Chapter 1

ENERGY MANAGEMENT OF VIRTUAL MEMORY
ON DISKLESS DEVICES*

Jerry Hom

Ulrich Kremer

Department of Computer Science
Rutgers University
Piscataway, New Jersey

Abstract

In a pervasive computing environment, applications are able to run
across different platforms with significantly different resources. Such
platforms range from high-performance desktops to handheld PDAs.
This paper discusses a compiler approach to reduce the energy con-
sumption of a diskless device where the swap space is provided by a
remotely mounted file system accessible via a wireless connection. Pre-
dicting swapping events at compile time allows effective energy manage-
ment of a PDAs wireless communication component such as a 802.11 or
Bluetooth card.

The compiler activates and de-activates the communication card
based on compile-time knowledge of the past and future memory foot-
print of an application. In contrast to OS techniques, the compiler can
better predict future program behavior, and can change this behavior
through program transformations that enable additional optimizations.

A prototype compilation system EELgrm has been implemented as
part of the SUIF2 compiler infrastructure. Preliminary experiments
based on the SimpleScalar simulation toolset and three numerical pro-
grams indicate the potential benefits of the new technique.

*This work was partially supported by NSF CAREER award No. CCR~9985050.

2

1. Introduction

Many handheld devices and machines already have wireless commu-
nication capabilities, allowing them to be part of a large and perva-
sive computing environment that supports sharing of resources across
the network. Traditional desk-top applications will become increasingly
important for handhelds which have developed from electronic address
books and appointment schedulers to portable workstations. For in-
stance, the newest Compaq iPAQ H3600 handheld has 64MB of RAM,
16MB of flash memory, and a 206 MHz low-power StrongARM processor
[7]. Such devices will run spread-sheets, voice and image recognizers,
and even computation intensive simulation programs, just to mention a
few. However, many mobile machines may not have secondary storage
such as a disk. Giving mobile machines the ability to support virtual
memory through a wireless connection can significantly increase their
functionality since the same programs can be executed on a desktop
machine and the handheld. This is particularly important for programs
where the memory needs vary significantly based on the provided input
data. However, the option of swapping pages over the wireless connec-
tion comes with the price of additional energy requirements due to the
wireless networking card and communication costs. In this paper we
discuss a compilation strategy that will reduce the energy overhead of
swapping over a wireless network through network card hibernation.

Resource hibernation is an effective strategy to save power and energy
of system components and resources that are not needed during some
parts of a program execution. While not in use, these components and
resources consume energy which may be saved by transferring them into
a hibernation or sleep state during their idle periods. System resources
may implement different levels of hibernation, where each level has a
specific tradeoff between power saved vs. the time it takes to deactivate
or reactivate the resource. Typically, the “deeper” the hibernation or
sleep mode, the longer it will take to make a transition to and from
this hibernation state, but the less power will be used by the resource
during the hibernation period. Effective power and energy management
of a wireless connection is crucial for handheld devices that rely on bat-
tery power since the communication component typically consumes a
substantial share of the overall energy and power budget. On Com-
paq’s iPAQ H3600 pocketPC, communication via an Orinoco WaveLAN
802.11b wireless card consumes more than 40% of the overall energy
budget with an image processing application [16].

The ACPI (Advanced Configuration and Power Interface [8]) stan-
dard specifies hibernation states for different system resources such as

Energy Management of Virtual Memory 3

disks, wired and wireless Ethernet controllers, processors, and displays.
ACPI conforming systems are possible target systems for our compila-
tion strategy. Most work in resource management for power and energy
savings purposes has concentrated on operating system and hardware
techniques [11, 5, 18, 19, 22]. In this paper, we investigate the potential
benefit of compiler directed resource management for a system resource
such as a wireless communication card. We will also compare our ap-
proach with an OS approach where deactivation is based on a threshold
strategy, and activation is done on demand. Our benefit study is based
on a set of three numerical, array based applications (shal, adi, and tom-
catv). All three applications represent regular problems, for which many
program characteristics can be derived at compile time. In the future, we
will consider irregular problems and pointer based programs. We believe
that computation intensive simulation codes will be part of the program
mix for portable workstations such as Compaq’s iPAQ pocketPC.

In this paper, we assume that only a single application is executing
on the handheld machine. In a multi-programming environment, the
information collected by our compiler can be used by the underlying
operating system to effectively schedule page requests across different
active processes.

2. Related Work

Various approaches to managing physical memory chips for energy
considerations have been investigated by the Microsystems Design Lab
at Pennsylvania State University. In particular, Delaluz et al. show
effective compiler techniques to conserve energy from DRAM chips [10].
In contrast, our approach examines a higher abstraction level, namely
virtual memory and the mechanisms for updating it.

Traditionally, the next level after physical memory in the memory hi-
erarchy is disk storage. In the presence of virtual memory, the disk acts
as a backing store. On diskless devices, a network interconnection pro-
vides the same functionality. Indeed the disk, whether local or remote,
can be simply classified as peripheral storage. More generally then, ac-
cessing peripheral storage is the target resource we wish to manage. Disk
power management for mobile computers has already received much at-
tention [18, 12, 24, 17]. Although typically managed by the OS using an
idle time threshold mechanism, Li et al. found the optimal time thresh-
old should be 2 seconds [17]. Our experiments with accessing remote
peripheral storage agree in principle with this finding.

The idea of remote virtual memory, particularly distributed and/or
shared, has been an ongoing subject for over 15 years. Comer and Grif-

4

fioen examine the usefulness of a dedicated memory server [6]. They
make the distinction of separating the paging operation from the file
backing store operation. Then they can focus separately on designing
efficient memory and file servers. Another approach views the sum total
memory of a cluster as a single cache space [9]. Dahlin et al. suggest uti-
lizing the memory of idle nodes. These approaches improve performance
by optimizing the use of extended virtual memory.

Recognizing the utility of remote resources, Schilit and Duchamp
make the case for thin clients [21]. They conclude the feasibility and
desirability for thin clients without a disk and smaller amounts of mem-
ory. While not necessarily studying energy consumption impacts, their
work establishes a reference point in motivating low power designs of
diskless devices. From a compiler point of view, we attempt to optimize
energy demands by managing resources such as remote virtual memory
paging over a wireless connection.

3. Problem Formulation

For simplicity, we assume that a communication card only supports
three power mode states: active, idle, and sleep (hibernate). In the
active mode, the card is transmitting data. In idle mode, the card is not
sending messages, but listens to the wireless networking traffic. Finally,
in the sleep or hibernation mode, the card has been shut down to save
power. There is an overhead for transitions between hibernation modes.
We assume that the performance penalties for shutting down and waking
up the card are the same.

Figure 1.1 shows the power profile of a sample application without any
power management, with operating system guided, and with compiler-
directed power management. The simple OS based technique transfers
the card into sleep mode after a predefined (static) inactivity threshold.
The wake-up operation is performed on demand, and as a result incurs
a performance penalty.

This simple example illustrates the advantages of a compiler-directed
approach vs. a threshold based OS approach. In the former approach,
system resources can make the transition into power saving states ear-
lier, can be reactivated just-in-time to avoid performance penalties, and
enable additional optimization opportunities for idle periods which are
shorter than the threshold used by the OS based technique. It is im-
portant to note that there are more sophisticated OS based dynamic
power management techniques than the simple technique discussed here
[18, 22]. However, the point we want to make is that in many cases
the compiler can predict future program behavior and resource require-

Energy Management of Virtual Memory 5

no
. power management

execution time

shut down
—={feshold =
OS directed
power management

execution time

compiler directed
power management

execution time

B active] hibernating
L] idle] shut down / wake up

power

power

power

Figure 1.1. Comparison of compiler vs. OS directed power mangement.

ments more accurately than OS based techniques, allowing additional
opportunities for power and energy management optimizations.

The handheld device is connected to a network file system (NFS) via
the wireless connection. Each time a page fault occurs, the required
page has to be requested over the wireless link, and the program blocks
until the page is received. Each page fault event leads to a new working
set, with the empty set as the initial working set of an application.

Our compilation strategy tries to identify program parts of the pro-
gram execution where the working set is either

1 the same for the next = machine cycles, or

2 is about to change in y machine cycles.

This information is used to suspend the wireless card if z is larger than
a predetermined benefit threshold, or resume the card in y cycles, where

6

y is the time needed to reactivate the card. Both entities will be deter-
mined by the compiler using static performance prediction.

OS guided hibernation may use threshold techniques to shut down
system components such as a wireless card. Threshold techniques as-
sume that if a resource has not been used within the past threshold time
units, it will not be used in the future.

4. EELrm Prototype Compiler

The EELrym ! prototype compiler is based on the SUIF2 compila-
tion infrastructure [23]. The compilation strategy consists of two main
phases, with each phase having multiple steps. During the first phase,
program regions are identified for which the wireless connection needs
to be activated or deactivated. The data objects accessed in each re-
gion are summarized, and a forward data flow problem approximates
the data objects that will be in memory before entering each region. If
the set of data objects that will be referenced in a region is a subset of
the data objects currently in memory, the execution of the region does
not require the wireless connection to be active.

In the second phase, system calls are inserted that either activate
or deactivate the wireless PC card. Deactivation is done as soon as
possible, and activation is performed on-demand. Activation and de-
activation operations are assumed to be atomic, i.e., once the PC card
is in the process of being shut-down, a pending wake-up request has to
wait until the shut-down has been completed and vice versa. The second
phase requires performance prediction for efficiently placing activation
requests. An activation request before a program region should only
be executed if the card is in a hibernation state. If the card is active,
no action needs to be taken. This can be easily handled through the
activation routine itself, or through compiler generated guards for each
activation or deactivation request.

Performance prediction is needed to activate the PC card just in time.
For instance, if the overhead of activation is 10% cycles, the activation
request should be issued 10° cycles before the card needs to be active.
In addition, performance prediction is required to assess the benefit of
deactivating the PC card. Deactivating the card is not beneficial if the
next activation request follows too closely (i.e., before the card is shut-
down, a request to reactivate it is already pending).

1EEL stands for Energy Efficiency and Low-power, and RM stands for Resource Management.
Information about the EEL laboratory can be found at http://www.cs.rutgers.edu/~uli/eel.

Energy Management of Virtual Memory 7

4.1

Phase 1 - Analysis

This analysis phase consists of several subtasks.

1 Program regions are identified that will serve as the basis for our

analysis. The compiler will insert hibernate or activate instruction
only before such regions. The initial prototype system recognizes
innermost loop nests, called phases [14], and calls to runtime sys-
tem functions (e.g. printf) as program regions. REGIONS de-
notes the resulting set of regions. The region control flow graph
(RCFG) has REGIONS as its set of nodes, with edges represent-
ing the possible control flow between these regions. The RCFG
is similar to the phase control flow graph (PCFG) introduced by
Kennedy and Kremer [14].

Initially, data objects are scalar variables and arrays with their de-
clared sizes. For instance, subcomponents of arrays, such as single
rows and columns in the two-dimensional case, are not considered.
For each region r € REGIONS, two sets of data objects d are
determined:

(a) d € MUST_REF(r),if d is referenced during every execution
of region r;

(b) d € MAY _REF(r), if d may be referenced during an execu-
tion of region r;

The MUST_REF sets are used to describe data objects that will
be in memory after the execution of the corresponding region, and
MAY _REF sets are the basis to predict future data object refer-
ences that may require swapping over the wireless connection.

The data flow problem IN_MEM(r) is solved. For each entry
point of a region r the set of data objects that are in memory is
determined. Since cache policies such as LRU keep track of the se-
quence of data references within a finite window of past references,
a notion of time or decay has to be incorporated into the data flow
formulation. Initially, we will solve this problem by a simulation
process.

Each region r is labeled as yes or no depending on whether the
region may require swapping over the wireless connection or not.

if MAY_REF(r) C IN_MEM(r)

then no, otherwise yes

8

4.2 Phase 2 - Code Generation

The compiler inserts calls to runtime routines activate and hibernate.
The effect of these routines are

system call “card_on” if card is inactive

activate <=
no action if card is active

system call “card_off” if card is active
no action if card is inactive

hibernate <= {

The initial approach will place calls to activate and hibernate at re-
gion entry points. A limited set of reshaping transformations to enable
additional optimizations will be considered. Performance prediction will
be used to move activate statements up the region control flow graph
to program points that allow the overhead of the activation to be over-
lapped with program execution.

Performance prediction will also be used to eliminate hibernate state-
ments that are considered unprofitable due to subsequent activate oper-
ations. If the distance in terms of execution cycles between a hibernate
and activate operation is too close, the benefit of shutting-down the card
is lost. A backward-flow, V-information data flow problem can be used
to determine the length of the minimal activate-free path for any region
exit point. Hoisting of activate operations, and elimination of hibernate
operations may be done in a combined analysis pass.

Our initial benefit analysis assumes that the compiler can perform a
reshape optimization called page fault clustering. Assuming that swap-
ping operations are atomic, i.e., cannot be overlapped, this transforma-
tion will not directly impact the overall performance of the program.
Page fault clustering is applied if the memory footprint of a region
(MAY _REF(region)) fits into memory. Prefetch instructions are gen-
erated before such regions, allowing all potential page faults to occur
before the execution of the region, leaving the region free of page faults.
This transformation allows potential hibernation of the communication
card during the entire region execution.

4.3 Performance Model

For each region, the performance model has to report the number of
cycles needed to execute it. In our initial system, symbolic entities such
as program size and loop bounds are assumed to be known at compile
time. We will use a micro-benchmarking approach to determine basic
computation and memory access costs as well as the suspension and
activation time of the wireless communication card [3, 20, 15].

Energy Management of Virtual Memory 9

float A(n), B(n), C(n)
Rl doi=1,n
A(L) = ...
enddo
R2doi=1,n
B(i) = ...
enddo
R3 doi=1,n
C(i) = ...
enddo

R4 doi=1,n
B(i) = ... C(1) ...
enddo
R5 doi=1,n
A(i) = ... B@1) ...
enddo

R6 print A

Figure 1.2. Sample code

At a later point, we will consider parameterized (symbolic) perfor-
mance expressions. Our analysis and code generation strategy has to
be modified in order to allow the evaluation of these expressions at run-
time, and based on the results, will execute the guarded activate and
hibernate operations.

4.4 Example

In the example program shown in Figure 1.2, we assume a memory
size of 4, 8, and 12 pages, a write-allocate paging strategy, and a LRU
page replacement policy. The array size n is set such that each array
occupies 4 pages. To simplify the example, scalar variables are ignored,
and arrays are assumed to be aligned at page boundaries. Table 1.1 lists
the data space page faults expected to occur for different memory sizes.

Whether a card should be shut down for a region that does not incur
a page fault will depend on the predicted execution times for the region.
For example, if it takes longer to shut down the card than executing
regions R4 or R6, then it is unprofitable to shut down the card for
these two regions for the 8 page memory case. However, for the 12 page
memory, shutting down the card will be profitable.

4.5 Implementation Issues

For our initial implementation, we started with a simple memory ac-
cess model to see how closely we approach actual behavior. In simplify-
ing the memory access, we assume an entire array will be loaded (used)

10

region memory size

4 8 12
R1 miss miss miss
R2 miss miss miss
R3 miss miss miss
R4 miss no miss no miss
R5 miss miss no miss
R6 miss no miss no miss

Table 1.1. Page faults for different memory sizes in terms of pages, assuming that
each array requires 4 pages of memory space.

whenever there is a reference to it. By examining the array’s declared
size and data type, we calculate the number of required memory pages.
However, there are instances where only a single row/column is accessed,
or the array is accessed in a triangular pattern. In such cases, we will
need more accurate tools to analyze memory patterns. We plan to use
a modified form of Data Access Descriptors (DADs) [4, 2].

Using DADs can aid our analysis in two ways. First, DADs describe
an iteration order in walking through the dimensions of an array. As
pages are swapped out after a given loop, we may reasonably estimate
which pages of an array remain in memory. For instance, one loop may
iterate forward over an array, while another loop may iterate backward
over the same array. It can be safe to assume the last x pages of the
array are still in memory. Secondly, DADs also help by more accurately
indicating the accessed regions of an array. If only a single row/column
is needed, then the array’s memory access summary is given by the
necessary page(s), and the overall loop memory block summary will be
more concise.

The current prototype implementation approximates LRU. Our LRU
simulation strategy does not consider virtual addresses, but instead uses
data and code access summary information. For each region, a single
data structure describes all data and system calls (printf) referenced
in the region. In addition, the total number of pages needed to store all
data and code in memory is recorded.

A key component for approximating LRU is the notion of age. Along
with summarizing array accesses at a region level, we associate a rela-
tive age for each region. Hence, all array accesses within a region have
the same age and will be replaced at the same time. This is easily
represented in a queue, where each element is the region summary in-
formation. In addition, we can remove elements from anywhere in the

Energy Management of Virtual Memory 11

shal adi tomcatv
True Hit 17 62 304
True Miss 9 1 304
False Hit 1 0 2
False Miss 2 0 100

Table 1.2. Dynamic page hit/miss prediction accuracy.

queue. For example, if a referenced array is found somewhere in mem-
ory, the containing region is removed and placed at the end. If a region
is larger than the total memory, the net effect is to clear the contents in
memory.

The current implementation computes M AY _REF(r) for each re-
gion r. Instead of computing separate MUST_REF(r) sets, we set
MUST_REF(r) := MAY _REF(r), which is a simplification. The solu-
tion to IN_M EM (r) is approximated by applying the LRU simulation
process to nodes in the RCFG, starting with the entry node, and choos-
ing the next node according to the rPOSTORDER numbering [1]. The
initial value of IN_.MEM/(r) is (). If a loop is encountered, its entire
body is visited twice. The resulting values in IN_M EM (r) represent
the final solution for region r. This process is applied recursively for
nested loops. Our heuristic is motivated by the observation that the
stable state typically occurs after a loop has iterated at least twice. The
heuristic may lead to visiting sequences exponential in the loop nesting
depths. However, the maximal loop nesting depth in a program is typ-
ically a small constant. Our current implementation always picks the
most frequently executed branch of a conditional statement as the only
branch that is ever executed.

Although we have used and made several simplifying assumptions, our
analysis is able to predict most page faults correctly. Table 1.2 shows
the total number of correctly predicted hits and misses (True Hit/Miss)
as well as incorrect predictions (False Hit/Miss). The page size is set at
4KB. The False Miss count was significant only in the case of tomcatv.
The misprediction occurred for a rather small region, resulting in no
impact on the overall energy savings and performance. Detailed energy
and performance results are given in the next section.

5. Experiments

We modified the SimpleScalar simulator to keep track of page faults
that occur during the execution of a program. In addition, the simula-

12

tor logs the cycle times where program regions such as loops are entered
and exited. The simulator allows the assessment of the amount of com-
putation performed for a given working set, and the resulting potential
benefit of suspension and resumption of the wireless card.

For three different programs, we evaluated the working sets for dif-
ferent memory and program sizes. Given a particular overhead of the
suspend and resume operation (25,000 CPU cycles), we determined the
performance impact and energy savings of our optimization.

If working sets change frequently, the wireless card should never be
suspended. If the working sets are changed very infrequently, both OS
and compiler based approaches will lead to similar results. Compiler
techniques are superior to OS techniques in cases where a working set
does not change for a length of time that is comparable to the OS based
suspension threshold and on-demand resumption times.

We assume a performance predictor tells us which regions take longer
than the time required for a suspend operation and then use on-demand
resume. We compared the potential energy savings of our compiler tech-
niques vs. OS static inactivity thresholds strategies of varying lengths.
Through ACPI, the OS allows the user to tune threshold levels for var-
ious devices. Therefore, we use thresholds relative to the suspend oper-
ation time (suspend overhead).

From simulation traces, we have a notion of time (cycle counts) for
each benchmark. We also have a correlation of system power consump-
tion by the WaveLAN card given that earlier measurements show the
WaveLAN to consume 40% of total system power (iPAQ + WaveLAN).
Hibernation mode reduces power consumption to 5%. Therefore, while
in hibernation, we consider total power demands to drop by 1/3, which
is a conservative estimate. Translating this into energy comparisons is
merely a summation or integral under the curve of the power levels across
execution time.

5.1 Benchmark Characteristics

In shal, there are few regions which access the same arrays consecu-
tively across loops. Conversely with adi, each loop uses all arrays; hence
there is one large region to suspend the card after the arrays have been
loaded. Finally, tomcatv reveals more interesting behavior where there
are some opportunities to suspend within a large loop containing sev-
eral nested loops, yet the entire loop does not fit into memory. Thus,
power management strategies can be used within each iteration of the
outermost loop to save overall energy.

Energy Management of Virtual Memory 13

Parameters shal adi tomcatv
N 32 16 32
M 32 16 16

Table 1.3. Benchmark parameters.

These three benchmarks use two dimensional arrays of size NXxN.
We chose sizes of N along with the number of memory pages M that
exhibited interesting behavior. Each memory page is assumed to have
4KB. If M is too large, then after initial array accesses there will be no
more page faults. If M is too small, arrays may not fit at all, resulting in
many page faults. Adjusting N mainly affects the simulation execution
time, therefore we try to keep it small. The parameters used in these
benchmarks are as shown in Table 1.3.

We want to use OS inactivity thresholds relative to the suspend opera-
tion, however we have measured both suspend/resume times to be about
130ms each, under Linux 2.4 for the H3600 pocketPC, which amounts
to about 25 million cycles. Interesting benchmark problem sizes then
requires simulation runs on the order of days. In order to reduce simula-
tion times, our analysis scales the suspend/resume overhead by a factor
of 1000 before calculating potential energy benefits. This allows us to
use smaller program and memory sizes, and therefore shorter simulation
times.

5.2 Simulation Results

Table 1.4 shows the effectiveness of our compilation strategy over an
operating system approach which is based on static inactivity thresh-
olds for card suspension. The reported figures assume a 25,000 CPU
cycles suspension overhead. Results for different OS threshold values
are listed, where each such value is a multiple of the suspension over-
head of the wireless communication card. The oo threshold represents
the case where the communication card is always on i.e., is never sus-
pended. Boldface numbers indicate the points at which longer thresholds
have equivalent energy/performance characteristics as the co threshold.

Comparing a range of thresholds reveals subtle results. The optimal
static threshold value varies across different programs, precluding the
selection of a universally optimal value. However, the results point to-
wards smaller thresholds as better. Furthermore, small changes to the
threshold, in hopes of tuning energy and performance, have negligible

14

EELrm Energy Results

OS threshold shal adi tomcatv tomcatv (PFC)

1x 101.0 99.3 126.5 95.3

10x 100.1 92.6 116.3 87.6

20x 99.7 86.2 104.2 78.5

24 x 99.4 — — —

30x 99.7 80.6 98.6 74.3

35% 99.7 78.1 96.7 72.9

54 x 99.7 69.1 96.7 72.8
00 99.7 71.3 96.7 72.8

Table 1.4. Relative energy consumption of benchmark programs with EELrm energy
management. Energy values are percentages of OS approach. Active WaveLAN card
contributes 40% to overall energy budget.

impact. A slight change may allow the OS to hibernate during an addi-
tional region, but possibly at the cost of incurring a performance penalty
at another region. Conversely, adjusting the threshold to avoid a perfor-
mance penalty may prohibit the OS from hibernating in another region.
An example of this behavior was observed in shal. From 1x — 10x, energy
usage vacillated while performance improved marginally.

Overall, the results show that for shal, the OS technique and our
EELRMm compiler perform roughly equivalently with little, if any, en-
ergy savings. In cases where compiler and OS/hardware techniques
perform comparably, the compiler technique can avoid the overhead in
the OS/hardware, leading to additional energy and performance sav-
ings. Our compiler does a better job against larger thresholds in the adi
case due to the fact that it is able to suspend the card earlier. Since
there is one large potential region to suspend, the compiler’s advantage
grows linearly with respect to varying the threshold limit. This results
in energy savings of about 30% over the OS based technique.

For tomcatv, our compiler does not perform well compared to short
OS threshold values. This occurs because of computationally large loops
which contain page faults. Our compiler identifies these page faults and
keeps the card enabled. Therefore, we miss significant opportunities for
hibernation.

As mentioned in Section 5.1, tomcatv consists of one primary loop
with several (8) nested loops. Figure 1.3 shows an overview of tomcatv’s
dynamic page fault behavior during execution. The page fault behavior
was derived from simulation traces. Around cycle 2500, tomcatv’s pri-
mary loop begins executing. Each iteration takes around 2500 cycles,

Energy Management of Virtual Memory 15

tomcatv

Page Fault

1 5001 10001 15001 20001 25001 30001
Cycle (x1000)

Figure 1.3. Partial view of tomcatv’s page fault behavior during execution.

tomcatv

Loop(i)

Il Il Il
0 500 1000 1500 2000 2500
Cycle (x1000)

Page Faults

Loop(i) Execution Length --—+--

Figure 1.4. One iteration of tomcatv’s primary, outermost loop. Two sets of data
are overlaid here. Vertical bars indicate a page fault at that cycle. Horizontal lines
span the execution region of Loop(i), ¢ € [1..8]. Loops (3) and (5) are tiny, appearing
as single points on this graph.

16

and therefore displays a very regular memory access pattern. Figure 1.4
presents a zoomed view of one iteration in the primary, outermost loop.
For illustration, the iteration’s cycles and page faults have been nor-
malized to range between cycles 0 and 2500. Hence, keep in mind that
Figure 1.4 represents a single iteration of the primary loop rather than
the very beginning of tomcatv itself. Note that overall cycle times in
both figures are scaled by 1000.

Besides showing when page faults occur, Figure 1.4 shows the cycles
spent in different phases, i.e., nested loops within the outermost loop.
The ¢th loop is designated on the y-axis. Loops 3 and 5 are very short,
lasting 3 and 5 (thousand) cycles, respectively. Typically, page faults
occur near the beginning of loops, which may be somewhat hard to see
in the figure.

From the initial results of missing such hibernation opportunities,
we examined a new transformation called page fault clustering as an
enabling optimization. By swapping in all necessary data before a region,
the compiler can direct the card to hibernate within the region. In
the presence of page fault clustering (tomcatv (PFC)), our approach
always does better than the OS approach, with energy savings of up
to 27%. In all cases, the compiler based approach reduced the energy
consumption of all benchmarks as compared to the case without any
power management.

Note that there is an implicit asymptotic limit of the energy savings
attainable by power managing the wireless card (i.e., shutting down
the card immediately after program start and for the entire duration).
For the case of a WaveLAN on iPAQ, the energy savings limit is about
33%. Indeed, results from adi show our technique reaches 28.7% savings.
On the opposite extreme, we cannot do much for shal, but neither can
the OS. In programs exhibiting behavior similar to that of Figure 1.1,
tomcatv reveals the potential for more intelligent power management
through those idle periods than the OS.

Although the reported results were obtained for small problem and
main memory sizes, we expect the results to scale well if both entities
grow proportionally (N? oc M). However, if the problem sizes grow
faster than the main memory sizes, enabling transformations such as
page fault clustering and index set splitting will become increasingly
important for effective compiler-based techniques.

Using a power management approach may lead to performance degra-
dation due to the on-demand resumption penalty of the wireless card. A
summary of the overall performance penalties is given in Table 1.5. The
largest penalty we observed for EELgrym was 3.9% relative to the program

Energy Management of Virtual Memory 17

OS and EELrm Performance Results

OS threshold shal adi tomcatv
1x 101.3 101.7 105.4
10x 100.3 100.2 103.0
20x 100.2 100.2 102.9
24 x 100.3 100.2 —
30x 100.0 100.2 101.0
35x% 100.0 100.2 101.5
54 x 100.0 103.2 100.0
o0 100.0 100.0 100.0
EELgm 100.2 101.7 101.0/103.9 (PFC)

Table 1.5. Relative performance of benchmark programs under OS or EELrvm energy
management. Reported values are percentages of co threshold — card always awake.

performance without any power management. Overall, the performance
penalties can be considered insignificant.

6. Future Work

Clearly, additional analysis and experiments plus more advanced tech-
niques are needed to further validate the effectiveness of our approach.
Our current implementation does not use a performance model to elim-
inate hibernate statements or perform just-in-time card activation. We
are in the process of integrating page fault clustering as an enabling
transformation into our compiler. Related to page fault clustering, we
can apply this analysis at larger granularities for local disk hibernation
on portable computers.

We will consider index set splitting as an enabling transformation in
cases where the working set of a region is too large to fit into main
memory. This strategy, along with loop tiling, will also be investigated
for caches with decay capabilities[13] as another resource to apply our
resource management techniques. Cache decay is a method for reducing
leakage current by deactivating cache lines.

We plan to extend our methods to consider explicit file I/O, irregular
applications, and programs with pointer-based data structures. We will
investigate how much improvement over our current approach can be
achieved by using refined DAD-based implementations for MAY _REF,
MUST_REF, and solving the IN_M FEM data flow problem. We also
plan to apply our techniques to non-scientific applications such as voice
recognition, image understanding, and browsers.

18

7. Conclusion

Compiler-directed energy management of a wireless communication
card can be an effective strategy as compared to an OS based energy
management approach. Simulation results showed energy savings of up
to 30% over the OS. For OS inactivity thresholds of 10x — 20x card sus-
pension overhead, energy savings improvements of up to 21.5% were ob-
served, assuming that page fault clustering was applied to enable energy
optimizations. Not only do these results show potential energy bene-
fits, but we also wish to emphasize that, even under adverse conditions,
our compiler does not perform significantly worse than the OS. That is,
our analysis tries to ensure actual energy savings before directing the
wireless card to hibernate.

Although our intent is to show the benefits and feasibility of compiler
techniques, our results also provide an interesting guide for ACPI. The
10x — 20x threshold listed above corresponds to an idle time range around
2 seconds, which Li et al. has suggested for local disks [17]. The wireless
card suspend/resume operations require much less time than a disk.
Therefore our findings suggest even shorter thresholds can be used for
wireless communication cards. In general, smaller thresholds yielded
more energy gains with little performance delay. This can be understood
by noticing that

program execution time > resume overhead

Our preliminary estimates in eliminating this performance delay by as-
suming just-in-time activation by the compiler provide up to an addi-
tional 5% energy savings.

References

[1] A. V. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison Wesley, Reading, MA, second edition,
1986.

[2] V. Balasundaram. A mechanism for keeping useful internal infor-
mation in parallel programming tools: The data access descriptor.
Journal of Parallel and Distributed Computing, 9(2):154-170, June
1990.

[3] V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. A static
performance estimator to guide data partitioning decisions. In ACM
SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, pages 213-223, Williamsburg, VA, April 1991.

Energy Management of Virtual Memory 19

[4] V. Balasundaram and K. Kennedy. A technique for summarizing
data access and its use in parallelism enhancing transformations.
In Proceedings of the SIGPLAN 89 Conference on Programming
Language Design and Implementation, Portland, OR, June 1989.

[5] T. Burd and R. Brodersen. Processor design for portable systems.
Journal of VLSI Signal Processing, 13(2-3):203-222, 1996.

[6] D. Comer and J. Griffioen. A new design for distributed systems:
The remote memory model. In Proc. Summer 1990 USENIX Conf.,
pages 127-126, Anaheim, CA (USA), 1990.

[7] Compaq Corp. iPAQ H3600 pocketPC handheld PC.
http://www.handhelds.org/Compag.

[8] Intel Corp., Microsoft Corp., and Toshiba Corp. ACPI Imple-
menter’s Guide, February 1998.

[9] M. Dahlin, R. Wang, T. Anderson, and D. Patterson. Coopera-
tive caching: Using remote client memory to improve file system
performance. In Proc. Symp. on Operating Systems Design and
Implementation, pages 267-280, Monterey CA (USA), 1994.

[10] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam,
and M. J. Irwin. DRAM energy management using software and
hardware directed power mode control. In Proc. Symp. on High-
Performance Computer Architecture, Nuevo Leone, Mexico, 2001.

[11] S. Devadas and S. Malik. A survey of optimization techniques tar-
geting low power VLSI circuits. In Proceedings of the 32th Design
Automation Conference, 1995.

[12] F. Douglis and P. Krishnan. Adaptive disk spin-down policies for
mobile computers. Computing Systems, 8(4):381-413, 1995.

[13] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: Exploiting
generational behavior to reduce cache leakage power. In Intl. Symp.
on Computer Architecture, Géteborg, Sweden, 2001.

[14] K. Kennedy and U. Kremer. Automatic data layout for distributed
memory machines. ACM Transactions on Programming Languages
and Systems (TOPLAS), 20(4):869-916, 1998.

[15] U. Kremer. Fortran RED — a retargetable environment for auto-
matic data layout. In Eleventh Workshop on Languages and Com-
pilers for Parallel Computing, Chapel Hill, NC, August 1998.

[16] U. Kremer, J. Hicks, and J. Rehg. A compilation framework for
power and energy management on mobile computers. In Interna-
tional Workshop on Languages and Compilers for Parallel Comput-
ing (LCPC"01), August 2001.

20

[17]

18]

[19]

[20]

[21]

22]

23]

[24]

K. Li, R. Kumpf, P. Horton, and T. E. Anderson. A quantitative
analysis of disk drive power management in portable computers. In
USENIX Winter, pages 279-291, 1994.

J. Lorch and A. Smith. Software strategies for portable computer
energy management. IEFEE Personal Communications Magazine,
5(3), June 1998.

E. Magcii, M. Pedram, and F. Somenzi. High-level power modeling,
estimation, and optimization. IEEFE Trans. on Computer Aided
Design, 17(11), November 1998.

R. Saavedra-Barrera. CPU Performance Evaluation and Execution
Time Prediction Using Narrow Spectrum Benchmarking. PhD the-
sis, U.C. Berkeley, February 1992. UCB/CSD-92-684.

B. Schilit and D. Duchamp. Adaptive remote paging for mobile
computers. Technical Report CUCS-004-91, Columbia University,
1991.

T. Simunic, L. Benini, P. Glynn, and G. De Micheli. Dynamic power
management for portable systems. In Proceedings of the Sixth An-
nual International Conference on Mobile Computing and Network-
ing (MobiCom,), Boston, MA, August 2000.

Stanford University. National Compiler Infrastructure (NCI)
project, 1998. Co-funded by NSF/DARPA. Overview available on-
line at http://www-suif.stanford.edu/suif/NCI/index.html.

G. F. Welch. A survey of power management techniques in mobile

computing operating systems. Operating Systems Review, 29(4):47—
56, 1995.

