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Abstract. Fine-grained program power behavior is useful in both evaluating
power optimizations and observing power optimization opportunities. Detailed
power simulation is time consuming and often inaccurate. Physical power mea-
surement is faster and objective. However, fine-grained measurement generates
enormous amounts of data in which locating important features is difficult, while
coarse-grained measurement sacrifices important detail.
We present a program power behavior characterization infrastructure that identi-
fies program phases, selects a representative interval of execution for each phase,
and instruments the program to enable precise power measurement of these inter-
vals to get their time-dependent power behavior.
We show that the representative intervals accurately model the fine-grained time-
dependent behavior of the program. They also accurately estimate the total energy
of a program. Our compiler infrastructure allows for easy mapping between a
measurement result and its corresponding source code. We improve the accuracy
of our technique over previous work by using edge vectors, i.e., counts of traver-
sals of control-flow edges, instead of basic block vectors, as well as incorporating
event counters into our phase classification.
We validate our infrastructure through the physical power measurement of 10
SPEC CPU 2000 integer benchmarks on an Intel Pentium 4 system. We show
that using edge vectors reduces the error of estimating total program energy by
35% over using basic block vectors, and using edge vectors plus event counters
reduces the error of estimating the fine-grained time-dependent power profile by
22% over using basic block vectors.

1 Introduction

Research in power and energy optimizations focuses not only on reducing overall pro-
gram energy consumption, but also on improving time-dependent power behavior. Eval-
uating such optimizations requires both accurate total energy consumption estimation
and precise detailed time-dependent power behavior. Simulators are often used for
power and performance evaluation, but detailed power simulation is very time-consuming
and often inaccurate. While physical measurement is much faster, fine-grained power
measurement requires proper measurement equipment and a large amount of space to
store measurement results.

An example optimization that requires fine-grained, time-dependent power behavior
information for its experimental evaluation is instruction scheduling for peak power and



step power (dI/dt problem) reduction, for instance in the context of VLIW architectures
[1–3]. This previous work relies on simulation to evaluate the impact of the proposed
optimizations. The dI/dt problem is caused by large variations of current in a short time.
Such variations in CPU current may cause undesired oscillation in CPU supply voltage,
which may results in timing problems and incorrect calculations [4]. In this paper, we
introduce a new strategy to enable time-dependent power behavior characterizations
based on physical measurements.

1.1 Characterizing Phases with Representative Slices

Program phase behavior shows that many program execution slices have similar behav-
ior in several metrics, such as instructions-per-cycle (IPC), cache miss rate, and branch
misprediction rate. Phase classification makes it easier to measure the fine-grained pro-
gram behavior. A representative slice from each phase instead of the whole program
execution is measured and analyzed, and then the whole program behavior can be char-
acterized based on the analysis result. Using this whole program behavior characteri-
zation method in power behavior analysis, we can obtain fine-grained power behavior
with significant savings in both time and storage space.

1.2 Illustrating Time-Dependent Power Behavior

Figure 1 shows the measured CPU current of 256.bzip2 from SPEC CPU 2000 mea-
sured using an oscilloscope. Figure 1(a) shows that the program execution can be
roughly partitioned into 4 phases based on its power behavior. One representative slice
from each phase can be measured to characterize the detailed power behavior of the
benchmark. Figure 1(b) is the measured power behavior of half of a second in the first
phase with a resolution that is 100 times higher than the one used for Figure 1(a). There
is a repeated power behavior period of 300 milliseconds. Figure 1(c) shows the detailed
power behavior of a piece of 0.05 second, from 0.1 second to 0.15 second in Figure 1(b).
It shows repeated power behavior periods of less than 5 milliseconds, indicating pos-
sible finer phase classification than Figure 1(b). Also, finer measurement gives more
information of time-dependent CPU power due to the resolution of the oscilloscope
that we use for power measurement. The oscilloscope reports the average power for a
given time granularity. This is the reason why the difference between the observed peak
power (peak current) in Figure 1(a) and (c) is almost 6 Watts (0.5 amperes).

1.3 An Infrastructure for Characterizing Time-Dependent Power Behavior

In this paper, we present our infrastructure for program time-dependent power behav-
ior characterization and optimization evaluation. Our Camino compiler statically in-
struments the assembly code of a program for profiling and physical measurement. A
SimPoint-like [5] method is used for phase classification. SimPoint identifies several
intervals, or simpoints, of program execution that characterize the behavior of the en-
tire program execution. It is often used to speed up simulation by simulating only the
simpoints and estimating, for instance, IPC, by taking a weighted average of the IPCs
of each simpoint.



 
(a) Very coarse granularity
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(b) A slice in phase 1 of (a)
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(c) Detailed CPU power behavior of a small slice in (b)

Fig. 1. Measured power behavior of bzip2 with different granularity.

SimPoint uses the Basic Block Vector (BBV), i.e., a vector of counts of basic block
executions, as the feature for classification. We introduce the edge vector (EV), i.e., a
vector of counts of control-flow-graph edge traversals, as the fingerprint of each interval
of the program execution.

Instead of using a fixed number of instructions as interval length, we use infre-
quently executed basic blocks to demarcate intervals. This results in variable interval
length, but much lower instrumentation overhead for physical power measurement of
a representative interval. The selected simpoints are weighted based on the number of
instructions executed in each phase, instead of number of intervals.

We show that our method enables us to do power measurement for simpoints with
very low interference to program execution. To demonstrate the improved accuracy of
using edge vectors for classification, we show that our infrastructure estimates the total
energy of a program with an average error of 7.8%, compared with 12.0% using basic
block vectors, an improvement of 35%. More importantly, we want to find representa-
tive intervals that represent the fine-grained time-dependent power profile of a phase.
We develop a metric for measuring the accuracy of estimating a power profile and show
that using edge vectors with event counter information improves accuracy by 22%.

Unlike simulation, physical measurement is sensitive to the overhead for identifi-
cation of simpoints during program execution. So this low instrumentation overhead
is very important. This infrastructure can be used to evaluate optimizations for energy
consumption or time-dependent power behavior, for example, the impact on power be-
havior of pipeline gating [6] or dynamic voltage/frequency scaling [7].



We evaluate our infrastructure by measuring 10 SPEC CPU2000 integer bench-
marks on a Pentium 4 machine, and we present the error rates in whole program energy
consumption estimation as well as fine-grained power behavior estimation based on the
measurement result of the selected simpoints.

This paper makes the following contributions: 1) We show that using edge vec-
tors significantly improves accuracy over using basic block vectors for estimating total
program energy as well as fine-grained power behavior. 2) We show that classification
accuracy can further be improved by combining control-flow information such as edge
vectors with event counter information. 3) We present our infrastructure that uses edge
vectors and event counters to select representative intervals and to measure efficiently
their power profiles with minimal perturbation of the running program.

2 Related Work

Several techniques have been proposed to identify program phases. Some of them use
control-flow information [8, 5, 9–11], such as counts of executed instructions, basic
blocks, loops, or functions, as the fingerprint of program execution. This fingerprint de-
pends on the executed source code. Some methods depend on run-time event counters
or other metrics [12–15], such as IPC, power, cache misses rate and branch mispredic-
tion, to identify phases. Our infrastructure uses the edge vector of each interval, a vector
that gives a count for each control-flow edge in the program, along with the measured
IPC. This set of features allows for a precise characterization of power phases.

SimPoint [8, 5] partitions a program execution into intervals with the same number
of instructions and identifies the phases based on the BBV of each interval. One inter-
val, called a simpoint, is selected as the representative of its phase. These simpoints are
simulated or executed to estimate the behavior of the whole program execution. Sher-
wood et al. apply SimPoint to SPEC benchmarks to find simpoints and estimate the
IPC, cache miss rate, and branch misprediction rate. The error rates are low and the
simulation time saving is significant.

A new version of SimPoint supports variable length intervals. Lau et al. [11] shows
a hierarchy of phase behavior in programs and the feasibility of variable length intervals
in program phase classification. They break up variable length intervals based on proce-
dure call and loop boundaries. We use infrequent basic blocks to break up intervals and
at the same time use a pre-defined length to avoid too long or too short intervals. This
satisfies our requirement for low-overhead instrumentation and accurate power behav-
ior measurement. Besides phase classification, we also generate statically instrumented
executables for physical measurement of simpoints and CPU peak power control on a
dual core machine.

Shen et al. [9] propose a data locality phase identification method for run-time data
locality phase prediction. A basic block that is always executed at the beginning of
a phase is identified as the marker block of this phase, resulting in variable interval
lengths. They introduce the notion of a phase hierarchy to identify composite phases.

We also use variable interval lengths, but the basic block that marks a phase is not
necessary to uniquely mark the phase. It might be the mark for other phases. Phases



are identified by the execution times of the infrequent basic blocks that demarcate the
intervals, such that we implement precise physical measurement.

PowerScope [16] maps energy consumption to program structure through runtime
system power measurement and system activity sampling. System components respon-
sible for the bulk of energy consumption are found and improved. The delay between
power sampling and activity sampling results in possible imprecise attribution of en-
ergy consumption to program structure. Compared to the power measurement granular-
ity used by PowerScope, which is 1.6ms, our infrastructure measures CPU current with
much higher granularity. 1000 samples are collected for each 4ms. Precise mapping
between power measurement and program structure is achieved through measuring the
selected representative intervals.

Isci and Martonosi [17] show that program power behavior also falls into phases. Hu
et al. propose using SimPoint to find representative program execution slices to simplify
power behavior characterization, and validate the feasibility of SimPoint in power con-
sumption estimation through power simulation of some Mediabench benchmarks [18].
Isci and Martonosi [19] compare two techniques of phase characterization for power
and demonstrate that the event-counter-based technique offers a lower average power
phase classification errors.

Our goal is to characterize the time-dependent power behavior, instead of power
consumption, of programs. Our method causes negligible overhead for identification of
an interval during program execution, and the measurement result is very close to the
real time-dependent power behavior of the interval. Furthermore, through the combina-
tion of edge vector and event counters, we get better phase characterization than using
only control flow information as well as the mapping between observed power behav-
ior and the source code. The latter is difficult for an event-counter-based technique by
itself.

3 Phase Classification Based on Edge Vectors and Event Counters

Our phase classification infrastructure is based on the ability to demarcate the start and
end of a particular interval of execution with infrequently executed basic blocks. We
instrument these infrequent basic blocks so that our instrumentation minimally perturbs
the execution of the program.

Phase classification and power measurement of representative intervals for pro-
grams is implemented as an automatic process. The threshold for determining whether
a basic block is infrequent, the minimum number of instructions in each interval, and
the number of phases are the input to this process. The flowchart in Figure 2 illustrates
its steps. The implementation of each step will be presented in the following sections.

3.1 Instrumentation Infrastructure for Profiling, Measurement, and
Optimization

Camino [20] is a GCC post-processor developed in our lab. We use it to implement the
static instrumentation for profiling and physical power measurement.
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Fig. 2. Infrequent basic block-based phase classification and power measure-
ment of simpoints.

Camino reads the assembly code generated by GCC, parses it into a control-flow-
graph (CFG) intermediate representation, performs transformations including instru-
mentation, and then writes the modified assembly language to a file to be assembled
and linked.

Instrumentation using Camino is simple and minimally intrusive. Only two routines
are required: an instrumentation routine that inserts a call to the analysis routine, and
and an analysis routine that does profiling or generates special signals.

Note that our infrastructure does two kinds of instrumentations: 1) profiling for
all basic blocks to identify infrequent basic blocks and gathering features used to do
phase classification, and 2) infrequent basic block instrumentation for signaling the
start and end of a representative interval to our measurement apparatus. The first kind
of instrumentation results in a moderate slowdown, but the second kind results in no
slowdown so that the measured program’s behavior is as close as possible to that of the
uninstrumented program.

3.2 Infrequent Basic Blocks Selection

Instrumentation is done through Camino to collect the execution frequency of each
basic block. Each basic block makes a call to an execution frequency counting library
function. The distinct reference value of the basic block is passed to the function that
increments the frequency of this basic block. During the first profiling pass, we collect
counts for each basic block.

A threshold is needed to determine which basic blocks are infrequently executed
and can be used to demarcate intervals. An absolute value is infeasible, since different
program/input pairs execute different number of basic blocks. Instead, we consider a
basic block to be infrequent if it account for less than a certain percentage of all ex-
ecuted basic blocks. Intuitively, when a low threshold is used, the selected infrequent
basic blocks will be distributed sparsely in program execution and there is more vari-
ance in interval size than when a higher threshold is used. We investigate 4 different
threshold values, 0.05%, 0.1%, 1%, and 5%, to explore the trade-off between interval
size variance and instrumentation overhead.



3.3 Program Execution Interval Partitioning and Edge Vector Profiling

We use the edge vector (EV) of all edges as the fingerprint of an interval used for the
clustering phase of our SimPoint-like phase classification method. This vector is the
absolute count for each control-flow edge traversed during the execution of an interval.
Compared to basic block vectors (BBV), EVs give us more information about the con-
trol behavior of the program at run-time. BBVs contain information about what parts
of a program were executed, but EVs tell us what decisions were made in arriving at
these parts of the program. This extra information allows a classification of phases that
more accurately reflects program behavior. For the same BBV, it is possible that there
are several EVs depending on the dynamic paths taken during program execution. An
example is shown in Figure 3.
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Fig. 3. Several EVs are possible for the same BBV.

Partitioning program execution just based on the execution times of infrequent ba-
sic blocks will results in intervals with a variable number of instructions. Acquiring
detailed information from very large intervals to characterize program behavior is in-
efficient. Moreover, a large variance in interval size affects the accuracy of the phase
classification result. In order to make use of our physical measurement infrastructure
to characterize the whole program behavior more correctly and efficiently, we use a
pre-specified interval size to avoid largely variable intervals.

Instrumentation for EV profiling is similar to that for basic block execution fre-
quency profiling. An pre-defined interval size of 30 million instructions is used to avoid
too large or too small intervals. All basic blocks are instrumented so that we can get the
complete fingerprint of an interval. The library function remembers the last executed
basic block and knows the taken edge based on the last and the current executed ba-
sic blocks. It counts each control flow edge originating in a basic block that ends in a
conditional branch. It counts the total number of executed instructions for the current
interval as well. When an infrequent basic block is encountered, if the count is larger
than or equal to 30 million, this basic block indicates the end of the current interval and
it is the first basic block of the next interval.

Note that, because we only have coarse control over where the demarcating infre-
quent basic blocks will occur, the actual interval might be somewhat longer than 30
million instructions; thus, the intervals are variable-length.



Figure 4 illustrates the interval partition using the combination of infrequent basic
block and interval size. Here A, B, C, and D are basic blocks. C and D are infrequent and
used to demarcate intervals. Since we use a pre-defined interval size, 30 million, only
the occurrences of C and D in shadow mark intervals. Other occurrences do not mark
intervals because the interval size is smaller than 30 million when they are encountered.
We get intervals of similar size by using this method. An execution frequency counter
of C and D can be used to identify the exact execution of an interval. For example, the
fourth interval starts when the counter is 5 and ends when the counter is 8.
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Fig. 4. Interval partitioning using infrequent basic blocks and interval length.

3.4 Phase Classification for Power Behavior Characterization

Intervals profiled in Section 3.3 are classified into phases based on their EVs. K-Means
clustering is used to cluster the intervals with similar EVs and select a representative
for each phase. The EV of each interval is projected to a vector with much smaller
dimension. Then k initial cluster centers are selected. The distance between a vector and
each center is calculated and each vector is classified into the cluster with the shortest
distance. A cluster center is changed to the average of the current cluster members after
each iteration. The iteration stops after the number of vectors in each cluster is stable.
The simpoint of a phase is the one that is closest to the center of the cluster [5].

Since the intervals are demarcated by infrequently executed basic blocks and have
variable number of instructions, weighting a simpoint with just the number of intervals
in its phase cannot reflect the real proportion of this phase in whole program execution.
In our method, each simpoint has two weights. One is based on the percentage of the
number of executed instructions of the corresponding phase in that of the whole pro-
gram, the other is based on the number of intervals in the corresponding phase as the
one used in [5].

A recent version of the SimPoint tool also supports variable-length phases [11].
Given the number of phases, K-Means clustering is performed for different number

of clusters and different cluster seeds. The BIC (Bayesian Information Criterion) score
of each clustering is calculated and used to choose the clustering with the best trade-off
between BIC score and number of phases. The BIC score calculation in our method is
changed to use the number of executed instructions in each phase such that phases with
longer intervals have larger influence.

To identify an interval during program execution, we need to find the beginning and
end of the interval. We use the execution frequencies of one or two infrequent basic



blocks that demarcate the interval. Infrequent basic blocks that mark the start or end
of a desired representative interval are chosen as final infrequent basic blocks. Their
execution frequencies in each interval are recorded, so that we know how many times
a basic block has executed before the start of an interval. We instrument these final
infrequent basic blocks with simple assembly code to increment a counter and trigger
power measurement when the count indicates the beginning of the interval, or turn
off measurement when the end of an interval is reached. The combination of infrequent
basic blocks and static instrumentation enables us to identify the execution of an interval
at run-time with negligible overhead.

3.5 Finer Phase Classification Using IPC

Two intervals that execute the same basic blocks may generate different time-dependent
power behavior due to run-time events, such as cache misses and branch mispredictions.
Phase classification only based on control flow information cannot precisely differenti-
ate these intervals, so the resulting simpoints may not really be representative in terms
of power behavior. Our infrastructure combines EV and instructions-per-cycle (IPC) as
measured using performance counters provided by the architecture to take the run-time
events into account.

IPC Profiling Profiling IPC is easy to do in our infrastructure. After the program exe-
cution is partitioned into intervals, all of the infrequent basic blocks that demarcate the
resulting intervals are instrumented to collect the number of clock cycles taken by each
interval. By running the instrumented program once, we can get the IPC values of all
intervals by dividing the number of instructions by the number of cycles. We already
have the number of instructions executed from the edge vector profiling. This tech-
nique very slightly underestimates IPC because of system activity that is not profiled,
but we believe this has no impact on the accuracy of the classification since IPC tends
to vary significantly between phases. Since we identify intervals based on infrequent
basic block counts, the overhead is low and has a negligible impact on the accuracy of
the profiling result.

Combining EV Clustering with IPC Clustering For a program execution, we first
perform the phase classification in Section 3.4 to group intervals with similar EVs to-
gether. Then we do another phase classification based on the profiled IPC values. K-
Means clustering is also used in the second phase classification. Then we combine the
results from the two classifications and get a refined phase classification for power be-
havior characterization through refining the classification result of the first one using
that of the second one. The mechanism in the next section performs more control on the
number of the resulting phases without a significant loss in accuracy. Our experiment
result shows that after applying the controlling mechanism, if the number of phases
identified based on IPC is 10, the number of the resulting phases after the classification
refinement is expanded to less than 3 times of the number after the first classification,
instead of around 10 times.



Controlling Unnecessarily Fine Phase Classification Using a constant K value for the
IPC-based phase classification of all programs results in unnecessarily fine partitioning
and more simpoints to simulate or measure when the IPC values of the intervals in the
same phase are already very close to each other. We control the number of resulting
phases based on IPC in two steps.

The first step controls the selection of the initial centers based on the maximum and
minimum IPC of the program. A percentage of the minimum IPC value is used as the
distance d between the initial centers. This ensures that intervals with very close IPCs
need no further partitioning and the final number of simpoints does not explode with
little benefit. This percentage is adjustable in our infrastructure. The maximum value
is divided by d. The value of quotient plus 1 is then compared with the given k. The
smaller one is used as number of clusters. This value may be 1, meaning that the IPC
values of all of the intervals are very close and no finer partitioning is necessary.

The second step maintains the distance between centers during the initialization
of the centers in case there is a IPC much higher than others, but there are only two
different IPC values during program execution. The first step does not know this and the
number of clusters will be k which results in unnecessarily more simpoints. This step
is similar to the construction of a minimum spanning tree except that we use the largest
values in each step to choose the next initial center. The first initial center is selected
randomly. During the generation of the other initial centers, each time the value with
largest distance to the existing centers is the candidate. If this distance value is less than
half of d, no more initial centers are generated. This prevents intervals with the similar
EVs and very close IPCs from being partitioned into different clusters.

4 Experimental Setup

We validate our infrastructure through physical power measurement of the CPU of a
Pentium 4 machine. This machine runs Linux 2.6.9, GCC 3.4.2 and GCC 2.95.4. Bench-
marks are from the members of SPEC CPU2000 INT that can be compiled by Camino
successfully. The back-end compiler for gzip, vpr, mcf, parser and twolf is GCC 3.4.2.
The back-end compiler for the other benchmarks is GCC 2.95.4 because the combina-
tion of Camino and GCC 3.4.2 fails to compile these programs correctly. We measure
the current on the separate power cable to the CPU using a Tektronix TCP202 DC
current probe, which is connected to a Tektronix TDS3014 oscilloscope. The experi-
mental setup is shown in Figure 5. The data acquisition machine is a Pentium 4 Linux
machine that reads data from the oscilloscope when a benchmark is running on the
measured system. Simultaneous benchmark execution and power data acquisition on
different machines eliminates interference with the measured benchmark. The picture
on the right of Figure 5 is our experimental setup, data acquisition machine is not shown
in the picture.

The oscilloscope has a TDS3TRG advanced trigger module. When it is in trigger
mode, it accepts trigger signals from one of its four channels. We use its edge trigger.
It starts measurement only after the voltage or current on the trigger channel increases
to some predefined threshold and stops when its window fills to its capacity. The data
points stay in the buffer until the next trigger signal. We generate the trigger signal
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Fig. 5. The physical measurement infrastructure used in the experiments.

by controlling the numlock LED on the keyboard. A voltage probe is connected to the
circuit of the keyboard to measure the voltage on the LED as shown in Figure 5. The
voltage difference between when the light is on and off is more than 3.0V, which is
enough to trigger the oscilloscope. The voltage on the trigger channel is set to high by
instrumentation code to trigger the oscilloscope at the beginning of the program slice to
measure. This voltage is consistently high until it is set to low at the end of this slice. It
is easy to identify the power behavior of the measured slice.

4.1 Instrumentation Overhead

In order to get the power behavior close to the real program power behavior, the instru-
mentation overhead should be as low as possible to reduce its impact on the measured
power behavior. We instrument all of the infrequent basic blocks that demarcate the
final simpoints to evaluate the overhead. The instrumented code does the same thing as
it does to generate signals before and after each simpoint, but controls another LED.
Thus, we get the same overhead as when the CPU power of a simpoint is measured,
and still can use the numlock to generate signals to get the precise measurement of each
program. If we measure the simpoints one by one, the overhead is even lower than the
one measured in this experiment, since only one or two basic blocks are instrumented.

We use the auto mode of the oscilloscope to measure the power behavior of the
whole benchmark execution and still identify the exact power data points for the bench-
mark by setting the voltage on the trigger channel to high and low before and after
the execution of each benchmark. However, no instrumentation is needed to generate
signals during program execution. The oscilloscope records power data points contin-
uously, and the data acquisition program running on another machine collects the data
points. We adjust the data acquisition to read the data in each window without losing
data points or reading duplicated data points due to a data reading period that is too
long or too short, respectively. This is validated through the comparison of the real
benchmark execution time and the one obtained from the measurement result. To eval-
uate the instrumentation overhead, we also measure the power consumption of the 10
benchmarks without any instrumentation.



4.2 Energy Consumption Estimation Based on Simpoints

The first step to verify that this infrastructure is useful in power behavior characteriza-
tion is to calculate the error rate when the measurement result of the selected simpoints
is used to estimate the power consumption of the whole program. Although we use EVs
as the fingerprint of an interval in our infrastructure, we also measured the CPU power
of the simpoints using BBVs for comparison.

The energy consumption of each simpoint is measured using the trigger mode of the
oscilloscope. We generate an executable for each simpoint and measure the simpoints
one by one so we can get very high resolution as well as the lowest possible instru-
mentation overhead. Program execution and data acquisition are on the same machine.
Reading data from the oscilloscope is scheduled after the measurement of a simpoint
is done. Data acquisition does not interfere with the running program. We implement
an automatic measurement and data acquisition process to measure any number of sim-
points as a single task.

4.3 Power Behavior Similarity Evaluation

Even though we can get low error rates in estimating whole program energy consump-
tion, energy consumption is the average behavior of an interval. Intervals that are classi-
fied into the same phase may have different time-dependent power behavior. If intervals
in the same phase have largely different power behavior, we cannot characterize the
time-dependent power behavior of the whole program execution using the measure-
ment result of the simpoints.

Comparing in the Frequency Domain Our power measurements come in the form
of discrete samples in the time domain. Power behavior is characterized by periodic
activity, so a comparison in the frequency domain is more appropriate for determining
whether two intervals are similar. Fast Fourier Transform (FFT)is a computationally fast
way to calculate the frequency, amplitude and phase of each sine wave component of a
signal. Thus, we compare the power behavior similarity of two intervals by comparing
their discrete Fourier transforms computed using FFT. After the FFT calculation of
a power curve, each frequency is represented by a complex number. In power curve
similarity comparison, the phase offset of the same frequency should not affect the
similarity of two curves. For instance, two power curves might be slightly out of phase
with one another, but have exactly the same impact on the system because they exhibit
the same periodic behavior. So when we compare two power curves, we calculate the
absolute value of the complex number for each frequency, the distance between two
corresponding absolute values, and the Root Mean Square (RMS) of the distances for
all frequencies. The equation is given in a following section.

Figure 6 shows the FFT distance between the sine curves with different values in
amplitude, frequency and phase offset, calculated using our method mentioned above.
We generate 4096 samples for each curve. Ideally, there is only one frequency in the
FFT output of each sine curve. But we get multiple frequencies due to the discrete data
samples. This is the reason why the calculated distance values are not 0’s in Figure 6 (c).
The three curves in Figure 6 (a) have the same frequency and phase offset, but different



amplitude, which determines the simmilarity of two curves. Figure 6 (b) shows the
effect of frequency in our similarity calculation. The small(compared to the values in
(a) and (b)) distance between the curves in Figure 6 (c) demonstrate that the effect of
phase offset is eliminated.
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(a) same frequency and phase offset, different amplitude. dist(1,2)=22.4,
dist(1,3)=89.8, dist(2,3)=67.3
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(b) same amplitude and phase offset, different frequency. dist(1,2)=119.6,
dist(1,3)=115.6, dist(2,3)=120.8
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(c) same amplitude and frequency, different phase offset. dist(1,2)=6.5,
dist(1,3)=8.1, dist(2,3)=3.0

Fig. 6. Power curve distances calculated using our similarity calculation method

A More Robust Sampling Approach for Verification Measuring every interval in
a long-running program is infeasible because of time and space constraints (indeed,



this fact motivates our research). Thus, we use a more robust sampling methodology
to verify that power behavior is consistent within a phase. We choose 20 intervals at
random for each phase of each program to compare the FFT results of their curves. If
the number of intervals in some phase is less than 20, all of the intervals are selected.
The selected intervals for each phase are selected from a uniformly random distribution
among all the intervals in the phase.

Instrumenting for Verification Infrequent basic blocks demarcating the intervals from
the same phase are instrumented to measure each interval in the same way we measure
a simpoint. Each selected interval is measured separately. Then the FFT is performed
on the measured power curve of each interval. The Root Mean Square (RMS) error of
the FFT results is used to evaluate the variation of the power behavior of the intervals in
this phase. For each phase, we calculate the arithmetic average over the frequencies in
the FFT result of all measured intervals as the expected FFT of the phase. The distance
between an interval i and the expected FFT is:

Di =

√

√

√

√

√

√

N
∑

j=1

(

√

cj
2 + dj

2 −

√

aj
2 + bj

2)
2

N

cj and dj are the real and imaginary part of the jth frequency of interval i, respectively.
aj and bj are the real and imaginary part of the jth frequency of the expected FFT
respectively. N is the number of frequencies in the output of Fast Fourier Transform.
Then the FFT RMS of a phase is calculated as:

FFTRMS =

√

√

√

√

√

√

M
∑

i=1

Di
2

M

M is the number of measured intervals in the phase. The lower FFTRMS is, the high
the similarity among the time-dependent power behavior of the intervals in the phase.

The FFTRMS for each phase is then weighted by the weight of the corresponding
phase to get the RMS for the whole benchmark. We evaluated the weighted FFTRMS

for all of the 10 benchmarks in two cases: when phase classification is based on EV
only, and when IPC is used to refine phase classification.

4.4 Interval Length Variance

Using infrequent basic blocks to partition program execution into intervals results in
variable interval length. We use a pre-specified interval size to avoid intervals that are
too small. Intervals of large size are still possible due to the distribution of the infrequent
basic blocks during program execution. We analyze the resulting size for each interval
of each benchmark to show the distribution of the interval sizes.

We evaluate the interval length variance of a benchmark as the weighted RMS of the
interval lengths in each phase. If this value is high, intervals that are of largely different



number of instructions are classified into the same phase, the simpoint for the phase can
not be representative of the phase in terms of power behavior.

5 Experimental Results and Evaluation

Using the power measurement infrastructure described in Section 4, we measured the
CPU power curves for the instrumented benchmarks, the ones with all final infrequent
basic blocks instrumented, the simpoints, and the selected intervals from each phase.

5.1 Instrumentation Overhead

Figure 7 shows the overhead of the instrumentation using different thresholds. It is
normalized to the measured energy consumption of the uninstrumented benchmarks.
A positive value means the measured energy consumption for this configuration is
larger than that of the uninstrumented one. A negative value means the opposite. For
some benchmarks, for example, perlbmk and gap, the energy consumption of the in-
strumented program is slightly lower than the uninstrumented program. One possible
reason is that inserting instructions somewhere might accidentally improve the perfor-
mance or power consumption, possibly due to a reduction in conflict misses in the cache
because of different code placement. Overhead in execution time when different thresh-
olds are used follow the same trend. Instrumentation overhead for power measurement
of a single simpoint is even lower because only one or two of the final infrequent basic
blocks are instrumented.
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Fig. 7. Normalized instrumentation overhead in energy consumption. The differ-
ence between the energy consumption of the instrumented and uninstrumented
benchmark divided by the energy consumption of the latter.

5.2 Total Energy Consumption Estimation

We investigate both BBV and EV as the fingerprint of intervals in phase classification.
A maximum number of clusters, 30, is used to find the best clustering in both cases.



Simpoints are measured and the whole program energy consumption is estimated as

Eest =
k

∑

i=1

Ei × Wi

Ei is the measured energy consumption of the ith simpoint, Wi is its weight, and k

is the number of phases. Although intervals have variable sizes, we estimate the total
energy consumption using the weight based on the number of intervals in each phase.

For BBV-based phase classification, we use three percentage values 0.1%, 1%, and
5% to get the threshold for infrequent basic blocks. The measured energy consumption
of simpoints are used to estimate the whole program energy consumption. The error rate
is the lowest when threshold is 1% due to the trade-off between uniform interval size
and instrumentation overhead. Then we use 1%, 0.1% and 0.05% as threshold in EV-
based phase classification. Energy consumption of a measured benchmark or simpoint
is calculated as:

E = U ×
∑

(I × t)

where U is the voltage of the measured CPU power cable, I is the measured current on
the CPU power cable, t is the time resolution of the power data points. The sum is over
all of the data points for one benchmark or simpoint.

Energy estimation error rate is calculated as:

error =
|energy estimated− energy measured|

energy measured

Execution time estimation is similar to energy estimation.
Figure 8 shows the error rates of the infrequent basic block-based phase classifica-

tion method using different program execution fingerprints. The error reported is that
of the estimate using the threshold that delivered the minimum overall error for each
method: 1% for BBVs, and 0.1% for EVs. The figure shows that EV performs better
than BBV for almost all of the benchmarks. EV improves the estimation accuracy on
average by 35%. One possible reason for the higher error rate of EV for some bench-
marks is that we only record conditional edges taken during program execution. Some
benchmarks have many unconditional edges, such as jmp, so it is possible that some
information is lost in EV, although we significantly reduce the edge vector size. For
example, method sort basket of mcf is called 14683023 times and many of its edges
are non-conditional edges. We can improve the phase classification accuracy through
recording executiion frequency of all edges, at the cost of largger edge vectors and
slower phase classification. All of the following analysis and evaluation are for the ex-
perimental results of EV-based phase classification if there is no specification.

5.3 Time-dependent Power Behavior Similarity

As mentioned in Section 4.3, we use the distance between the FFT results of their
power curves to evaluate the similarity of two intervals in terms of power behavior. We
use 4096 points in the Fast Fourier Transform. The maximum number of data points for
a curve is 10,000 when the oscilloscope is in trigger mode. If the measured data points
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Fig. 8. Error rates of energy consumption estimation using different fingerprints.

for the curve of an intervals is less than 4096, the curve is repeated to reach the number
of frequencies. Figure 9 (a) shows the measured CPU current curves of two intervals
from the same identified phase, while (b) shows that of two intervals from two different
phases. Distance between the FFT values is included to show the relation between time-
dependent power behavior similarity and FFT distance. In Figure 9 (a), the upper curve
uses the left y axis, while the other one use the right y axis, to avoid overlapping curves.
The second column of each group in Figure 10 is the weighted FFTRMS for each
benchmark when EV is used for phase classification.

We measure the IPC using performance counters for each interval and do phase
classification based on IPC to refine the EV-based phase classification. The third col-
umn in each group in Figure 10 is the weighted FFTRMS for each benchmark when
EV+IPC is used for phase classification. The similarity among the intervals is improved
by 22% over using BBVs. Compared to the FFT distance between an interval and an-
other interval from a different phase, the distance inside a phase is much smaller. This
shows that the combination of EV and IPC enables us to classify intervals into phases in
which the intervals have similar power behavior. Thus the power behavior of the whole
program can be characterized by the measured behavior of the simpoints.

5.4 Interval Length Variance

Figure 11 shows the weighted average of interval length variance of each phase for each
benchmark when BBV and EV is used in phase classification respectively. A smaller
number means the intervals of the same phase have very close interval size. Again
it shows that EV is better for our infrastructure because, on average, it causes much
lower interval length variance than BBV no matter which threshold is used. Again One
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Fig. 10. Root Mean Squared error of the FFT calculated based on RMS of FFT
and the weight of each phase.

possible reason for the higher RMS of EV for some benchmarks is that we only record
conditional edges taken during program execution, which results in information loss.
Although the possible reason is the same as in Section 5.2, the higher error rate or
RMS happens to different benchmarks in these two set of experiments. The reason is
that total power consumption is an average metric, if the energy consumption of the
selected representatiove interval is close to the average energy consumption of all of
the intervals in the same phase, the error rate should be low. While RMS of interval
length is used to evaluate the similarity among intervals in the same phase, low error
rate in total energy consumption does not mean this RMS value is small. This also
applies to time-dependent power behavior and is also one of the motivation to use FFT



to evaluate the time-dependent power behavior similarity among intervals in the same
phase.
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Fig. 11. Weighted average of the RMS error of interval length in the same phase.

6 Conclusion

This paper introduced our infrastructure for efficient program power behavior charac-
terization and evaluation. We presented a new phase classification method based on
edge vectors combined with event counters. We described the physical measurement
setup for precise power measurement. By demarcating intervals using infrequently ex-
ecuted basic blocks, we find intervals with variable lengths and negligible instrumen-
tation overhead for physical measurement of simpoints. Through experiments on a real
system, we demonstrated that our new phase classification method can find represen-
tative intervals for energy consumption with an accuracy superior to using basic block
vectors. More importantly, we demonstrated the ability of our infrastructure to char-
acterize the fine-grained time-dependent power behavior of each phase in the program
using a single representative interval per phase. The ability of instrumenting programs
on various levels, identifying phases, and obtaining detailed power behavior of program
execution slices makes this infrastructure useful in power behavior characterization and
optimization evaluation.
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