alone. This paper discussed the potential benefits
of inter-program analysis using the disk as the resource. An analysis of energy
savings and simulation results for a set of three benchmark programs show that
further significant energy savings over intra-program optimizations (between 5%
and 16% for the simulations) can be achieved.

The compiler and OS have unique perspectives on key parts of the entire re-
source management scheme. We hope to experimentally explore and discover the
strengths from each, then apply them in developing a resource-aware compiler
and OS system. A current study is trying to assess the advantages and disadvan-
tages of a compiler-only; compiler and runtime system; OS-only; and compiler,
runtime system and OS approach to inter-program resource management. We
will also be using physical measurements to guide and validate our development
efforts.

References

1. Heath, T., Pinheiro, E., Hom, J., Kremer, U., Bianchini, R.: Application transfor-
mations for energy and performance-aware device management. In: Proceedings of
the Conference on Parallel Architectures and Compilation Techniques. (2002) Best
Student Paper Award.

2. Delaluz, V., Kandemir, M., Vijaykrishnan, N., Irwin, M., Sivasubramaniam, A.,
Kolcu, I.: Compiler-directed array interleaving for reducing energy in multi-bank
memories. In: Proceedings of the Conference on VLSI Design. (2002) 288-293

3. Ousterhout, J.: Scheduling techniques for concurrent systems. In: Proceedings of
the Conference on Distributed Computing Systems. (1982)

. Arpaci-Dusseau, A., Culler, D., Mainwaring, A.: Scheduling with implicit informa-
tion in distributed systems. In: Proceedings of the Conference on Measurement and
Modeling of Computer Systems. (1998) 233-243

. Weissel, A., Beutel, B., Bellosa, F.: Cooperative I/O — a novel I/O semantics for
energy-aware applications. In: Proceedings of the Conference on Operating Systems
Design and Implementation. (2002)

. Abramson, N.: The ALOHA system — another alternative for computer communi-
cations. In: Proceedings of the Fall Joint Computer Conference. (1970) 281-285

. Roberts, L.: ALOHA packet system with and without slots and capture. Computer
Communications Review 5 (1975) 28-42

. Kadayif, I., Kandemir, M., Sezer, U.: Collective compilation for I/O-intensive pro-
grams. In: Proceedings of the IASTED Conference on Parallel and Distributed
Computing and Systems. (2001)

