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Abstract

Let S be a set of n given points in R2. If A is a convex subset of R2, its “size” is defined as
|A ∩ S|, the number of points of S it contains. We describe an O(n(log n)4) algorithm to find
points z1 6= z2, at least one of which must meet any convex set of size greater than 4n/7; z1

and z2 comprise a hitting set of size two for such convex ranges. This algorithm can then be
used to construct (i) three points, one of which must meet any convex set of size > 8n/15; (ii)
four points, one of which must meet any convex set of size > 16n/31; (iii) five points, one of
which must meet any convex set of size > 20n/41. Finally, we discuss some open algorithmic
and combinatorial problems suggested by these results.

Let S be a set of n given points in general position in R2. If A is a convex subset of R2, its
“size” is defined to be |A ∩ S|, the number of points of S that it contains. The (Tukey) depth of
a point z ∈ R2 is defined as the minimum (over all halfspaces h containing z) of |S ∩ h|, the size
of the smallest halfspace containing z. It is familiar that there always exists a point z ∈ R2 (z not
necessarily in S) with depth d(z) ≥ n/3. Such a point is called a centerpoint for S. The constant
c = 1/3 is best-possible: for every c > 1/3 there are sets S with respect to which NO point has
depth cn. The interesting algorithm of Jadhav and Mukhopadhyay [2] computes a centerpoint in
linear time.

Alternatively, if z is a centerpoint for S, every convex set of size > 2n/3 MUST contain z. A
centerpoint may thus be said to “hit” all convex subsets of R2 with more than 2/3 of the points of
S. For this reason, centerpoint z is called a hitting-set (of size 1) for convex sets of size > 2n/3.
Mustafa and Ray [4], following related work of Aronov et. al. [1], studied the possibilities for
hitting sets with more than one point, a natural extension of the notion of centerpoint. They
showed that given S ⊆ R2 there are points z1 6= z2 (not necessarily in S) such that every convex
set of size > 4n/7 must meet at least one of them. In addition they showed via a construction
that the constant 4/7 is best possible for hitting sets of size 2: for every c < 4/7 there are sets S
for which, whatever pair x 6= y be chosen, there is a convex subset containing > cn points of S,
but containing neither x nor y). In [1] it had been shown that the optimal constant c was in the
interval [5/9, 5/8].

Let ck ∈ (0, 1) be the smallest constant for which, for every set S of n points in R2, there are
distinct points z1, . . . , zk, at least one of which must meet any convex set of size > ckn. We know
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c1 = 2/3 and c2 = 4/7. Mustafa and Ray were also able to show that c3 ∈ (5/11, 8/15], that
c4 ≤ 16/31 and that c5 ≤ 20/41.

Here we address some algorithmic questions about finding small hitting sets. The details are
contained in the following statement, and its proof.

Theorem 1 Let S be a set of n given points in general position in R2 and take c2 = 4/7. Then in
O(n(log n)4), distinct points z1, z2 may be found so that if A is a convex set of size > c2n, at least
one of these points is in A.

We are working in the unit cost RAM.
Consider the set R of all convex subsets of size > c2n. For each pair A 6= B in R consider

A ∩ B. Note that |A ∩ B| > n/7, and also that A ∩ B has some point pA,B = (u, v) ∈ A ∩ B of
minimal y−coordinate. The existence proof in [4] showed that z1 may be taken as such a point,
but one for a pair A′, B′ where pA′,B′ = (u, v) has v as large as possible (a point in the intersection
of two ranges whose lowest point is maximal). They also showed that z2 may then be taken as a
(usual) centerpoint for S\(A′ ∩B′) and that everything works out as claimed.

Let p = (u, v) be the lowest point in A′∩B′ - the intersection of two ranges, each of size at least
c2n - where v is as large as possible (its a highest lowest point). The proof of the theorem relies
on understanding what such a point looks like in the line arrangement dual to S. We combine this
with tools introduced by Matoušek [3] and use them to compute z1 in the stated complexity. Once
we have z1, z2 - the centerpoint of S\(A′ ∩B′) - can be found in linear time.

This algorithm leaves open the challenge of finding small hitting sets that are optimal for a
given set S. Let ck(S) denote the smallest constant for which there exist k distinct points in R2,
at least one of which must meet any convex set of size > ck(S)|S|. Mustafa and Ray showed that
c2(S) ≤ c2 = 4/7 and that 4/7 is minimal. The problem of determining c2(S) for a given S, and
the algorithmic problem of finding (efficiently) two points that meet all ranges of size c2(S)n seems
interesting and nontrivial. The combinatorial questions of determining the exact values for c3, c4, c5

are also nice, and it would be interesting to know how many points are needed to hit every convex
set containing half the points of a given set S.
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