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ABSTRACT
Approximation is a technique that optimizes the balance between
application outcome quality and its resource usage. Trading qual-
ity for performance has been investigated for single application
scenarios, but not for environments where multiple approximate
applications may run concurrently on the same machine, inter-
fering with each other by sharing machine resources. Applying
existing, single application techniques to this multi-programming
environment may lead to configuration space size explosion, or
result in poor overall application quality outcomes.

Our new RAPID-M system is the first cross-application con-
figuration management framework. It reduces the problem size
by clustering configurations of individual applications into local
"similarity buckets". The global cross-applications configuration
selection is based on these local bucket spaces. RAPID-M dynam-
ically assigns buckets to applications such that overall quality is
maximized while respecting individual application cost budgets.
Once assigned a bucket, reconfigurations within buckets may be
performed locally with minimal impact on global selections. Ex-
perimental results using six configurable applications show that
even large configuration spaces of complex applications can be
clustered into a small number of buckets, resulting in search space
size reductions of up to 9 orders of magnitude for our six appli-
cations. RAPID-M constructs performance cost models with an
average prediction error of ≤3%. For our application execution
traces, RAPID-M dynamically selects configurations that lower the
budget violation rate by 33.9% with an average budget exceeding
rate of 6.6% as compared to other possible approaches. RAPID-M
successfully finishes 22.75% more executions which translates to a
1.52× global output quality increase under high system loads. The
overhead of RAPID-M is within ≤1% of application execution times.
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• Software and its engineering→ Development frameworks
and environments; Software configurationmanagement and
version control systems.
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1 INTRODUCTION
A significant number of important applications can be configured /
approximated to trade off application outcome quality for execu-
tion time reduction. This property can be crucial when applications
are executed on resource constrained devices under soft execution
deadlines, including edge devices and mobile phones. Since multiple
applications execute on the same hardware platform, they interfere
with each other through resource sharing (e.g., memory hierar-
chy, CPU cores, buses, communication networks). Further, different
configurations may have different resource footprints and differ-
ent quality outcomes, making optimal or near optimal selection
of configurations across all applications challenging. In previous
work, single application performance/cost models are constructed
by applying machine learning strategies to all or a subset of the
application”s configuration space. Treating a set of 𝑛 applications
as a single, meta application would allow these strategies to be
applied to the multi-programming case. However, the resulting size
of the combined configuration space is exponential in 𝑛, making
this approach infeasible in practice. Moreover, the performance
model is constructed based on the observations obtained from run-
ning the application under a stable environment. Online adaption
is only designed to deal with single application input dependencies
or runtime noise, but not interference from other applications.

This paper discusses the design and evaluation of RAPID-M
Reconfiguration, Approximation, Preferences, Implementation,
andDependencies forMulti-Programming, a new cross-application
configuration management framework which uses a novel local-
global-local approach that allows a systematic exploration of the
combined configuration search spaces of all active applications. To
the best of our knowledge, our work is the first to address this
problem. The main steps of RAPID-M are:

local (first) - The problem space size is reduced by clustering in-
dividual application configuration spaces into equivalence groups,
called buckets. Buckets combine configurations according to their
similar resource demands and performance slowdown character-
istics – the two dimensions of the summary strategy for reducing
exploration space sizes. Since the performance degradation of an ap-
plication is due to resource availability on the machine, each bucket
also comes with 1) a performance model that predicts the applica-
tion slowdown given the system environment (p-model), and 2) the
common resource demand by configurations in the bucket;
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global - Across applications, a machine model (m-model) is
constructed to predict the overall system workload for any bucket
combinations from active applications, including the option of not
selecting a bucket for an application. These combinations are ex-
haustively evaluated, resulting in the optimal bucket combination
with the highest overall global quality. This bucket combination has
to be feasible, i.e., each bucket in the combination has to contain at
least one configuration that satisfies the execution time constraint
(budget) of the associated application as provided by the user.

local (second) - Finally, a selection within each bucket is per-
formed to allow individual applications to react to minor platform
uncertainties and input dependencies that can be handled without a
global reconfiguration, thereby avoiding reconfiguration overhead.

Machine learning models are used to model the platform-specific
configuration interactions on the level of target system footprints
(m-model), and to determine application specific models for con-
figuration slow-downs in response to varying overall system loads
(p-model). Together, m-model and p-models allow the prediction
of system and configuration behaviors, i.e., assessing the mutual
interference and benefits of configuration selections. If the multi-
programming environment changes due to initiation or termination
of applications, this approach will recompute the overall global con-
figuration using the interference and prediction models.

The target applications of RAPID-M have to be adaptive, i.e.,
must have configurable components/parameters that can be manip-
ulated during runtime, resulting in different cost/quality trade-offs.
Six applications were selected from different domains (financial
analysis, image analyses, machine learning), with three applications
used in multiple related works (e.g., CALOREE [23], PowerDial [16],
ESP [24]) on single-application adaptations. The applications differ
in their configuration space sizes and cost/quality trade-offs.

Experimental results on the six applications and different ex-
ecution traces show the effectiveness of RAPID-M and its imple-
mentation against five other heuristics. Application configurations
can be partitioned into a small number of buckets allowing the sys-
tem to produce global configurations of high quality. The runtime
overhead includes the execution time needed to solve the global
selection problem, the local problem, and any resulting dynamic
reconfigurations. Training times for them-model and p-models are
also reported, capturing RAPID-M’s offline overhead. Compared to
existing approaches in which each application adapts itself individ-
ually and application interference is treated as noise, on a 4-core
machine, RAPID-M achieves 3.4% higher success rate when the
system is not busy (≤4 active apps), and 22.75% higher when busy.
This translates to 2.6% (not busy) and 52.99% (busy) higher overall
output quality. Furthermore, RAPID-M achieves such improvement
with an average of 40% fewer performed reconfigurations.

2 RAPID-M FRAMEWORK OVERVIEW
RAPID-M uses the “standard" notion of a configuration as defined
by most existing adaptive configuration management approaches
[16, 23, 32]. An application’s configuration is a set of discrete “knob"
values, where knobs are entities (e.g., program variables) that im-
pact the quality and cost of the application’s outcome. RAPID-M is
a framework that manages the configurations of concurrent appli-
cations with the goal of choosing individual configurations such

that all individual resource constraints are satisfied while maxi-
mizing the combined quality of active applications. In other words,
RAPID-M solves the Global Configuration Problem defined below.

The particular cost metric used throughout this paper is execu-
tion time, though one might use, for instance, energy consumption
as an alternative possible metric.The quality of an application exe-
cution is defined by an application-specific quality metric applied
to its final output/outcome, e.g., the accuracy of a computed nu-
meric value, or the precision/recall of the set of identified faces in
a face-detection application. If an application fails to successfully
terminate, its execution does not have any measurable quality. Fur-
ther, to enable dynamic reconfiguration, applications are broken
into a collection of work units, with configurations dynamically
assigned to work units at runtime. Work units are also used to keep
track of an application’s progress towards successful termination.

Global Configuration Problem: At system-defined points in
time, 𝑡𝑥 , determine a global configuration vector [𝑐1, 𝑐2, . . . 𝑐𝑛]
with one entry for each active application 1 ≤ 𝑖 ≤ 𝑛, where an
entry is either a valid configuration 𝑐𝑖 or 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 , such that
(1)

∑𝑛
𝑖 𝑄𝑢𝑎𝑙_𝑀𝑒𝑡𝑟𝑖𝑐𝑖 (𝑐𝑖 ) is maximized (𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 entries are ig-

nored), and (2) for each active application 𝑖 , its remaining work
units at time 𝑡𝑥 can be successfully executed within its remaining
execution time budget under 𝑐𝑖 , or the application is terminated.

A single application’s configuration space is the Cartesian prod-
uct of all knob value ranges, where each knob has finitely many
value settings. Assuming that a single application has 𝑘 knobs with
discrete ranges of𝑚 values each, the resulting configuration space
is 𝑂 (𝑚𝑘 ). Existing approaches construct performance models to
rank all configurations in the space according to some optimization
objective. A “brute-force" approach towards the global configura-
tion problem is to treat all active applications as a single, meta
application. A configuration in this meta application is then a com-
bination of all configurations in each component application. The
size of the resulting configuration space is 𝑂 ((𝑚𝑘 )𝑛) for 𝑛 appli-
cations. It is exponential in 𝑛, which may be infeasible large to
effectively explore. However, configuration space exploration is
necessary because of the interdependence of the individual appli-
cation configurations due to shared target system resources. To
the best of our knowledge, the RAPID-M framework is the first to
address configuration management of multiple active applications.

A key design feature of RAPID-M is to model cross-application
configuration interference not at the configuration space level, but
on the system footprints associated with each configuration. A
system footprint is a vector of hardware counters that characterize
the use of different system resources by an executing application,
i.e., are used to represent a configuration’s resource demands. In
addition, footprints can represent resource demands of groups of
active applications, including entire system workloads. Since re-
source sharing and contention happens at the machine level, system
footprints are the right abstraction to represent the impact of such
sharing. This strategy has two main advantages: (1) many config-
urations of an application may have the same system footprint,
and (2) the impact of other applications and their configurations
on the performance of a given application’s configuration can be
modeled based on the combined system footprint of these other
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application configurations. In other words, for the assessment of a
configuration’s performance modeled as an expected slow-down,
only the combined system footprint/workload of other applications
is relevant, and not their particular configuration selections. The
resulting summary information is the key to allowing effective
configuration space exploration management across multiple appli-
cations. This summary information is computed and exploited with
a local offline model training phase, followed by an online global
configuration and online local configuration selection phase.

In the offline phase, single application configurations are clus-
tered into groups with similar system footprints and similar slow-
down behavior in response to overall system workloads. Such
groups of configurations are referred to as buckets. The individ-
ual application configuration spaces are exhaustively explored and
each configuration’s system footprint is recorded together with its
execution time (cost) and quality under different system workloads.
This data is used to train the p-model that captures the slowdown
for each configuration in response to different system workloads.
The interaction of different workloads and configuration footprints
is captured by the m-model which is trained on data obtained by
measuring runtime properties of configuration system footprints
executing with randomly generated, “stresser” workloads. This
stresser workload is introduced by running either another applica-
tion or an instance of “stress" tool, e.g., the Linux Stresser [34].

At runtime, the global optimizationmanager uses the constructed
p-models and m-model to assess the impact of global events (e.g.,
start/exit of applications) on resource availability, and to select the
combination of application configuration buckets that maximize
the overall quality under the changed resource availability. The
selected buckets together with their predicted slowdown are as-
signed to their respective applications. The local controller relies
on optimization strategies used in single-application scenarios for
configuration selection within the assigned bucket.Therefore, we
will concentrate our discussion in this paper on RAPID-M’s offline
component and the online global configuration manager.

3 RAPID-M OFFLINE PHASE
The three key models and abstractions that are generated in RAPID-
M’s offline phase are the target system’s m-model and the applica-
tion’s p-models with their associated configuration buckets.

3.1 Resource Usage Prediction:𝑀
The performance of an application can significantly degrade when
the overall system resource utilization is high. For example, one of
our applications, Bodytrack, has a 15× slow-down in execution time
under heavy system loads. Predicting the overall system load, i.e, the
system environment is crucial before estimating the performance
degradation of an application under multi-programming environ-
ments. The key questions to answer is how a system workload will
change when a new application starts or an existing application
terminates in the context of other active applications.

RAPID-M trains the m-model with a set of experiments, each
with a pair of running “instances" involved. Such instance can be a
realistic application (e.g., one of our benchmark application), or a
Linux “stress" tool [34] that introduces arbitrary workloads to the

system, including I/O, CPU utilization, and hard disk access. The sys-
tem footprint generated from the two instances can vary in different
experiments by using different applications or different configura-
tions. We use Intel’s Performance Counter Monitor (PCM) [17] to
measure the footprint and represent it by a vector 𝑉 where each
entry corresponds to a particular system metric/feature considered
by RAPID-M. RAPID-M, uses [EXEC, FREQ, INST, INSTnom, IPC,
L2MISS, L2MPI, L3HIT, L3MISS, L3MPI, PhysIPC, MEM] [17].

For each experiment (training data point), RAPID-M measures
and collects the footprints when each instance executes in isolation
(𝑣1, 𝑣2) and together (𝑣1,2), all with the same length𝑚 where𝑚 is the
number of features to observe (in our case,𝑚 = 12). RAPID-M then
constructs a separate model for each feature using the standard
regression method. Equation 1 shows the model construction for
the 𝑘-th feature.𝑋 is a matrix of size 𝑁 ∗2𝑚, where 𝑁 is the number
of experiments. The first𝑚 columns of 𝑋 are list of 𝑣1’s and the
last𝑚 columns are list of 𝑣2’s, i.e., each row of 𝑋 is a concatenated
vector [𝑣1, 𝑣2]. The goal is to locate 𝛽𝑘 that minimizes the error 𝜖 .[

𝑣1
1,2 [𝑘], 𝑣

2
1,2 [𝑘], ...𝑣

𝑁
1,2 [𝑘]

]𝑇
= 𝑋𝛽𝑘 + 𝜖 (1)

The m-model is a collection of such models each predicting a
particular feature in 𝑣1,2. When running 𝑛 applications together,
the overall system footprint is estimated by applying𝑀 iteratively:

𝑉 = 𝑀 ⊗ ...(𝑀 ⊗ (𝑀 ⊗ (𝑉1,𝑉2),𝑉3) ...𝑉𝑛) (2)

3.2 Performance Prediction: 𝑃
RAPID-M predicts the performance degradation for each applica-
tion under different environments by a performance regression
model p-model. p-model is trained by collecting the application
slow-down under different configurations and workload environ-
ments. During training, RAPID-M first records the execution time
for an application under configuration 𝑐 when running alone. It
then runs the configuration under different environments induced
by adding extra workloads from different “stressers". Under each
environment, RAPID-M records the overall system footprint 𝑉 and
the execution slow-down (𝛼). The regression model minimizes the
error between prediction 𝛼 and observed slow-down 𝛼 . A unique
p-model is constructed for each bucket. During construction, con-
figurations that are not part of the bucket are not considered.

Different types of models (e.g., Linear-Regression [27], Bayesian-
Ridge [27]) may be a better fit for a particular footprint feature or
slowdown (predicted by m-model and p-model respectively), and
different candidate models may produce accurate predictions based
only on a subset of vector features. The latter issue is addressed
in ESP [25] by first filtering out insignificant features, then train-
ing a higher-order model with the remaining features. However,
the drawback is that it uses a single, linear model approach for
all applications, and does not distinguish between different con-
figurations. Also, to support the slowdown prediction for up to
𝑘 applications, ESP needs to collect the training data by actually
running 𝑘 applications together. In contrast, the p-models and m-
model are trained on single applications. To address the first issue,
RAPID-M maintains a model-pool with multiple models, including
Regular Linear-Regression (LR) regression [27], Elastic-Net (EN)
regression with cross-validation [27], Lasso (LS) regression with
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cross-validation [27], Bayesian-Ridge (BR) regression [27], and a
neural network with a single hidden layer with 50 and ’relu’ activa-
tion function (NN) [7]. When constructing the models, RAPID-M
trains all models in the pool and picks the one with highest accuracy.
For each of these candidate models except NN, RAPID-M first iter-
atively selects the top-K important features in the footprint. Then,
it decides whether to use a higher order regression by comparing
the models from linear and higher order features.

3.3 Bucket Determination
An application’s configurations may have significantly different
behaviors in terms of the system footprint they introduce, and their
performance degradation under different system workloads. How-
ever, these configurations can be clustered into a limited number
of groups with configurations within each group sharing similar
behavior, i.e., introduce similar workloads to the system and suffer
from similar slow-down given a particular environment. This is a
key observation that allows RAPID-M to summarize configuration
spaces with only limited information loss.

Figure 1 shows the dendrogram of hierarchically clustered con-
figurations [9] in one of our benchmark applications (Ferret) by
system footprints using Wards minimum variance method [33].
The X-axis shows the index of all 700 configurations. For simplic-
ity, we truncate the indexes of 𝑁 configurations on the X-axis and
represent them by (𝑁 ). Branches in the graph show the result of
clustering. For example, all 700 configurations are clustered together
at the “root" of the tree (Black Dot). When moving downward, two
“sub-tree"s (clusters) are formed with size 250 and 450 (Yellow Dots).
The Y-axis shows the distance between clusters at certain levels.
The height of each “sub-tree" reveals the distance between the in-
ter sub-cluster (e.g., the distance between the two yellow dots is
the height of the black dot). Thus, configurations can be clustered
into buckets with certain granularity. Configurations within each
bucket have higher similarity in terms of system footprints.

The number of buckets can be determined by the distance thresh-
old (closeness of configurations in a cluster). In Figure 1, if the
threshold is 4, all configurations can be clustered into 5 bucket
(dashed line). For each bucket, a performance model is constructed
to capture the relationship between slow-down and the execution
environment. In Figure 1, the red number on the left represents the
average prediction error (Mean Relative Error) for all 5 buckets. Us-
ing buckets reduces the configuration search space size for Ferret by
two orders of magnitude (5 buckets instead of 700 configurations).

The bucket design captures two aspects of similarity, namely
1) same system footprint: switching between configurations in to
the same bucket will not change the contribution of the applica-
tion to the overall system workload,and 2) same slow-down: all
configurations within a bucket suffer from the same performance
degradation under a given environment. The number of buckets
could range from 1 (similar footprint for all configurations) to 𝑁
(all configurations have a unique footprint). Having more buckets
results in higher configuration similarity, but increases the prob-
lem size, while fewer buckets could hurt the accuracy of m-model
and the p-models. RAPID-M implements a variant of Hierarchical
Clustering[9] as described in Algorithm 1. First, a standard Hierar-
chical Clustering procedure generates the initial buckets, satisfying

the distance threshold𝑇𝑑𝑖𝑠 (first cut). Then, we evaluate each bucket
by training the p-model with 70% of its observations, then validat-
ing with the remaining 30%. If the p-model accuracy𝑇𝑎𝑐𝑐 threshold
is not satisfied, we iteratively refine the bucket that have the worst
p-model accuracy until the threshold is satisfied. Lower 𝑇𝑑𝑖𝑠 and
𝑇𝑎𝑐𝑐 may result in more buckets or a more accurate p-model but
will increase the size of the problem. In RAPID-M, we use 𝑇𝑑𝑖𝑠=4
and 𝑇𝑎𝑐𝑐=6%. The particular choice of these numbers was based on
our experiences with our sample applications.

Input: 𝑎𝑙𝑙_𝑐𝑜𝑛𝑓 𝑖𝑔𝑠 , 𝑇𝑑𝑖𝑠 , 𝑇𝑎𝑐𝑐
Result: buckets
buckets = [all_configs];
buckets = h_cluster(buckets, criterion=’dis’, 𝑇𝑑𝑖𝑠 ) // first cut
err, worst_id = evaluate(buckets);
while err ≥ 𝑇𝑎𝑐𝑐 do

// refine clustering of the worst bucket
tmp_buckets = h_cluster(buckets[worst_id],
criterion=’number’,2);
buckets[worst_id] = tmp_buckets;
err, worst_id = validate(buckets)

end
return buckets;

Algorithm 1: Bucket Determination

4 ONLINE CONFIGURATION MANAGER
The goal of RAPID-M is to find a global optimal configuration for
all active applications. By grouping configurations into buckets,
the size of the global search space is reduced from all combinations
of application configurations to all combinations of application
buckets, reducing the search space by multiple orders of magnitude.
The global optimization problem is solved in two steps: 1) finding
the globally optimal bucket for each application, and 2) finding
the optimal configuration within each bucket. The global manager
provides each local manager with a particular globally optimal
configuration, together with all feasible configurations in the bucket
to which the optimal configuration belongs. The latter information
allows the local manager to change configurations if neededwithout
impacting configuration choices in other applications.

Algorithm 2 describes the runtime algorithm to compute the op-
timal global configuration. It has the property that if the predicted
slow-downs (p-models) and the predicted configuration interac-
tions (m-model) are correct (accurate within an error threshold),
then the selected local configurations are globally optimal under
the user defined time constraints and priority weights assuming all
active applications can successfully finish the remainder of their ex-
ecution. The global configuration manager is invoked each time an
application starts, an active application terminates, or an active ap-
plication requires a new bucket assignment. Global reconfiguration
may also be triggered every fixed time interval, or may be requested
by local configuration managers, i.e., a local controller if due to
system uncertainties no feasible configuration in the assigned 𝑓 𝐶𝑔𝑠
set meets the application’s execution time constraint.
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Figure 1: Dendrogram of Clustering Configurations into Buckets; Vertical Bar Shorter⇒Higher Inner-Cluster Similarity; Dots
with Numbers: Number of Configurations in a Cluster (Sub-tree); Percentage Number: P-Model Prediction Error

5 SAMPLE APPLICATIONS
To assess the practical, end-to-end effectiveness of RAPID-M, we
implemented and evaluated a prototype system. The evaluation uses
six sample applications which have been used in multiple related
works [16, 22, 25] in approximation: Swaptions[3], Bodytrack[3],
Ferret[3], FaceDetection[5] SVM[27], and NeuralNet (NN)[27].
Swaptions – financial analysis application. Computation is based
on iterative simulation. Output quality is defined as the average ac-
curacy loss across all swaptions calculated. It has 10 configurations.
Bodytrack – computer vision application that tracks a set of hu-
man body components from a video frame by frame. The output
quality is calculated by evaluating the position accuracy loss per-
component in all frames. Bodytrack has Two Knobs: number of
annealing layers from [1, 5], number of particles to track sampled
within [100, 4000] with 50 configurations in total.
Ferret – image similarity application that returns the top-𝐾 images
in a database for a query image ranked by content-similarity using
a Multi-Probe LSH [21] algorithm. We use a common ranking score
function shown in Eq 3:

𝑒𝑟𝑟 =2 ∗ (𝑘 − 𝑧) (𝑘 + 1)+∑
𝑖∈𝑍

|𝑟𝑎𝑛𝑘1 (𝑖) − 𝑟𝑎𝑛𝑘2 (𝑖) | −
∑
𝑖∈𝑆

𝑟𝑎𝑛𝑘1 (𝑖) −
∑
𝑖∈𝑇

𝑟𝑎𝑛𝑘2 (𝑖) (3)

with𝑄 = 1 − 𝑒𝑟𝑟/𝑘 (𝑘 + 1) Here, Z is the set of result images appear-
ing in both 𝑙𝑖𝑠𝑡1 and 𝑙𝑖𝑠𝑡2. S and T are the sets of images appearing
exclusively in 𝑙𝑖𝑠𝑡1 and 𝑙𝑖𝑠𝑡2. 𝑘 is the size of set S or T, and 𝑧 is
the size of Z. 𝑟𝑎𝑛𝑘1 is the rank of an image in 𝑙𝑖𝑠𝑡1, and 𝑟𝑎𝑛𝑘2
the rank in 𝑙𝑖𝑠𝑡2. In our case, we use the execution output as 𝑙𝑖𝑠𝑡1
and the default output as 𝑙𝑖𝑠𝑡2. Ferret has three knobs: number of
probe bucket sampled within [2, 20], number of hash tables {2, 4,
8}, and number of iterations [10, 500] to compute Earth Mover’s
Distance [30]. Ferret has emph700 configurations in total.

FaceDetection – object detector that detects human faces from
a series of input images based on Haar Cascade[5]. We adopt the
standard measurement of recognition performance, the F-score [6].
FaceDetection has three knobs: pyramid levels sampled within
[5,25], neighbors pixels to examine {0,4,8}, and the minimum num-
ber of eyes {0,1,2}, with 90 configurations in total.
SVM and NN – two supervised image classifiers. They run 1000
iterations on a set of labeled data and construct a Support Vector
Machine and a Neural Network model. Classification accuracy is
used as the quality. Both SVM and NN have three knobs: learning
rate sampled within [1e-7,1e-5], batch size {64, 128, 256, 512, 1024},
regularization rate [5000, 25000], resulting in 250 configurations.

All our applications are input dependent, i.e., the cost/execution
time for each work unit can vary for different inputs. Ferret has the
most significant deviation of cost per work unit (mean=87.85ms,
std = 80). () has the least deviation (mean=2191.22ms, std=25). Such
dependency shows the necessity of adjusting the configuration
dynamically (re-configuration) even when the application is run-
ning alone. The problem gets more complex in multi-programming
environments with cross-application interference.

6 RAPID-M IMPLEMENTATION
The RAPID-M framework is implemented as a set of offline and on-
line modules. During new application development or adapting an
existing application for execution within RAPID-M, the application
developer has to provide information to RAPID-M’s offline local
module via provided, simple APIs. Such information includes (1)
the arguments needed to run each application, (2) quality notions
to evaluate application outcomes through profiling, and (3) config-
uration space specification. Items (1) and (2) are implemented as a
Python module, and item (3) is a separate configuration file. This
information enables the offline application profiler to automatically
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Input: Set of 𝑛 applications with user specified execution time
constraints𝑇𝑖 , for 1 ≤ 𝑖 ≤ 𝑛. For each application, set of buckets
with associated p-models, bucket footprints, and cost / quality
models. A target machine m-model.

Result: Termination or Bucket selection for each application 𝑖 , 𝑏𝑖 .
foreach bucket combinations [𝑏1, 𝑏2 . . . 𝑏𝑛] do

determine global footprint (gfp) using m-model:
gfp =

⊗
𝑀 (fp(𝑏1), fp(𝑏2), . . . fp(𝑏𝑛 ))

determine vector of slow-down factors (sdf) for each bucket
using the bucket-specific p-models 𝑝𝑏

sdf = [𝑝𝑏1 (𝑔𝑓 𝑝) , 𝑝𝑏2 (𝑔𝑓 𝑝) , . . . 𝑝𝑏𝑛 (𝑔𝑓 𝑝)]
foreach bucket 𝑏𝑖 do

determine set of feasible configurations (fCgs) that
satisfy the execution time constraint𝑇 𝑟𝑒𝑚

𝑖
for the

remainder of the execution:
𝑓 𝐶𝑔𝑠 (𝑏𝑖 ) = {𝑐 ∈ 𝑏𝑖 | 𝑠𝑑 𝑓 [𝑖 ] ∗ 𝑐𝑜𝑠𝑡 (𝑐) ∗

#𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑤𝑜𝑟𝑘𝑢𝑛𝑖𝑡𝑠 (𝑐) ≤ 𝑇 𝑟𝑒𝑚
𝑖

}
if 𝑓 𝐶𝑔𝑠 == ∅ then

reject bucket combination and break
end

compute the maximal quality configuration𝑚𝑄𝐶𝑔 (𝑏𝑖 )
of all feasible configurations of 𝑏𝑖 :

𝑚𝑄𝐶𝑔 (𝑏𝑖 ) = 𝑐 with 𝑞𝑢𝑎𝑙 (𝑐) ≥ 𝑞𝑢𝑎𝑙 (𝑐𝑥 ) for all
𝑐𝑥 ∈ 𝑓 𝐶𝑔𝑠 (𝑏𝑖 ))

end
compute the global quality GQ([𝑏1, 𝑏2 . . . 𝑏𝑛]) as a

𝑛∑
𝑖

𝑞𝑢𝑎𝑙 (𝑚𝑄𝐶𝑔 (𝑏𝑖 ))

end
Select valid (non rejected) combination of buckets with maximal
GQ: [𝑏𝑚𝑎𝑥𝑄

1 , 𝑏𝑚𝑎𝑥𝑄

2 . . . 𝑏
𝑚𝑎𝑥𝑄
𝑛 ]

Return to each application 𝑖 its bucket 𝑏𝑚𝑎𝑥𝑄

𝑖
and feasible

configurations 𝑓 𝐶𝑔𝑠 (𝑏𝑚𝑎𝑥𝑄0
𝑖

) . If no bucket assignment for an
application, select “terminate".

Algorithm 2: Global Configuration Manager

collect profiling data for an application and is necessary for any sys-
tem where offline modeling is required (e.g., OpenTuner [2]). The
information is needed for offline construction of p/m-models and
bucket partitioning, and online configuration management to track
application progress through monitoring completion of work units.
The offline model training is performed on the target platform to
produce the system footprints and stresser workloads. The artificial
stresser workloads are generated by LINUX’s “stress" tool [34].

In contrast to other approaches (e.g., ESP[24]), RAPID-M collects
each application’s profile data, and constructs the models inde-
pendently of other applications, making RAPID-M easily scalable.
The offline generated information is represented in an application
profile and stored on the RAPID-M server, which also hosts the
online global configuration manager. Just before application execu-
tion, the application user specifies an execution time budget (cost
budget). During application executions, the global configuration
manager keeps track of all active applications’ progress and their
remaining budgets. It then determines bucket assignments for each
application using Algorithm 2. Application start and termination

Figure 2: RAPID-M Overview: Solid Border Boxes Provided
by RAPID-M; Dashed border Required from Developers.

events trigger the reevaluation of the local bucket assignments,
in addition to explicit requests from local controllers. Each active
application has its own local controller, which communicates with
the global configuration manager to receive bucket assignments
or to request global bucket reassignments. The local controller is
responsible for selecting the optimal configuration within its as-
signed bucket. Configurations in the same bucket shares similar
footprints, thereby local reconfiguration can be performed safely
without impacting the overall system footprint visible by other
applications, i.e., performance impact on others is small.

Figure 2 shows the RAPID-M framework overview. The RAPID-
M profiler and learner (for model construction and prediction)
are implemented in Python. The local runtime controller is a C++
library with API’s to be integrated into source code.During runtime,
it communicates with the online global configuration manager (in
PHP). The manager communicates with the learner via sockets.

Local Application Profile: It is designed as a data collector for
the developers to train the application for RAPID-M required mod-
els. The profiler requires the developer to specify individual knob
settings, the output quality evaluation, and application execution
instructions. Table 1 shows the profiling strategy of RAPID-M. For
each configuration𝐶𝑖 , RAPID-M’s profiler runs 1+𝐾 tests. The first
run is a base-run where applications execute alone on the target
system using𝐶𝑖 , measuring the Base Cost: 𝑐 , Output Quality: 𝑞, and
System Footprint: 𝑣 . Then the profiler runs the application 𝐾 times
each with a different “stresser". For each run, RAPID-M records the
System Footprint of the stresser when running alone: 𝑣𝑠 , the Overall
System Footprint: 𝑣𝑎𝑠 , and the execution time of the application 𝑐𝑎𝑠
executing with the stresser. The value of 𝐾 can be set by developers
with a default value of 10. Larger 𝐾 will collect more slow-down
observations resulting in higher profiling overhead.

Global Learner: After the profiler(s) collect the training data, the
data is sent over to a global server for model construction. During
the training, the learner:
- Constructs / Updates the m-model for the machine: uses all ob-
served system footprint from all applications,𝑋 = [𝑣𝑠 , 𝑣𝑎] 𝑌 = [𝑣𝑎𝑠 ]
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Table 1: Data Collected by RAPID-M Profiler

Data Description Usage

base-run
c cost when alone calculate slow-down
v footprint when alone m-model construction
q output quality online selection

stress-run [𝑐𝑎𝑠 ] cost when app+stressers calculate slow-down
[𝑣𝑠 ] footprint of stressers m-model Construction

[𝑣𝑎𝑠 ]
overall footprint of
app+stressers

m-model Construction
p-model Construction

- Computes the bucket for the application: uses the observed system
footprint of all configurations: [𝑣]
- Constructs the p-model for the bucket: uses overall system foot-
print and slowdown for the application: 𝑋 = [𝑣𝑎𝑠 ], 𝑌 = [𝑐𝑠/𝑐]
- Update the bucket based on the prediction accuracy
Global Manager: During the initialization phase, after the learner
finishes the bucketization / p-model construction for the applica-
tion and updates the m-model, the models will be stored on the
server. Summary information will be kept as app_profile for runtime
control. During runtime, the manager keeps track of the state of
all applications on the target machine. There are four cases when
running applications need to contact the server:

(1) Before execution: The application notifies the server that it
is about to run so that the server can predict the slow-down
for all the currently active applications.

(2) Re-configuration: The application actively requests a new
bucket assignment when no configuration in the current
bucket can satisfy the budget constraint.

(3) Routine Check: The application periodically checks with
the server for updated bucket assignments. This is needed
since the assignment can be changed when new applications
start on the same machine. By default, RAPID-M performs a
routine check after each 10% of the total work units.

(4) After execution: The application reports the termination of
the execution to let the server re-evaluate the slow-down for
the remaining applications.

Each application on the machine is in a state of either ACTIVE or
IDLE. All ACTIVE applications will also be associated with a budget.
The manager updates the global bucket selection whenever a new
request comes in, except “Routine Check."

Local Controller: The global manager returns the optimal bucket
assignment for an application along with an optimal configuration
within the bucket based on the remaining budget and execution
progress reported by the application. The local controller deploys
the configuration. However, unexpected disturbances like input
dependencies may affect the real execution time for the application.
The local controller adapts the application behavior by re-selecting
the optimal configuration within the assigned bucket.

7 MODEL VALIDATION
RAPID-M predicts the performance degradation (slowdown) of an
application by first predicting the overall system footprint using the
m-model and then the per-application slowdown with the corre-
sponding p-model. The prediction accuracy relies on the quality of

Table 2: Selected Model and Features.Poly: polynomial fea-
tures used; MRE: slowdown prediction error

# configs & # buckets Model Poly MRE

Swaptions 10 & 1 BR T 2%
Bodytrack 50 & 2 BR / BR T / T 1%/2%

Ferret 700 & 5 EN / BR / BR
/ BR / EN

T / T / T
/ T / F

2%/1% / 2%
/1%/2%

FaceDetect 90 & 3 EN / BR / BR T / T / T 1% /1% /1%

SVM 250 & 4 LS / LR
/ BR / BR

T / T
/ F / T

1%/2%
/1%/2%

NN 250 & 5 BR / BR / BR
/ LS / BR

T / T / T
/ F / T

2%/1% /1%
/3% /1%

bothm-model and p-models. RAPID-M constructs the p / m models
from a set of publicly available models as discussed in Section 3: 1)
Neural Net (NN)[7] with 1 hidden layer and 50 neurons, using ’relu’
as the activation function; 2) Linear regression (LR)[27]; 3) Lasso
(LS)[27] regression with cross-validation; 4) Elastic net (EN)[27]
regression with cross-validation; and 5) BayesianRidge (BR)[27]
regression. The RAPID-M framework uses a modular design and
allows developers to add more models to the model pool.

Bucketing with p-model: The purpose of bucketing configura-
tions is to reduce the search space size from the number of all
configuration combinations to the number of combinations of buck-
ets. However, this approach requires a good prediction of both
system environments and bucket slowdowns. Therefore, besides
the footprint similarity, the number of buckets is determined by
the accuracy of the per-bucket slowdown model (p-model).

In Table 2, the column named “# configs & # buckets" shows the
number of buckets constructed from the total number of configu-
rations. Column “Model" and “Poly" report the type of model and
whether the model use polynomial features or not. Column “MRE"
reports the per-bucketMean Relative Error of slow-down predic-
tion. The different models types and features selected by RAPID-M
show the need for model customization. Comparing to ESP [25]
where Elastic Net is used across multiple applications, RAPID-M
locates the best model on an application bucket level. RAPID-M
reduces the overall problem size by clustering large configuration
spaces into a few buckets while still providing an accurate slow-
down prediction with an error below 3%, and 1.5% on average,
which justifies the feasibility of this approach.
System Profile Prediction with m-model: m-model validation
uses system footprints consisting of 12 features. For space reasons
we do not list per-feature prediction accuracy. On average, RAPID-
M has an R2 score of 0.93 for all features with an MRE of 14.8%.
Optimality Validation: Though the prediction accuracy of the
p-model is high (see Table 2), m-model predicted overall system
footprint is used when applying the p-model during runtime since
the future behavior of the system cannot be measured. Errors due
to m-model prediction errors can impact slow-down prediction ac-
curacy, which negatively effects bucket and configuration selection.
We conduct another simulation to investigate how the error propa-
gation from m-model to p-model would affect selection optimality.

The experiment first runs an application with a stresser and
records (1) the footprint of the application, 𝑓 𝑝𝑎 , (2) the footprint
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Figure 3: Impact of Error Propagation on Optimality (Hit
Rate and Quality Loss) under Different Budget Scales.

of the stresser 𝑓 𝑝𝑠 , (3) the overall environment 𝑒𝑛𝑣 , and (4) the
application slowdown 𝑠𝑑 . With the performance profile of the ap-
plication, the optimal configuration 𝑐𝑜𝑝𝑡 can be computed using
𝑠𝑑 . We then compute the selected, “optimal" configuration 𝑐𝑝 by
using the slowdown predicted by applying the p-model to 𝑒𝑛𝑣 . Fi-
nally, we predict the environment 𝑒𝑛𝑣𝑚 by applying them-model to
[𝑓 𝑝𝑎 , 𝑓 𝑝𝑠 ], and predict the slowdown using the p-model on 𝑒𝑛𝑣𝑚 ,
then make the selection 𝑐𝑚+𝑝 . The difference between 𝑐𝑜𝑝𝑡 and
𝑐𝑚+𝑝 or 𝑐𝑝 is caused by the error in the p-model with or without
the m-model. We evaluate such difference in terms of (1) hit rate:
whether the selection is identical, and (2) quality loss: relative loss
of quality caused by the error, calculated by | (𝑞 − 𝑞) |/𝑞 where 𝑞
and 𝑞 denote the quality of the configuration picked by the strategy
and the optimal configuration, respectively. Since 𝑐𝑜𝑝𝑡 is the opti-
mal configuration found offline, any selection that yields a higher
quality than 𝑐𝑜𝑝𝑡 will also be considered a loss of quality for under
estimation of the cost. We run the simulation covering the whole
range of possible budgets for each application from 10% to 100%
of𝑀𝐴𝑋 −𝑀𝐼𝑁 , where𝑀𝐴𝑋 and𝑀𝐼𝑁 represent the highest and
lowest cost of all configurations when running alone.

Figure 3 shows the optimality evaluation result of the simula-
tion. The X-axis represents the available budget percentages. The
lines following the left Y-axis report the average prediction cor-
rectness of the configuration selection across all applications, e.g,
100% means that the optimal configuration from RAPID-M gives
the exact same configuration as the oracle. The bars following the
right Y-axis show the relative loss of quality. The loss of quality is
computed by comparing the quality outcome with optimal config-
uration under the budget (as determined by offline measurement)
against the configuration computed by p-model with or without
the m-model. Note that “P" strategy cannot be used in the real
deployment of RAPID-M but is only intended to show the impact
of prediction errors caused by the p-model alone. Bucket selection
is performed at runtime using the m-model, however we assume
the same bucket selection for both, the P and M-P models in this
simulation. As shown in the graph, if the environment is known,
the error in p-model contributes to ≤10% of selection difference as
the optimal. The errors of combining m-model and p-model result
in different configuration selections on average in 19.9% of the cases.

However, the wrongly selected configuration is close to the opti-
mal configuration, i.e., suffers only up to a 6% output quality loss
with an average of 3.3%. This indicates that the embedded errors in
m-model and p-model affect the output quality to a limited extent.

8 RAPID-M EXPERIMENTAL EVALUATION
We conduct several experiments to show the effectiveness of key
components of our approach. These experiments concentrate on
showing the ability of RAPID-M to produce configuration selec-
tions of high quality. The evaluation methodology compares possi-
ble configuration selection strategies with RAPID-M on different
sets of concurrently active applications. We define the following
alternative configuration selection strategies which are constructed
either as extensions to existing single application approaches or
multi-application strategies for other problems (e.g., ESP [24] for
scheduling). The strategies differ in what information they use to
determine each application’s configuration.
ContextOblivious (CO): Applications are not aware of each other.
Slowdown caused by other applications is treated as “noise.”
AwareShare (AS): This strategy is partially inspired by ESP[24].
It measures the overall environment of different combinations of
benchmark applications offline using their default configurations
(ignoring buckets). Then it applies the p-model on the recorded
environment to select optimal configurations. This strategy is only
used as an oracle in static evaluation where the application combi-
nation is known before execution.
RAPID-M (RM): This strategy utilizes the full power of RAPID-M:
configurations are clustered into buckets, the m-model predicts the
system environment, and p-models predict slowdown.
RAPID-Mwith Rush-To-End (RM_Rush): This strategy extends
RAPID-M with a rush-to-end feature that artificially increases the
predicted slowdown up to 1.5X when 60% of the work units are
completed and the remaining budget is no more than 10% of pre-
dicted cost. This is designed as an insurance policy that tries to
avoid failing an execution after most of the work has been done.
EqualShare (ES): Each application divides its assigned resource
budget by the number of concurrently active applications. This
reduced budget is used to determine the application’s configuration.
Always Low(LOW): Use lowest cost configuration for execution.

Table 3: Strategies Used for Comparison

Utilizes
m-model

Slowdown
for N apps

Available in
Evaluation

CO - 1.0 Static / Dynamic
AS - P(measured) Static
RM ✓ P(M()) Static /Dynamic

RM-Rush ✓ rush( P(M()) ) Dynamic
ES - N Static / Dynamic

LOW - - Dynamic

Table 3 summarizes the differences between the strategies. The
slowdown prediction aggressiveness increases going down the table.
For each possible group of two to six sample applications and three
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(a) low budget (scale=80%) (b) medium budget (scale=100%) (c) high budget (scale=150%)

Figure 4: Static Configuration Selection Comparison under Different Budgets Scales.

different budget constraint levels (high, medium, low), we measured
the overall combined quality outcomes of the applications.

8.1 Global Reconfigurations - Static
The first set of experiments assesses the effectiveness of the dif-
ferent strategies under a controlled (static) environment where
the number of executed applications is fixed. An optimal strategy
would select single configurations for each application that together
maximize the global quality. Each application starts at the same
time and reconfiguration is disabled. The result will indicate how
well the strategies work in modeling the interactions across active
applications. If an application finishes before other applications, it
will restart with the same configuration until all applications finish
at least once thereby maintaining the overall system environment.
Strategies are evaluated on three aspects:

• Violation: Execution time ≥ provided budget.
• Misprediction: No feasible configuration can be found by the
strategy though there exists at least one.

• Exceeding Rate: Fraction the execution time exceeds the bud-
get; E.g.: rate=1.0 indicates twice the budget.

Figures 4a, 4b, and 4c show the performance of the computed
global configurations by the different selection strategies for low
(80%), medium (100%), and high (150%) resource budgets (time dead-
lines) for each application. The scales are defined the same as in
Figure 3. Note that even if an application gets 150% of budget scale,
it still may not be able to run with the highest configuration be-
cause of the overall system workload. The results show that: 12.7%
of executions using 𝐶𝑂 violate the budget when the system is not
busy (≤4 active apps), and 56.1% when busy. RAPID-M has a vio-
lation rate of 6.11% and 40.5%, respectively. As a comparison, the
designed oracle 𝐴𝑆 violates 3.5% and 26.6% due to either errors in
the p-model, input dependencies, or minor system effects since no
reconfiguration is performed. For executions that violates the bud-
get, RAPID-M exceeds the budget by an average of 6.6%.𝐶𝑂 exceeds
the budget by 11.45% on average and up to 50%. 𝐸𝑆 predicts the
slowdown too aggressively and 40.74% of executions die because no
feasible configuration can be provided resulting in misprediction.

Generally, budget violation could be "rescued" by reconfigura-
tion during runtime. However, more frequent violations along with

higher exceeding rate puts more pressure on the dynamic reconfig-
uration. This experiment shows that RAPID-M lowers the violation
rate by 33.9% compared to 𝐶𝑂 with a small exceeding rate of 6.6%.

8.2 Global Reconfigurations - Dynamic
The second set of experiments shows the overall performance of
RAPID-M with local and global reconfigurations. We evaluate the
performance of RAPID-M by dispatching different applications
starting at random times (to mimic the unpredictable real-world
execution pattern) each with a given budget. Each application gets
to reconfigure during the execution. We first generate a series of
execution traces showing when to start which application by giving
each application infinite budget such that all applications finish
successfully with the highest setting, i.e., best configuration pro-
ducing the highest possible output quality (Mission in Figure 5). For
each generated trace (mission), we repeat the trace with shrinking
budgets to force reconfiguration using different strategies. Different
strategies are evaluated on four aspects:
- Rejection: Failing to find a feasible configuration at application
start time. Reported as a rate.
- Success: Finishing the execution within budget Reported as rate.
- Reconfiguration: Number of reconfigurations in response to changes
in performance. More frequent reconfiguration is usually caused
by the mismatch between the real and predicted execution.
- Output Quality: Normalized overall output quality from 0 to 1.0
for applications that successfully finish. The quality achieved by
the lowest setting is 0. A failed execution is penalized by a negative
quality of -0.5. An application has to terminate successfully with a
valid configuration in order to be considered in the overall quality.
To demonstrate the performance in different scenarios, we run
the experiment with a threshold 𝑁 such that the simulator will
stop dispatching new applications when there are 𝑁 active applica-
tions. Figure 5 shows an example of the experimental results for
executions using 𝐶𝑂 and RAPID-M with a 10-minute-execution
trace where 𝑁=4. As shown in the graph, executions using 𝐶𝑂
are more likely to fail (shown as dashed lines followed by crosses)
during the middle of execution due to underestimating the slow-
down. However, only two runs failed using RAPID-M excluding
the two runs that got rejected (shown as crosses). We omitted the
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Figure 5: Sample Execution using Different Strategies for a Mission Trace (top left): Length=10 min, N=4, Budget_Scale=1.0.

Figure 6: Averages from Dynamic Configuration Selection
on 18 Mission Traces and Low/Medium/High Cost Budgets.

trace for other strategies due to space limitation. 𝐿𝑂𝑊 finishes all
executions indicating that there exists at least one solution that
successfully executes the trace. 𝐸𝑆 rejects most executions due to
overestimating the slowdown. As for 𝑅𝑀_𝑅𝑈𝑆𝐻 , one of the failed
runs is "rescued" by adding the ’rush_to_end’ strategy.

Figure 6 summarizes the results of 18 traces of 10 minutes, each
repeated with multiple budget settings using different strategies.
Quality is calculated as the average per-run quality across all traces.
Quality per application run is calculated by the raw quality value
normalized by its quality range as discussed above. (0.0 and 1.0 in-
dicate the lowest and the highest quality). Different quality notions
are application-specific and discussed in Section 5. To summarize,
𝐸𝑆 predicts the slowdown so aggressively that it rejects most ex-
ecutions and has 54.4% of RAPID-M’s success rate. On a 4-core
machine, RAPID-M achieves a 3.4% higher success rate than exist-
ing approaches (modeled by 𝐶𝑂) when the system is not busy (≤4
active apps), and 22.75% higher when busy. This translates to 2.6%
and 52.99% higher output quality. Furthermore, RAPID-M achieves
its improvement while reducing the number of reconfigurations to

40% of 𝐶𝑂 . 𝑅𝑀_𝑅𝑈𝑆𝐻 further improves the quality by an average
of 1.6% higher by enabling more applications to finish.

8.3 Off-line and Runtime Overheads
We evaluate RAPID-M on both off-line profiling/model training,
and runtime reconfiguration on a single-socket machine with 4
cores at 3.7GHz, and 16GB of RAM at 2666MHz.
Off-line Overhead: RAPID-M and existing approaches for single
application configuration selections occur overheads due to training
of different models. These off-line training times can be substantial,
sometimes in the order of days. If fact, Meantime[10] reported
training times of up to two weeks for a single application. The
overhead is determined by the configuration space and the length of
per-configuration training needed for collecting meaningful results.

Table 4 summarizes the offline overheads of using RAPID-M.
The second column reports the number of Lines Of Code changes
required from the developer to integrate RAPID-M library calls
into the original source code. The column “# configs" reports the
total number of configurations for each application. The column
“profiling" shows the time required to collect the performance data.
The last column reports the time to construct the buckets and their p-
models. As shown in the table, the effort required from the developer
is minimal, as compared to the relatively large configuration space.
However, the data collecting phase can be time-consuming with an
overhead proportional to the complexity of the application.

Table 4: RAPID-M Implementation with Offline Overheads

# LOC
Changes

Offline Training Overhead

# configs profiling bucket and
p-model constr

Swaptions 14 10 44.4 mins 22.72 secs
Bodytrack 17 50 72.5 mins 35.69 secs
Ferret 20 700 8.7 hours 189.79 secs
Facedetect 20 90 28.2 hours 374.34 secs
SVM 20 250 12.4 hours 21.32 secs
NN 20 250 27.6 hours 15.95 secs

Runtime Overhead: The dynamic overhead is measured as the
average time an application has to wait for the server’s answer and
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the local reconfiguration time if the bucket assignment changed.
Overall, the average turnaround time of requesting a bucket assign-
ment is ∼ 201ms using an off-the-shelf system. The major part of
the overhead comes from the online application of the m-model
and p-models. Therefore, the overhead can be further reduced by
selecting a more powerful server and/or a network with lower la-
tency. The average execution time overhead experienced by each
application was less than 5% of their execution time.
Challenges and Limitations: RAPID-M uses the system footprint
as a key abstraction to represent configurations. However, this as-
sumes the availability of hardware counters/metrics for cost model
construction. In our experience, the model accuracy dramatically
relies on the training coverage (the "stresser"). With growing diver-
sity of the target applications, we expect RAPID-M to need more
training to refine its models. Since we predict the combined/global
execution environment through iteratively applying the m-model,
the error may propagate, resulting in decreased prediction accuracy.

9 RELATEDWORK
Exploiting application interference has been explored by several
research groups in the context of non-configurable applications. In
addition, using approximation and reconfiguration as an optimiza-
tion opportunity has been discussed in multiple works recently.

Configuration Management: Several control theoretical ap-
proaches [10, 16, 37] aim to deal with runtime disturbance. Joule-
Guard [15] and Caloree [22] combine machine learning with con-
trol theory to overcome the shortcomings in each strategies when
used separately. Probabilistic and approximate programming use
probability variables and their distributions [4, 11–13, 26, 28, 29].
This research focuses on how to represent such distributions and
operations on these distributions induced by operations on their
associated probabilistic approximate variables. In the database com-
munity, approximation has been used to provide statistical error
bounds on queries [1, 36] and more recently in the context of
Hadoop (Map-Reduce) applications [14, 19]. These works target
single-user environments and interference between multiple active
applications is ignored. These approaches could be deployed in
RAPID-M as the local controller selection strategy.

Performance Prediction: Significant research focuses on con-
structing cost models. Learning based models [8, 18, 25, 31, 35]
predict performance through either input or execution features,
with model accuracy bound by the richness of the data set, and
introducing runtime overheads. Our work uses a similar approach
to predict the slowdown for each configuration rather than the
base performance in the single-application scenario. Control the-
oretical approaches [10, 15, 16, 37] aim to deal with runtime dis-
turbance. However, to directly extend these approaches to multi-
programming environments, the model has to be built on the entire
search space which is infeasible due to the size. Even getting the
profile for a single large application may take weeks ([10]).

Interference Prediction: Optimizing the behaviors of groups
of applications in a multi-programming environment has been the
goal of different research efforts. Models for predicting application
interference have to deal with the non-linear impact of resource
sharing on individually observed application performance / slow-
downs. D-Factor [20] explores the inter-application performance

degradation through computing the slow-down factor measured
by the degradation when running with computation or memory-
intensive stressers. However, D-Factor requires the measurement
of current system footprints to perform the prediction. The ESP
system [25] is similar to our approach, since it measures specific sys-
tem footprints for different applications. Since approximation is not
considered, each application has only a single footprint, resulting
in a very small set of samples over which to train their model. Also,
ESP requires the actual training process of 𝑘 application running
simultaneously to support the prediction of slow-down among up
to 𝑘 applications. In contrast, our approach is based on large con-
figuration spaces for each application. Each application is trained
individually, making our approach more flexible since groups of
applications do not have to be known and trained in advance which
makes RAPID-M’s approach much more scalable.

10 CONCLUSION
To the best of our knowledge, RAPID-M is the first framework that
enables effective and efficient approximation / configuration man-
agement across reconfigurable applications that execute concur-
rently on the same system. RAPID-M dynamically adapts multiple
applications together at the same time, allowing the selection of
configurations across all active applications that together result
in the highest overall quality while respecting each application’s
resource budget (here execution time). Without the global opti-
mization, applications with only local adaptation may encounter a
higher failure rate and lower overall quality.

The global impact of a local configuration selection is predicted
through local configuration system footprints, a global model that
combines different footprints, and a performance model that consid-
ers the overall system environment. RAPID-M significantly reduces
the configuration search space of each application by up to two
orders of magnitude through clustering configurations with similar
behaviors into buckets, thereby allowing the exploration of the en-
tire overall, global search space. For each of such bucket, RAPID-M
constructs a specialized performancemodel with average prediction
error of ≤3%, and a machine model for predicting overall system
environments. Applications can be trained independently. Such
a design along with the reduced search space makes RAPID-M
scalable. Experimental results using six applications and different
concurrent traces of application start and exit events show that
RAPID-M is able to select globally optimal configurations. Com-
pared to other possible approaches, RAPID-M makes configuration
selections that lower the average budget violation rate by 33.9%
with an average exceeding rate of 6.6%. At runtime, RAPID-M suc-
cessfully finishes 22.75% more executions which results in a 1.52×
improvement of output quality under high system loads. For our
benchmark applications, the overhead of RAPID-M is within ≤1%
of the application’s execution time.

All code and raw data sets are available on github at https://
github.com/niuye8911/rapid_m.
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