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Abstract

Spatial Programming (SP) is a space-aware program-
ming model for outdoor distributed embedded systems.
Central to SP are the concepts of space and spatial refer-
ence, which provide applications with a virtual resource
naming in networks of embedded systems. A network re-
source is referenced using its expected physical location
and properties. Together with other SP features, such as ref-
erence consistency and access timeout, they help program-
mers cope with highly dynamic network configurations in a
network-transparent fashion.

This paper presents the SP design and its implementa-
tion using Smart Messages, a lightweight software archi-
tecture similar to mobile agents, that we developed for net-
works of embedded systems. We also describe the imple-
mentation and evaluation of a simple SP application over a
testbed consisting of HP iPAQs running Linux and equipped
with 802.11 cards for wireless communication. The exper-
imental results indicate that SP is a viable programming
model for outdoor distributed computing.

1. Introduction

With computers moving outdoors, embedded in cars,
cell phones, or buildings, outdoor computing environments
populated with ubiquitous networks of embedded systems
(NES) have emerged. Most of the recent research in NES
area has focused on hardware, operating systems, or net-
work protocols [14, 22, 12, 13]. We believe that a cru-
cial challenge which has been only marginally tackled is
how to program distributed applications in outdoor com-
puting environments. The main problem that makes NES
programmability difficult is the highly dynamic character
of these networks. Since NES are composed of a massive
number of heterogeneous systems, which may be mobile
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and volatile, it impossible to know the exact number or lo-
cation of various network resources over time.

Given these characteristics, it is clear that traditional dis-
tributed computing models are irrelevant for programming
outdoor distributed systems. An application written under
these models assume functionally homogeneous nodes, sta-
ble configurations, robust networking, and ignores the phys-
ical location of nodes. A successful programming model for
NES must tolerate the network volatility and heterogene-
ity. Additionally, it has to consider the physical location of
nodes because location may dictate the role of a node in
computation. To design such a programming model, two
major questions have to be answered.

• How to describe distributed applications over networks
of embedded systems in a simple and efficient way?

• How to deploy these applications in existing networks?

The solution to the first question requires an appropriate
programming model for NES. Typically, we can choose be-
tween two programming styles: declarative or imperative.
Declarative programming is goal-oriented in the sense that
programmers simply specify what they want instead of how
to algorithmically obtain the results. Multiple solutions for
programming sensor networks illustrate this programming
style in NES [5, 19]. The “database” model of programma-
bility suits sensor networks well because these networks
act primarily as large “distribute databases” for the envi-
ronments where they are deployed.

Despite its simplicity, declarative programming is not
a panacea for every type of task or NES. Imperative pro-
gramming is more appropriate for complex tasks that go
beyond data collection (especially tasks whereby algorith-
mic details matter). Also, we believe that networks com-
posed of more powerful nodes (e.g., systems in cars, cell
phones, intelligent cameras, mobile robots [2, 15]) cannot
be programmed in a simple and effective way without hav-
ing fine-grained control over individual network resources.

In this paper, we describe the design of Spatial Program-
ming, a space-aware programming model that allows pro-
grammers to use network resources in the same way they
use variables in imperative programming. Similar to the



view of the network as a database, we view the network as a
single virtual address space. In SP, network resources (con-
tent or services provided by nodes) are accessed usingspa-
tial references. A spatial reference uses the expected loca-
tion of a node and the name of a property provided by that
node to define a virtual name for a network resource.

Using spatial references, programmers can write dis-
tributed applications for NES in a network-transparent fash-
ion. Therefore, they can focus on the algorithmic details of
the program rather than on the networking aspects. Sim-
ilar to the mappings from virtual to physical memory in
a conventional computer system, a runtime system main-
tains mappings between spatial references and nodes in the
physical space. For every access to a spatial reference, the
runtime system takes care of name resolution and binding,
communication, and routing.

The second major question that a programming model
for NES has to answer, as we already mentioned, is how
to deploy new applications in an existing network. Given
the scale of NES and the fact that most of the nodes work
unattended, it is practically impossible to re-program each
node individually for every new application. Therefore, an
SP runtime system based on code migration is preferable
for two reasons. First, a user can inject new SP programs
into any NES node, and consequently the programs mi-
grate to the target nodes without human intervention. Sec-
ond, SP programs become platform-independent, given that
code migration is commonly implemented on top of a vir-
tual machine.

We present an SP implementation using Smart Messages
(SM) [7]. SM is a lightweight software architecture, simi-
lar to mobile agents, that we developed for programmable
NES. We also show the implementation and evaluation of
an SP application over a testbed consisting of HP iPAQs
running Linux and equipped with 802.11 cards for wireless
communication. The experimental results indicate that SP
is a viable programming model for NES and that SM can be
successfully used to implement it.

The rest of this paper is organized as follows. Sec-
tion 2 describes the Spatial Programming model. Section 3
presents the implementation of SP using Smart Messages.
Section 4 shows the evaluation of our SP application. Sec-
tion 5 discusses related work. The paper concludes in Sec-
tion 6.

2. Spatial Programming

To motivate the need for a new programming model for
outdoor distributed computing, let us consider a collabora-
tive object tracking application. For this application, two
types of nodes are assumed available across a given geo-
graphical region: motion sensors and intelligent cameras.
Each node is capable of determining its location (i.e., using

GPS or other localization methods [22]). The motion sen-
sors remain static after deployment, but the cameras can be
mobile (e.g., carried by mobile robots [15]). The applica-
tion checks the status of motion sensors, and each time it
encounters a sensor that detected motion, it instructs a cer-
tain number of cameras located in the proximity of that sen-
sor to perform collaborative object tracking in order to mon-
itor the actions of the object that triggered the sensor.

This application emphasizes the main question that any
programming model for outdoor distributed computing has
to answer: how to program anunknown number of volatile
embedded systems(i.e., mobile or even disposable) to ex-
ecute a user-defined application in a certain geographical
area? Besides the flexibility needed to cope with a dis-
tributed system whose state evolves continuously over time,
such a model must be simple and intuitive. The complex
networking aspects should be hidden from the programmers
to allow them to focus on the algorithmic details of applica-
tions.

Spatial Programming (SP) is a space-aware program-
ming model designed to satisfy these requirements. The
main idea of SP is to offer network-transparent, fine-grained
access to data and services distributed on systems embed-
ded in the physical space. In SP, a network of physically dis-
tributed systems is viewed as a single virtual address space,
and its individual resources can be accessed by applications
like normal variables. The SP model allows for a large spec-
trum of outdoor distributed applications, ranging from com-
puting the average/maximum temperature over a given ge-
ographical region to collaborative applications such as dis-
tributed object tracking or coordinating military forces on
the battlefield. Typical applications for SP are those which
execute a distributed algorithm over a set of nodes selected
based on their location and properties.

The high level view of the network as a single virtual ad-
dress space is similar to the one presented by shared virtual
memory systems (i.e., shared virtual memory shields the
programmers from message passing communication, while
offering a shared virtual address space for distributed appli-
cations). A major difference, however, is that shared virtual
memory is performed over a stable and robust network, with
an acceptable upper bound for memory access time, while
SP must tolerate dynamic network configurations, with un-
known time bounds for accessing systems embedded in the
physical space. Fig. 1 illustrates this analogy and the simple
abstractions defined by SP to support outdoor distributed
programming:space regionsandspatial references.

2.1. Space Regions

A space region is a virtual representation of a given phys-
ical space (defined as a circular region that circumscribes
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Figure 1: Analogy Between Spatial Programming and Two Traditional Programming Models

that physical space). Its role is similar to that of a virtual ad-
dress space in a conventional computer system.

Most envisioned distributed applications for NES will
exhibit a space-aware behavior. In order to achieve their pre-
scribed objectives, they will need to run within certain geo-
graphical regions. For instance, the application described in
this section may want to activate intelligent cameras within
a physical range of the trigger node (the sensor that detected
motion) since otherwise no causal relation can be estab-
lished. Therefore, SP considers space as a first order pro-
gramming concept and exposes space regions to applica-
tions through spatial references.

2.2. Spatial References

A spatial reference is defined as a{space:tag} pair
which is mapped to a system embedded in the physical
space. Thespaceis a space region that represents the ge-
ographical scope of this system. Thetag is the name of
a property or service provided by the same system. Tags
are not globally unique because they name properties or
services that can be provided by multiple systems. Spatial
references, like variables, are defined within applications;
hence, a spatial reference has meaning only within the ap-
plication that defined it.

Spatial references provide applications with a virtual re-
source naming in the network. Applications access network
resources using spatial references in the same way they
access physical memory through variables in conventional
systems (or in shared virtual memory systems). Given that
programmers have only limited knowledge about such dy-
namic networks (i.e., a programmer does not know how
many resources are in a given space, what types they are,
or even if they exist at all), spatial references offer a con-
venient method to refer to network resources using theirex-
pectedlocations and properties.

Fig. 2 presents examples of spatial references. To differ-
entiate among systems with the same space-tag pair refer-
enced in the same application, programmers can use indexes
to refer to distinct systems. Thus, a spatial reference be-
comes a triplet{space:tag[index]}. SP guarantees that spa-
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Figure 2: Example of Spatial References for Object Track-
ing in a Network Consisting of Motion Sensors and Intelli-
gent Cameras Deployed over Two Hills

tial references with distinct indexes (but the same space-tag
pair) map to different systems. The figure shows how a pro-
grammer can use three distinct indexes to refer to distinct
cameras onHill1 .

An SP application can name and access multiple net-
work resources provided by a node using just one spatial
reference. The construct{space:tag[index]}.resource
refers to a certain resource located on the sys-
tem referenced by {space:tag[index]}. In Fig. 2,
{Hill1:camera[0]}.active may denote the status of the
camera, while {Hill1:camera[0]}.location may repre-
sent the location of this system in space.

Spatial references relieve programmers from the burden
of having to cope with all the networking details of reach-
ing the nodes of interest and accessing data or services on
those nodes. The SP runtime system takes care of name res-
olution, communication, and access to resources. This run-
time system also takes care of reference consistency.

2.3. Reference Consistency

Conventional computer systems maintain refer-
ence consistency for variables. The operating system uses
per-application page tables to guarantee that each time
an allocated variable is used, it accesses the same physi-
cal memory location. Similarly, SP guarantees that each



time an application uses a certain spatial reference, it ac-
cesses the same system as long as this system remains in
its original space region. This property provides the abil-
ity to perform arbitrary distributed computations over a
subset of nodes selected based on their location and prop-
erties.

The SP runtime system maintains mappings between
spatial references and the nodes they refer to. These map-
pings are maintained in aper-application mapping table
and are persistent during the SP program execution. At the
time of the first access, a spatial reference is mapped to a
node located in the desired space region and providing the
required property. Each mapping table entry contains the lo-
cation of the referenced node and a unique per-application
network address for this node. The location is used for faster
subsequent accesses to this node. The network address is as-
signed by the application (i.e., it has no global meaning) and
is used to confirm the identity of the node for subsequent ac-
cesses (a referenced node may move from its recorded loca-
tion, and another node may take its place). This address can
also be used to locate, in the same space, referenced nodes
that moved from their recorded locations.

In some situations, reference consistency is not neces-
sary. For instance, an application that needs to contact peri-
odically a number of temperature sensors located in a cer-
tain region and compute the average temperature may ac-
cept any sensor that provides the desired space-tag pair. In
such a case, if a referenced node cannot be found in its space
region, the runtime system should transparently remap the
spatial reference to a similar node rather than returning an
exception for a failed access. To implement this feature, SP
allows an application to specify aremapflag for spatial ref-
erences.

2.4. Spatial Reference Access Timeout

Unlike traditional computer systems where the access
time to resources is finite and an upper bound for this time
can be computed, in a volatile and dynamic NES, it is dif-
ficult to estimate how long it takes to access a network re-
source. This problem happens both for new references (no
more available systems with the required space-tag pair)
and for mapped references (they may become invalid be-
cause the referenced node can move from its space or sim-
ply cease to exist).

SP requires application programmers to reason about the
possibility of not reaching a node by imposing atimeouton
each spatial reference (i.e., the format of a spatial reference
becomes{space:tag[index], timeout}). This timeout allows
a programmer to limit the access time to a network resource
which, given the volatility of the network, may take for-
ever. Essentially, SP defines a “best effort” semantics that
allows an application to make progress and get a semanti-
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Figure 3: Space Casting: The Same System is Referenced
in Different Spaces

cally acceptable result even in adverse network conditions.
If a node cannot be reached in the specified time interval,
the SP runtime throws a timeout exception; once the appli-
cation catches this exception, it can decide about further ac-
tions.

Commonly, the programmer sets each timeout based on
a constraint imposed by the user on the total execution time
(e.g., the total time is divided equally among all accesses,
or each new access can have the entire remaining time).

2.5. Space Casting

The SP runtime system locates the same node each time
an application uses the same spatial reference, provided
that the node is still in its space region. If a node moves
out of its space region, it becomes semantically unaccept-
able. Thus, the application receives a timeout exception
(the system could not find the node during the timeout in-
terval). However, if the programmer still wants to access
this node and has knowledge about the node’s mobility pat-
terns, the space region for the spatial reference mapped to
this node can be modified usingspace casting. The con-
struct{space2:(space1:tag[index])} changes the geograph-
ical scope of the spatial reference fromspace1to space2.
Fig. 3 shows how space casting is used to reach a camera
carried by a mobile robot which has moved fromHill1 to
Hill2 . If the new space for a node is unknown, a program-
mer can use theAnywherespace constant to cast a spatial
reference to any space. Note that in such a case thetime-
outensures that the attempted access will not take forever.

2.6. Defining New Space Regions

Besides statically defined space regions, SP also sup-
ports dynamically defined space regions.Composedspace
regions can be defined using the union or intersection op-
erators (i.e., these space regions are also defined as circles
that circumscribe the actual physical space). If we consider
the hills from our examples throughout this section, a spa-
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tial reference{(Hill1 + Hill2):camera[0] } returns a camera
node located on eitherHill1 or Hill2 .

Defining relativespace regions based on the position of
a referenced node offers two benefits for applications: ac-
cess to systems located in dynamically defined space re-
gions, and possibility to “remember” a space region where
a certain event took place, even after the node that produced
(or detected) this event is no longer there.

TherangeOfoperator defines a space region in the prox-
imity of a node referenced by a spatial reference. Fig. 4
shows how such a relative space is dynamically defined and
used to refer to a camera node located in the proximity of a
motion sensor.

Similar to rangeOf, SP defines thenorthOf, southOf,
eastOf,andwestOfoperators. They create space regions rel-
ative to the position of a referenced node and the respective
cardinal direction (the center of the circular region is lo-
cated toward that cardinal direction at a given distance from
the position of the referenced node).

2.7. Creating/Removing Network Resources

In addition to accessing resources that already exist at
nodes, SP programs can also dynamically create/remove
their own resources. For instance, an application may need
to create new resources in order to store data in the network
(i.e., similar to creating files in a file system). The primi-
tives that offer this functionality are:

create({space:tag[index], timeout}.resource)
remove({space:tag[index], timeout}.resource)

Currently, SP provides just a limited resource sharing
policy: the resources provided by nodes are shared, and the
resources created by applications are private.

3. Implementation

SP requires a set of programming constructs that have
to be exposed to programmers and a runtime system to
support the model. The constructs can be added as exten-
sions to any programming language or implemented as li-

brary calls. In this section, we describe the SP implementa-
tion using Smart Messages (SMs) [7], a software architec-
ture similar to mobile agents, that we developed for NES.
Under this implementation, SP applications are Java pro-
grams. The SP programming constructs can be invoked as
Java methods, which are supported by our SM-based run-
time system. Before describing the details of this runtime
system, we present a short SM overview.

3.1. Smart Messages Overview

Smart Messages (SMs) are migratory execution units
consisting of code and data sections, termed ”bricks”, and
a lightweight execution state. Instead of passing data end-
to-end between nodes, an SM migrates to nodes of interest
named by content and executes the computation there. An
SM carries routing code and routes itself at each node in the
path toward a node of interest.

The nodes cooperate to support the SM execution by pro-
viding a virtual machine (VM) for execution over heteroge-
neous platforms, a shared memory addressable by names
(tag space) for inter-SM communication and synchroniza-
tion, and a code cache for storing frequently executed code.
After arrival at a node, an SM generates a task which
is scheduled for non-preemptive execution. The execution
starts with the next instruction following a migration invo-
cation. During execution, an SM can interact with the host
or other SMs using tags. Corresponding to their function-
ality, there are two types of tags: application tags for “per-
sistent” memory across SM executions (i.e., they can store
application-specific data for a limited period of time), and
I/O tags for interaction with the host’s operating system and
I/O. The collection of all tags available at a node forms the
tag space. Each tag has a name, similar to a file name in
a file system, which is used for content-based naming of
nodes.

SMs use a high level migration function to migrate to
nodes of interest named by tags [6]. This migration is com-
monly provided as a library function that implements the
routing (the programmers, however, are free to implement
their own high level migration functions). The routing is
executed at each node toward a node of interest (i.e., SMs
are self-routing applications). The implementation of rout-
ing uses information stored by SMs in the tag space and
a system-provided primitive for one hop migration. This
primitive captures the current execution control state and
migrates it to the next hop along with the code and data
bricks (i.e., the only data transferred is the one incorporated
explicitly by the programmer in the data bricks). A very im-
portant feature of the self-routing mechanism is the ability
of SMs to use multiple routing algorithms during their life-
time and change these algorithms dynamically.

We have implemented an SM architecture by modifying
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Figure 5: Implementation of Spatial References with Smart Messages

Sun’s K Virtual Machine (KVM). The tag space and SM
operations are available to applications through a Java API.
Our prototype implementation was tested on HP iPAQs run-
ning Linux and using 802.11 cards for wireless communi-
cation.

3.2. SM-based Runtime System for SP

An SM-based runtime system is suitable for SP not only
because SMs provide the ability to re-program the network
on-the-fly, but also because the tag space offers a simple and
uniform interface for accessing data or services at nodes.
Additionally, SP benefits from the SM self-routing mecha-
nism; in reaching a node, the runtime system may use dif-
ferent routing algorithms and change the routing dynami-
cally.

The main idea in our implementation is to translate high
level SP programs into SMs. However, SP programs (writ-
ten in Java) are not aware of the underlying SMs. To use the
SM-based runtime system, they have to follow three sim-
ple rules: (1) extend anSMWrapperclass which provides
methods for the SP programming constructs, (2) initialize
the SMWrapper by passing the class names for all classes
that do not belong to our SM distribution (i.e., in order to be
incorporated in the SM as code bricks), (3) use only class
member variables (in this way, the SMWrapper knows what
data needs to be transferred as data bricks). Under these
rules, SP applications are just normal Java programs that

access transparently network resources using spatial refer-
ences.

At initialization, the SMWrapper creates themapping ta-
ble which maintains the mappings between spatial refer-
ences and nodes. Also, the SMWrapper includes the code
and data bricks for two routing algorithms: geographical
routing (to reach the space of interest), and space bound
content-based routing (to reach a node of interest within a
given space). After the initialization is done, the SMWrap-
per creates and injects a new SM in the network. This SM
includes the code and data for the SP program.

Essentially, the SMWrapper performs the SP-to-SM
translation by transforming each access to a network re-
source (read/write) into an SM migration. Fig. 5 illus-
trates the main steps necessary to read/write a resource
located on a referenced node. For both mapped and un-
mapped spatial references, the SM migrates to the de-
sired space using geographical routing. We have imple-
mented a greedy geographical routing similar to GPSR [17]
(at each node, the algorithm chooses the neighbor clos-
est to the center of the circle that represents the required
space region).

When the space is reached, the SM checks if the spatial
reference exists by performing a lookup in the mapping ta-
ble. In the left part of the figure, we show how to reach a
node referenced by an existent spatial reference (i.e., refer-
ence consistency). The right part shows how a new node of
interest is found and mapped to a spatial reference.



public class IntruderDetection extends SMWrapper{

public Space userSpace, monitoredSpace;
public int i, j, count, numSensors, numCameras, timeout, threshold;
public SpatialReference srLight, srUser, []srCamera;

public static void main(String []args){
IntruderDetection intruderDetection = new IntruderDetection();
// read and store application’s parameters
String []userClasses = {"IntruderDetection"} ;
intruderDetection.initSMWrapper(userClasses, intruderDetection);
intruderDetection.run();

}

public void run(){
try{

for (i=0; i<numSensors; i++){
srLight = getSpatialReference(monitoredSpace, "Light", i, timeout);
if (((Integer)srLight.read("Intensity")).intValue() > threshold){

srCamera = new SpatialReference[numCameras];
for (j=0; j<numCameras; j++){

srCamera[j] = getSpatialReference(monitoredSpace, "Camera", j, timeout);
srCamera[j].write("Active", "ON");

}
for(j=0,count=0; j<numCameras; j++){

if (((Boolean)srCamera[j].read("FaceRecognition")).booleanValue())
count++;

srCamera[j].write("Active", "OFF");
}
if (count > numCameras/2){

srUser = getSpatialReference(userSpace, "User", 0, timeout);
srUser.write("Message", "intruder detected!!");
return;

}
}

}
}catch(TimeoutException e){}

}
}

Figure 6: Java Code for Intrusion Detection Application

If the reference does not exist, the SM has to discover
a node of interest in the given space. Therefore, it changes
dynamically its routing to a content-based on-demand rout-
ing (similar to AODV [21]) which is used to discover a node
of interest. Due to its limited geographical scope, flooding
does not represent a major problem for scalability. Once
a matching node is found, the SM assigns a unique net-
work address to this node by creating a uniquetagID in
this node’s tag space. Subsequently, thetagID and the lo-
cation of the node are stored in the associated mapping ta-
ble entry. In the process of mapping a new spatial reference,
the mapped nodes having the same space-tag pair must be
avoided (i.e., the application asked for a new node). To solve
this problem, we retrieve the list of uniquetagIDs corre-
sponding to the mapped nodes and pass it to the routing al-
gorithm. It is the responsibility of the routing to find an un-
mapped node.

To ensure reference consistency, subsequent accesses to
an existent spatial reference must reach the same node.

Therefore, the SM retrieves the location of the mapped node
from the mapping table and migrates directly to this loca-
tion. According to spatial references’ semantics, if the node
is not present at that location anymore, the SM will try to
reach it in the same space region using its uniquetagID.

When the node of interest is reached, the SP program re-
sumes its execution (i.e., it starts with the read/write opera-
tion which triggered the entire migration process). The tag
space primitives are used to give the application access to
local resources. If a node of interest is not found during the
time interval specified by the application, or the space is un-
reachable, an exception is thrown to let the application de-
cide further actions.

4. Evaluation

This section presents the implementation and evaluation
of an SP application executed over our SM-based runtime
system. We have evaluated this application on a testbed con-
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sisting of ten HP iPAQs (206-MHz Intel StrongARM Pro-
cessor, 32-MB Flash ROM, 64-MB SDRAM). For wireless
communication, we use Orinoco 802.11b PC cards in ad hoc
mode. Each node supports the Smart Messages (SM) archi-
tecture. Our goal in conducting this evaluation study was
twofold: (1) to verify the viability of the SP model in terms
of ease of programming, and (2) to analyze the performance
of our SM-based runtime system.

The application is similar to the object tracking applica-
tion described in Section 2. Essentially, the application (in-
jected by a user from a handheld device) performs intru-
sion detection over a monitored space region. It verifies the
status of the motion sensors, and if one of them have de-
tected motion, the application turns on a certain number of
cameras to perform face recognition. After all these cam-
eras have been turned on, the application returns to each of
them to verify the result of the face recognition program. If
at least half of the cameras have recognized a face, the ap-
plication informs the user that an intruder has been detected.

For this application, some of our nodes are identified by
a Cameratag (i.e., they have an attached video camera),
while others are identified by aLight tag (i.e., instead of
motion sensors, we use light sensors incorporated in iPAQs;
we consider that motion was detected when the light inten-
sity is above a certain threshold). The camera nodes provide
also tags to activate the camera and get the result of the face
recognition program.

The Java code for this application, presented in Fig. 6,
demonstrates the main benefit of SP: flexibility to program
complex distributed applications in outdoor computing en-
vironments in a simple, network-transparent fashion. The
run method shows how spatial references shield the pro-
grammers from the networking details. It also demonstrates
reference consistency; the runtime system guarantees that
the same cameras which have been activated to perform face
recognition are turned off after the operation completes.
Note that the SM-based runtime system is transparent to the
programmer, except in themainmethod which performs the
initialization (i.e., the SMWrapper is initialized in order to

Figure 8: SM Code Breakdown for Intrusion Detection Ap-
plication

Figure 9: SP Runtime Library Code Breakdown

allow it to create the SM that will carry the SP application
through the network).

For experiments, we have considered the simple network
topology presented in Fig. 7. The response time is heavily
influenced by the size of the payload carried by the SM “in-
carnation” of our SP application. Fig. 8 presents the break-
down of the SM payload (code, data, and execution state).
The code consists of SP application and SM-based runtime
library code (i.e., the SM needs to carry the runtime library
code to those nodes where this code is not cached). We can
see that the execution state is small (under 3% of the to-
tal size). The biggest contribution comes from the library
code (the size of its components are shown in Fig. 9). This
code, however, is cached at nodes in the common case.

In Figure 10, we present the total execution time for the
application in two cases: (1) the code is not cached at any
node when the application starts (but the caching is acti-
vated in the network), and (2) the SM-based runtime library
code is cached at every node (i.e., only the application code
is migrated through the network). In this experiment, we do



Figure 10: Execution Time for Intrusion Detection Applica-
tion

not perform the face recognition because our goal is to eval-
uate the performance of the SP runtime system (i.e., the exe-
cution time for the face recognition is an order of magnitude
greater than the rest of the application). The results indi-
cate that our SP runtime implementation based on SMs can
achieve good performance, especially when the runtime li-
brary is cached at nodes. We observe that caching leads to a
57% decrease in the overall response time. The time break-
down shows how each basic operation is affected by code
caching. The time to reach the space of interest and the time
to migrate to target nodes are significantly reduced (as much
as 70%). The route discovery time experiences a less signif-
icant decrease due to the unavoidable contention encoun-
tered in wireless networks for flooding-based algorithms.

5. Related Work

Recent projects [11, 23, 3] have presented programming
models for ubiquitous/pervasive computing. SP shares some
of their goals, but its main design goal is to provide simple
abstractions to program distributed applications for systems
embedded in the physical space. These abstractions decou-
ple the access to network resources from the networking de-
tails.

Although geographical routing [17, 18] and content-
based naming and routing [4, 13] have been extensively
studied, a simple and intuitive programming model that al-
lows the user to express the computation in terms of phys-
ical location and content (or services) provided by nodes is
still missing. SP offers such a model, and its runtime sys-
tem takes advantage of these routing algorithms (especially
of those developed for ad hoc networks).

The “database” model [5, 19] for programming sen-
sor networks is a research complementary to SP. For in-
stance, TAG [19] defines an SQL-like language for sen-

sor networks. Both SP and TAG provide simple program-
ming constructs that shield the programmer from the under-
lying network. There are two main differences between SP
and this work. First, the programmer has fine-grained con-
trol over execution in SP, while TAG depends entirely on the
compiler (i.e., essentially SP offers an imperative language,
while TAG offers a declarative language). Second, SP fo-
cuses on flexible abstractions that support programming for
uncertainty in highly dynamic networks, while TAG focuses
on a set of queries executed efficiently in the network.

The design of SMs, the underlying architecture for SP,
has been influenced by a variety of other research efforts,
particularly mobile agents for IP-based networks [16, 10]
and active networks (AN) [9, 20]. SMs leverage the gen-
eral idea of code migration, but focus more on flexibility,
re-programmability, and ability to perform distributed com-
puting over unattended NES. Unlike mobile agents, SMs
address nodes by content, discover the network configu-
ration dynamically, are responsible for their own routing,
and require minimal system support at nodes. SMs and AN
differ in terms of their main focus. While AN targets fast
communication in IP networks, SMs target programmabil-
ity in NES. Another significant difference is that AN do
not migrate the execution state from node to node whereas
the SMs do. The migration of the execution state for SMs
trades off overhead for flexibility in programming sophisti-
cated tasks which require cooperation and synchronization
among several entities.

SensorWare [8] can be an alternative solution for the SP
runtime system, especially in networks composed of de-
vices with extremely limited resources (e.g., sensor net-
works). SensorWare is similar to SMs in the sense that both
SensorWare and SMs are systems based on code migra-
tion. Therefore, both are suitable for re-programming the
network. SMs, however, offers the advantage of program-
ming in a well known language (Java) which is supported on
many embedded systems today [1]. Also, the tag space ab-
straction provided by the SM architecture and the SM self-
routing mechanism simplify the implementation of the SP
runtime system.

6. Conclusions

In this paper, we have presented the design and imple-
mentation of Spatial Programming (SP) using Smart Mes-
sages (SM). To the best of our knowledge, SP is the first
attempt to design and implement a space-aware program-
ming model for outdoor distributed computing. SP offers
fine-grained, network-transparent access to systems embed-
ded in the physical space. The main benefits of SP are
the flexibility and simplicity to program user-defined dis-
tributed applications in highly volatile outdoor computing
environments. The preliminary experimental results demon-



strate that SP applications executed over our SM-based run-
time system can achieve good performance and that caching
the runtime library at nodes improves significantly the over-
all response time.
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