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ABSTRACT
Previous work has shown that intra-program optimizations, i.e.,
optimizations performed on individual programs in isolation, can
be very effective in reducing disk energy in streaming applica-
tions. This paper investigates the potential additional benefits
of inter-program optimizations where sets of programs are op-
timized together. Experimental results on different subsets of
three streaming applications show that 7–49% additional energy
savings (27.3% on average) can be obtained with negligible per-
formance penalties using two novel inter-program optimizations,
namely execution context sensitive buffer size selection and in-
verse barrier synchronization. These figures were obtained via
physical measurements on two laptop disks.

Categories and Subject Descriptors: D.3.3 [Frame-
works]: Programming Languages—language constructs and
features

General Terms: Design, Measurement

Keywords: execution context, inverse barrier

1. INTRODUCTION
Power dissipation and energy consumption have become cru-

cial design constraints for mobile, laptop, and desktop computers
since they impact several aspects of a system, including packag-
ing costs due to cooling requirements, operating costs, battery life
time, and the overall weight of the device. Hardware, operating
systems, and compiler techniques have been successful in reduc-
ing power and energy, but more work needs to be done in order
to keep up with users’ increasing demand for faster CPUs, faster
and larger disks, and higher networking speeds.

Resource hibernation exploits the ability of devices to switch
between different activity states, ranging from high activity (ac-
tive and operational) to low activity (deep sleep and not opera-
tional) states[3]. Each transition between activity states has an
overhead in terms of both performance and power/energy. Re-
source hibernation strategies identify intervals in a program’s ex-
ecution where a resource is not in use and therefore can be put
into a low power state. For a given hibernation interval, the most
effective hibernation mode should be selected, and the transition
into this mode should be initiated as early as possible, i.e., at
the beginning of the interval. The transition out of the selected
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hibernation state back to the active state should be done just in
time before an upcoming use, i.e., just before the end of the hiber-
nation interval. Most hibernation strategies have a “break even”
point which is typically specified by the minimal length of the
hibernation interval for which transitioning in to and out of the
state is profitable. Primary targets for hibernation optimization
include the disk, display, and wireless network cards.

An energy-aware compiler can reshape a program such that the
idle times between successive resource accesses are maximized,
giving opportunities to hibernate a device more often, and/or in
deeper hibernation states. This compilation strategy has been
shown to work well in a single process environment[5, 4, 6], but
may lead to poor overall results in a multiprogramming environ-
ment. In a multiprogramming setting, one program may finish
accessing a resource and then direct the resource to hibernate
over its idle period. During this time, another program may need
to access the resource. In the worst case, each program alter-
nately accesses a resource such that the resource never experi-
ences significant amounts of idleness. In effect, one program’s
activity pattern interferes with another program’s idle periods
and vice versa. To alleviate this problem, some inter-program or
inter-process coordination is necessary.

Operating systems techniques such as batch scheduling coordi-
nate accesses to resources across active processes. Requests for a
resource are grouped and served together instead of individually,
potentially delaying individual requests for the sake of improved
overall resource usage. In contrast to operating systems, compil-
ers often have the advantage of knowing about future program
behavior and resource requirements. Instead of reacting to re-
source requests at runtime, a compiler can insert code into a set
of programs that will proactively initiate resource usage across
the program set at execution time. This is typically beyond the
ability of an operating system since it requires program modifi-
cations and knowledge about future resource usage.

In this paper, we discuss the opportunities for power and en-
ergy optimizations based on the idea of optimizing applications
not in isolation, but as groups of programs that share common
resources. The disk is a primary example of such a shared re-
source. Although the discussed inter-program optimization strat-
egy is compiler/runtime library based, an operating system only
or a combined OS and compiler approach is also possible. A di-
rect comparison with these other approaches is beyond the scope
of this paper and is currently under investigation. However, one
advantage of our framework is its transparency to the OS, which
was unchanged in our experiments. The original contributions of
this paper are

1. The implementation of a compiler-based, inter-program op-
timization strategy with inverse barriers that use signals
and semaphores for inter-process communication to syn-
chronize disk accesses. The implementation uses prefetch-
ing when profitable, assuming that disk and CPU activities
may be overlapped,

2. Application-level buffer size allocation policies that con-
sider the execution context of an application, i.e., the knowl-
edge of other applications running at the same time in order
to dynamically choose the best buffer sizes, and



3. The evaluation of the entire compiler / runtime system op-
timization framework through physical measurements for
two commercial disk drives (4200 rpm Fujitsu MHK2060AT
and 7200 rpm Hitachi E7K60) and subsets of three stream-
ing applications (MPEG audio, MPEG video, and ftp) that
were executing at the same time. The test system was a
default installation of Red Hat 9 Linux, and OS-based disk
prefetching remained enabled.

Relative to the intra-program optimized versions of the appli-
cations, our new inter-program optimizations save an additional
21–49% (34% on average) of disk energy on the Hitachi disk, and
7–32% (21% on average) on the Fujitsu disk. Relative to the
unoptimized applications, the energy savings are 49–82% (68%
on average) across both disks. These results were obtained with-
out any user observable performance or quality of result penal-
ties. Therefore, inter-program optimization is a successful and
promising new optimization strategy that may be implemented
effectively through a compiler / runtime library approach.

2. RELATED WORK
Previous work has shown that applications which read data

from disk in a streamed fashion (i.e., periodic access) can utilize
large disk buffers to save energy[5]. These disk buffers are local
to each application and serve to increase the idle period between
disk accesses. Hence each application has a unique disk access
interval associated with the size of its buffer. Having longer in-
tervals between disk accesses creates opportunities to hibernate
the disk. This intra-program optimization works well for appli-
cations running in isolation, but when multiple such applications
execute simultaneously, some of the intra-program optimization’s
effects are negated. That is, the disk idle period of one appli-
cation is interrupted by a disk access from another application.
This will occur whenever the intervals between accesses by mul-
tiple applications are different.

A scheduling technique, inverse barrier, was proposed to syn-
chronize disk accesses across active applications[7]. When a pro-
gram accesses the disk, all other programs within its group are
notified that the disk has been used, and they may decide to also
use the disk. This mechanism is similar to implicit co-scheduling
for distributed systems[2]. Arpaci-Dusseau et al. introduce a
method for coordinating process scheduling by deducing the state
of remote processes via normal inter-process communication. The
state of a remote process helps the local node determine which
process to schedule next. The inverse barrier coordinates resource
accesses from multiple processes on a single system.

Weissel et al. developed Coop-I/O to address energy reduc-
tion by the disk[12]. Coop-I/O enables disk operations to be
deferrable and abortable. By deferring operations, the OS may
batch schedule them at a later time. The research also shows that
some operations may be unnecessary and hence the abortable des-
ignation. However, the proposed operations require applications
to be updated by using the new I/O function calls. In contrast,
our technique utilizes compiler analysis to determine which oper-
ations should be replaced. The modification cost is consolidated
to the compiler optimization and a recompile of the application.

In terms of scheduling paradigms, our work resembles ideas
from the slotted ALOHA system[1, 11]. The essential idea is
to schedule accesses among multiple users to a common resource
(e.g., radio frequency band) while eliminating collisions (i.e., when
multiple hosts transmit on the same frequency at the same time).
For our purposes, a collision takes on the opposite notion — a
disk request without any other requests close in time. Optimiz-
ing the disk schedule for energy means scheduling for bursts of
activity followed by long periods of idleness.

A form of inter-program compilation has been applied to a spe-
cific problem of enhancing I/O-intensive workloads[9]. Kadayif
et al. use program analysis to determine access patterns across
applications. Knowledge of access patterns allows the compiler
to optimize the codes by transforming naive disk I/O into parallel
I/O as appropriate. The benefit manifests as enhanced I/O per-
formance for large, parallel applications. We aim to construct a
general framework suitable for developing resource optimizations
across applications to reduce energy and power consumption.

There is an independent, simultaneous effort by Mesut et al. to
study low power benefits of OS-level disk buffering and schedul-
ing for streaming applications[10]. The implementation requires
adding some kernel modules and daemons to support a low power
disk scheduler which provides an interface for applications to re-
quest a buffer size and bandwidth. Their work performs almost
exactly the same operation as ours, though they do not report
any sense of energy savings. They have experimentally measured
break-even thresholds for when their technique is beneficial.

3. COMPILER / RUNTIME SYSTEM
FRAMEWORK

Inter-program optimization is based on the assumption that
specific groups of programs are executing together, giving the op-
portunity to optimize them together. Each such group defines an
execution context of applications running on the target machine
at a particular time. Switching between contexts occurs when
an application terminates or a new application begins. One key
premise for this benefit study is considering known execution con-
texts. If other programs, compiled outside of the application set,
are also executing, their resource access patterns may negate the
benefits of the optimized application set. Alternatively, the ap-
plication set may switch to a more conservative execution mode.

Our work extends the intra-program compilation framework as
proposed by Heath et al.[5]. In contrast to their approach, our
compiler framework initiates disk power state transitions directly
through appropriate system calls, i.e., the operating system is not
involved in making decisions with respect to disk hibernation for
the set of optimized applications. Our compiler/runtime system
ensures that all applications in the set will fit into main memory,
thereby avoiding any additional disk activities due to swapping.
In addition, the compiler performs inter-program optimizations
by inserting code to implement inverse barriers for disk access
synchronization, to allocate buffers with execution context, and
to perform user-level data buffer prefetching for applications that
allow overlapped CPU and disk activities. In such applications,
the physical disk accesses are performed by a child process that
writes into the buffer, while the main (parent) process reads from
the buffer. Communication between parent and child processes is
performed through semaphores and signals.

In the compiler framework, a user may declare a file descrip-
tor to be buffered or non-buffered. If no annotation is speci-
fied, I/O operations for the file descriptor will not be modified by
the compiler. The compiler propagates file descriptor attributes
across procedure boundaries, and replaces every original I/O op-
eration of the file descriptor in the program with calls to a corre-
sponding buffered I/O runtime library.

To apply the buffering optimization, some characteristics of the
disk must be known, which may be obtained through runtime
profiling. The goal of the profiling is to determine read and write
performance characteristics of the disk, and application charac-
teristics such as data production and/or data consumption rates.
The values of these parameters are used to calculate the maximal
buffer size that can be read and/or written without violating an
existing performance constraint. In addition, disk speed and data
consumption rate are used to determine when to refill the buffer
with negligible performance impact on the application.

The buffer size should be maximal in order to allow the longest
possible disk hibernation time between successive disk accesses.
However, when a set of applications are running, the available
memory for each application is restricted. The selected buffer
sizes should not lead to any swapping. When compiling this set
of applications, a conservative approach would divide the avail-
able memory equally among each application. This will have poor
results when only a single application is actually running. Com-
piling with execution context knowledge allows the applications
to truly use the available resources rather than stick to conser-
vative assumptions. In our framework, all execution contexts are
determined at compile time and modeled as states of a finite
state machine[7]. At runtime, processes may passively or actively
communicate about changes, such as programs starting or ending
execution, in their execution context.



User-level prefetching has been added to those applications
which can support it. When to prefetch is calculated accord-
ing to the estimated time of waking up the disk, time to read the
disk, and the number of other applications in its execution con-
text. Therefore, execution context becomes necessary when disk
accesses are synchronized because each application must consider
all other applications which are also in queue to access the disk.

4. EXPERIMENTS AND RESULTS
This study examines three streaming applications mpeg play,

mpg123, and sftp. The audio and ftp applications use direct disk
reads, which allows an overlap of CPU and disk activity, making
prefetching feasible. The video application uses file descriptors of
type stream I/O, prohibiting the overlap of CPU activities in the
parent process and disk reading activities in the child process.
The data streams in the experiments have overall run times in
the range of 6.5 - 8.0 minutes. More details can be found in our
technical report[8].

4.1 Prototype Framework
The prototype framework consists of runtime libraries which

implement the profiling, buffer allocation policies, disk buffering,
and synchronization. Using the annotations described in Sec-
tion 3, the compiler can, for example, replace read() calls with
EEL read(), which is part of our runtime system. Currently, this
replacement is done by hand. The profiling phase requires a hand-
ful of parameters about the disk such as cache size, power modes,
and time to transition between modes. Some of these parameters
are readily available from the disk, while some were determined
through physical measurement. The existing buffer allocation
policies are SIZE and TIME. SIZE means applications in a set
will have buffers which are sized equally among the applications.
TIME means each application in a set will have a buffer allocated
proportionally to its data consumption rate. However, TIME re-
quires data dependent information from the profiling phase. For
the TIME experiments, the information was derived and hard-
coded. The disk buffering provides a virtual representation of
the disk, and our runtime system mediates between the program
and the disk. Disk reads by the program are satisfied by the disk
buffer, and the runtime system refills the buffer as necessary. So
far, the only synchronization policy implemented is inverse bar-
rier, which is indicated by SYNC in both figures. Optimizing
with execution context, labeled as CON in both figures, means
that each application within a set has runtime awareness of which
other set members are also running and can adjust its execution
to adapt (e.g., resizing its buffer). All of these optimizations are
transparent to the original program.

Some key parts are in the process of being automated within
the runtime system. In particular, the TIME allocation policy re-
quires execution context knowledge (e.g., consumption rate) from
all running applications within a set. A communication mecha-
nism to exchange this context will be implemented as part of the
state transition module.

4.2 Setup
A 4200 rpm Fujitsu and 7200 rpm Hitachi laptop disk were used

for the experiments. The built-in data buffer sizes (disk cache)
are 0.5 MBytes for the Fujitsu and 8 MBytes for the Hitachi. In
addition to active, idle, and off states, these disks support standby
and sleep states. We used only the standby state for the power
saving mode, though utilizing the sleep state would allow even
greater savings. The break even point for hibernation in terms
of energy savings is 17 seconds for the Fujitsu and 5.2 seconds
for the Hitachi. That is, the energy consumed by the Hitachi
disk would be the same if it was either left in idle mode for 5.2
seconds or immediately directed to standby mode, hibernated for
some seconds, and then reactivated such that it was in ready or
idle mode by 5.2 seconds.

The OS on the host PC was a default installation of Red Hat
9 Linux. Linux has a disk prefetching feature, which remained
enabled, but its effect on our experiments was insignificant. Each
disk was installed in the host PC, and the supply current was
measured using a Tektronix TDS3014 oscilloscope with a Hall
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Figure 1: Disk activity profiles of application set AV

using different inter-program optimization strategies on

the Hitachi disk.

effect current probe. Measurements were reported by the oscil-
loscope every 20 milli-seconds and logged to the data acquisition
computer. In other words, each data point represents the aver-
age current reading for a 20 milli-second interval based on the
TDS3014 sampling rate of 1.25 giga-samples per second.

4.3 Results
Experimental results are based on three streaming applications,

MPEG audio (A), MPEG video (V), and ftp (F), and their sub-
sets (AV, AF, AVF). As the base line for our comparison, we
started with Heath et al.’s strategy and enhanced it by adding
user-level buffer prefetching. Figure 1 contains representative
graphs of the disk current/power profile of the application set
AV under different optimization strategies on the Hitachi disk.
This figure illustrates the impact of the different optimizations
on the disk activity behavior. A summary across all application
sets on the Hitachi disk is given in Figure 2. Similar results were
obtained for the Fujitsu disk[8]. The disk has a supply voltage
of 5 volts, and the graphs in Figure 1 show the measured supply
current in amperes along the y-axes. The streaming applications
without any modifications have disk activity profiles similar to
that shown in UNMODIFIED. The disk is nearly constantly uti-
lized and never idle for more than a few seconds.

The energy benefits of hibernation are clear when comparing
UNMODIFIED and TIME. Using available memory to buffer the
disk allows sufficiently long idle periods to save energy through hi-
bernation. Synchronizing disk accesses across applications, shown
in SYNC + TIME, means that one application’s disk access does
not interfere with another application’s idle period. CON +
TIME shows the effects of adding execution context information.
Both A and V now use larger, proportional shares of the available
memory instead of assuming the worst case, conservative assump-
tion that all three applications are running. SYNC + CON +
TIME appears to have little benefit compared to CON + TIME,
but this is actually dependent on the data streams. It turns out
that the bit rate of our video stream is almost an even multiple
to that of our audio stream. Hence, the buffer refill points are
very nearly coincident. If the data streams were longer, CON +
TIME would show a pattern of disk accesses starting close to-
gether and then drifting apart over time because the acceses are
never synchronized.



Figure 2: Comparison of energy savings between op-

timization combinations and across application sets on

Hitachi disk. All values are % energy consumption rela-

tive to SIZE.

Figure 2 gives a comparison on the Hitachi disk of all combina-
tions of optimizations relative to SIZE. The first bar, SIZE, is the
baseline optimization based on previously established results[5].
Related to this baseline is TIME, which assumes that data con-
sumption rates for all applications are known. Each program’s
buffer size is allocated proportionally to its data consumption rate
without violating the overall memory constraint. Against these
baselines, applying all optimizations (SYNC + CON + SIZE,
SYNC + CON + TIME) results in up to 50% additional energy
savings. If only synchronization is added to the baselines (SYNC
+ SIZE, SYNC + TIME), up to 20% energy savings can be re-
alized. Comparing only the optimization of execution context,
(CON + SIZE, CON + TIME), we see up to 40% energy savings.

Discussion of Results
In Figure 2, there are a few significant trends to observe. In
general, the TIME optimizations should have better results than
SIZE because the allocated buffers are proportionally maximal for
all applications. The notable exception occurs in the application
set, A. This result actually shows the significance of execution
context. Without context knowledge, the conservative assump-
tion meant that SIZE allocated 33% of available memory for its
buffer. However, it turns out that TIME allocated only 10% of
the available memory because A’s consumption rate is only 10%
of the overall consumption rate of AVF. With context knowledge,
A could know it was the only running application and hence use
100% of available memory.

AVF shows the most benefits from synchronization. As the
number of concurrent applications increases, resource accesses
will also increase, raising the likelihood of interference between
resource accesses and idle periods. However, this application set
is the most conservative assumption for execution context, so the
context results within AVF are identical to those without con-
text. On the right half of the graph, single applications show the
most benefit from execution context. They are allocated 100%
of available memory as buffer space. Conversely, synchroniza-
tion is useless with single applications. Sets consisting of two
applications show cumulative energy saving effects of both syn-
chronization and context knowledge.

These trends also appear in the Fujitsu disk[8]. The Hitachi
results turn out somewhat better mainly because the threshold
for hibernation benefit is lower (5.2 vs. 17 seconds). Hence, the
Hitachi has more opportunities for hibernation, and our optimiza-
tions exploit it. These similar trends indicate that our profiling
mechanism and optimization techniques are equally applicable
among disks with widely different specifications.

Our experiments showed significant energy reductions of the
inter-program optimization approach over an optimization ap-
proach that considers data accesses only for individual programs
in isolation. Using execution context knowledge across applica-
tions provides up to 40% disk energy savings. Adding inverse
barrier synchronization also contributes a potential 20% energy
savings. The effect of prefetching serves chiefly to reduce or re-
move any performance penalties incurred by the runtime system’s
buffer management or the communication overhead of synchro-
nization. These optimizations are orthogonal to each other and
can be used in combination for greater energy benefits. The de-
gree of energy savings from each optimization depends on the
application set while performance is unchanged.

5. SUMMARY
Inter-program optimization is a promising compilation strat-

egy for sets of programs that are expected to be executed to-
gether. The program’s resource usage can be coordinated across
all programs in the set, allowing additional opportunities for re-
source hibernation over single program, i.e., intra-program, op-
timizations alone. This paper discusses the potential benefits of
inter-program optimizatios using the disk as the shared resource.
Using 48 separate experiments, we have shown energy savings in
the range of 7–49% over the intra-program optimization approach
when the most aggressive optimization strategies were applied.
The discussed optimization strategies included different policies
for assigning buffer sizes, policies that utilize execution context
knowledge, and inverse barrier synchronization for disk access.
As a point of reference, although not shown in Figure 2, energy
savings over unmodified applications range from 49–82%.
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