
CS442 Practice Problems in PROB. Sept. 10, 2019

Most of these problems are for your own practice and as a review of basic probability and
counting. Try to work them out for your own benefit, or at least convince yourself that you know
how to do them. Recitations are a good place to discuss them, and you may also do so between
yourselves. Later, I might choose a few of them and ask you to write up and then submit good
solutions as the first HW in the course.

1. Show P (A ∩B) ≥ 1− P (Ac)− P (Bc).

2. Show that A ∪B and C are independent if A, B, and C are mutually independent events.

3. Show that if A and B are independent, then also: (i) A and Bc are independent; (ii) Ac and
B are indep.; (iii) Ac and Bc are indep..

4. Study the Monty Hall problem with k > 3 doors and show it is always better to switch, though
the advantage over not switching decreases with k (Compute the probability of winning (i)
when you switch and (ii) when you stick to the original choice.)

5. Describe a probability space (Ω, P ) and events in it (the simpler, the better), where the
following hold:

(a) The events A1, A2, A3 are not pairwise independent although A1 and A2 are independent
and also A1 and A3 are independent.

(b) In the family of events A1, . . . , A4, A1, A2, A3 are pairwise independent and A1, A2, A4

are pairwise independent, but A3 and A4 are not independent.

(c) Events A1, . . . , A4 which are not 3-wise independent although A1, A2, A3 are 3-wise ind.,
A1, A2, A4 are 3-wise ind., and A1, A3, A4 are 3-wise independent.

6. How many even numbers in [100, 999] have distinct digits? How many palindromes (numbers
that are the same when you write them backwards) are in this range? How about the range
[1000, 9999]?

7. The numbers 1 through n are arranged in a random order (what is the sample space?). What
is the probability that 1 and 2 are adjacent? That 1 and 3 are adjacent to 2? That none of
these numbers are adjacent?

8. The lottery experiment is to pick 6 distinct numbers at random (the winning combination)
from the first 55 integers.

(a) What is the sample space Ω and what is |Ω|, its size?

(b) Before the experiment is performed, YOU write down 6 distinct numbers of your own
on a card (your lottery ticket). What is the probability that your 6 numbers are the
winning combination?

(c) What is the probability that none of your numbers are in the winning combination? That
exactly k of your 6 numbers are in the winning combination for each value k = 1, . . . , 5.
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9. In the hat experiment with n = 6 hats, what is the probability of the event A, that person
1 and person 2 exchange hats? of B, that person 3 and person 5 exchange hats? of C, that
person 4 and person 6 exchange? What is the probability that NONE of these events occurs?
That ALL occur?

10. A deck of cards is shuffled. What is the probability that no aces are adjacent? That no aces
are within 2 cards of each other?

11. 4 cards from a 52 card deck are randomly dealt to each of 13 distinguishable players.

(a) Describe the sample space and write down its size.

(b) What is the probability that each player has one card from each suit?

(c) What is the probability that one player has one card from each suit but that nobody
else has cards from more than one suit?

12. Players A, B, C, and D toss a fair coin in order(i.e., first A then B, then C, then D, then
A again, etc.) The first player to get a HEAD wins and the game is over. What are their
respective chances to win? Repeat, now with only three players who toss a pair of coins; the
first to get something different than HH wins the game

13. (*) The final step of the Floyd-Rivest randomized selection algorithm is to sort the (random)
set S = {ai ∈ A : L ≤ ai ≤ R} of inputs which lie between sampled items L and R. Show
that P (|S| > 4n5/6) → 0 as n → ∞. (hints: look at the item σ ∈ A of appropriate rank and
study the probability that L < σ; look at the item τ ∈ A of appropriate rank and study the
probability that R > τ).

14. Let tn be the (random) running time of the Floyd-Rivest selection algorithm with n inputs.
We saw P [tn ≤ 1.5n+ o(n)] → 1 as n → ∞. TRY TO GET a good bound on E(tn).

15. We do the balls and boxes experiment with r balls and n boxes. Let N denote the number
of empty boxes, Y the number of boxes with exactly one ball, L1 the load on (i.e., number of
balls in) box 1, and L2, the load on box 2.

(a) Find the probability that L1 = k, k = 0, 1, . . . , r.

(b) Find the expected value for each of these random variables, N, Y, L1, L2.

(c) Are N and L1 independent? Explain. Repeat for N and Y ; for L1 and Y ; for L1 and L2.

(d) If r = n + 1, find the probability that N = 0. If r = n − 1 find the probability that
N = 1; that N = 2.

(e) (*) What is the probability that ALL Li = 0, i = 1, . . . , 5? What is the probability that
NO Li = 0, i = 1, . . . , 5?

16. The load balancing algorithm described in class randomly assigns each of r jobs (balls) to
one of the n resources (boxes). Write a simple program that simulates the r balls in n boxes
experiment for given values of r and n up to a million. It should keep track of the load in
each box and output the maximum load. You can assume no load will exceed 15.

(a) Perform at least 20 (and preferably 100 simulations with r = n = 1, 000, 000. Tabulate
the observed max-loads.
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(b) Here is another load-balancing algorithm: each ball chooses a pair of (distinct) boxes,
and is placed in the chosen box with the smallest load; if the load is the SAME for
both boxes in the chosen pair, the ball will choose one of them at random. Modify your
program to implement this new scheme and again do at least 20 simulations, tabulating
the max loads. Is it better? Is the result surprising?

(c) Repeat, now choosing three distinct boxes, and assigning that ball to the chosen box
with the lightest load.

17. Markov’s inequality states that if X ≥ 0 is a random variable with E(X) = µ, and if t ≥ 1 is
given, then

P (X ≥ tµ) ≤
1

t
.

Show that X ≥ 0 is necessary for the conclusion to hold: i.e., describe a random variable (the
simpler the better) with E(X) = µ but for which

P (X ≥ tµ) >
1

t
,

for some t ≥ 1.

18. Let Nr denote the number samples needed (with replacement) to collect r distinct coupons
from a set T of n coupons. We showed in class that E(Nn) = nHn, Hn = 1+1/2+ · · ·+1/n,
and |Hn − loge n| ≤ 1.

(a) Compute the variance of Nn and show that it is equal to V (Nn) = n2
∑

i=1

1

i2
− n

∑n
i=1

1

i

(b) Using the fact that
∑

i=1

1

i2
→ π2/6 show that

P (|Nn − nHn| ≥ cn) ≤
π2

6c2
;

in other words Nn deviates from its mean by cn with probability that decreases like 1/c2.

We will see later that in fact it decreases much more quickly.

(c) For the sake of comparison, use Markov’s inequality to show that for c > 1,

P (|Nn − nHn| ≥ (c− 1)nHn) ≤
1

c
.

This says Nn has at most a 1/c chance to be cn log n above its mean. The previous
statement says there is at most a 1/c2 chance to be only cn above the mean, a MUCH
stronger and more precise statement.
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