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Abstract

The Borsuk-Ulam theorem has many applications in algebraic topology, al-
gebraic geomtry, and combinatorics. Here we study some combinatorial conse-
quences, typically asserting the existence of a certain combinatorial object. An
interesting aspect is the computational complexity of algorithms that search for
the object. The study of these algorithms is facilitated by direct combinatorial
existence proofs that bypass Borsuk-Ulam.

1 Introduction and Summary

The Borsuk-Ulam theorem states that if f is a continuous function from the unit
sphere in Rn into Rn, there is a point x where f(x) = f(−x); i.e., some pair of
antipodal points has the same image. The recent book of Matoušek [24] is devoted
to explaining this theorem, its background, and some of its many consequences in
algebraic topology, algebraic geometry, and combinatorics. Borsuk-Ulam is considered
a great theorem because it has several different equivalent versions, many different
proofs, many extensions and generalizations, and many interesting applications.

A familiar consequence is the ham-sandwich theorem (given d finite continuous
measures on Rd, there exist a hyperplane that simultaneously bisects them), along
with some of its extensions and generalizations to partitioning continuous measures
[2], [6], [7], [8], [10]. In many cases we can derive combinatorial statements that give
discrete versions of these results. This, in turn, raises algorithmic issues about the
computational complexity of finding the asserted combinatorial object. For example
Lo et. al. [23] gave a direct combinatorial proof of the discrete ham-sandwich theorem
and described algorithms to compute ham-sandwich cuts for point sets. Various gen-
eralizations and extensions were considered in [1], [2], [3], [4], [5], [9], [10], [11], [12],
[20], [21], [22], [26], and [30].
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A recent interesting example extends a result of Bárány and Matoušek [7], who
combined Borsuk-Ulam with equivariant topology to show that three finite, continuous
measures on R2 can be equipartitioned by a 2-fan, the region spanned by two half-lines
incident at a point. Bereg [10] strengthened this statement, proved a discrete version
for measures concentrated on a given set of points, and described a beautiful algorithm
to find such a partitioning. In Section 2 we show his algorithm to be nearly optimal
via a lower bound for this task.

In Section 3 we study several kinds of equitable partitions of a given set S =
{P1, . . . , Pn} of points in general position in R2. First, there always exists an orthogonal
equipartitioning for S; i.e., a pair of orthogonal lines `1 and `2 with the property
that none of the four quadrants has more than n/4 of the points of S. We show
that Θ(n log n) is the RAM complexity to find such a partitioning, but if the points
of S are in convex position, there is a linear time algorithm. Next we study the
equitable partitioning guaranteed by Buck and Buck [13], namely the existence of lines
`1, `2, and `3 incident at a common point, and having the property that none of the
six open regions they define contains more than n/6 of the points of S. We show
that this partitioning also has complexity Θ(n log n), but if the points are in convex
position, a linear time solution is possible. Finally we study the interesting “cobweb”
equipartitioning discovered by Schulman [27]. This is a convex quadrilateral plus lines
`1 and `2 through the pairs of opposite vertices and having the property that none of
the eight regions defined contains more than n/8 points of S. We sketch an O(n log n)
algorithm and conjecture that there is a matching lower bound, except if S consists of
points in convex position, where we think the complexity is linear.

In Section 4 we mention some other partitioning problems. Most of these are
interesting open questions.

2 Equipartitioning Three Measures by a 2-Fan

A two-fan in the plane is a point P (called the center) and two rays, ρ1 and ρ2 in-
cident with P . This structure partitions R2 into two connected regions. Bárány and
Matoušek [7] had proved that given three finite, measures on the plane, there is al-
ways an equitable partition by a two fan; i.e., there exists a two fan whose two regions
have exactly half of each measure. Bereg [10] later considered a discrete version and
proved that there are many two fans with equitable partitions of a given input point
set. Specifically, given 2r red points, 2b blue points, and 2g green points in general
position in R2, and a line `, there exists a point P ∈ ` and a two fan centered at P
for which there are r red, b blue, and g green points in both of the regions induced by
the fan. He described an O(n(log n)2) algorithm to find such a two fan, n = r + b + g
being one half the number of points in the problem. Here we show the algorithm to be
nearly optimal, by proving

Lemma 1 Let S be a given set of points in R2, an of them red, bn of them blue, and
cn of them green. For a given point P , Ω(n log n) steps are required by any algebraic
decision tree that can decide if there is an equitable two-fan for S with center at P .



Proof: Let T be an algebraic decision tree that can decide for a set S with Θ(n) data
points, and a point P , whether there is an equitable 2-fan for S centered at P . We
will establish the lower bound on the height of T in the special case where a constant
fraction of the points of S are fixed. It is clear that the lower bound for this special
case is no more than the lower bound for the general case where no point of S is fixed.
We will show that the subset X of restricted inputs where T returns a NO answer has
at least n! path connected components.

We take P = (0, 0) and data points Qi = (ri cos(θi), ri sin(θi)), ri > 0. For each
such point we only need its argument θ ∈ (0, 2π), since this alone determines whether
the point is in some 2-fan centered at P , and we can take all ri = 1. Inputs will consist
of N = 16n − 8 points, described by the components of z = (z0, . . . , zN−1) ∈ RN .
Points zj are blue if j = 0 or 7 mod 8, red if j = 1, 4, 5 or 6 mod 8, and green if j = 2
or 3 mod 8. Thus each input describes a set S with 8n − 4 red points, 4n − 2 blue
points, and 4n− 2 green points.

The canonical input is the point z∗ = (θ0, . . . , θN−1) ∈ RN , where

θi =
π
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Figure 1. The canonical input z∗.

These 16n−8 points are divided into 2n−1 blocks of 8 points each. The blocks have
a LEFT part and a RIGHT part. Block i has left part Li = [θ8i−8, θ8i−7, θ8i−6, θ8i−5, θ8i−4]
and right part Ri = [θ8i−3, θ8i−2, θ8i−1] for which, replacing the entries by their colors,
is Li = [b r g g r] and Ri = [r r b].

Let λ1 be a ray separating R2n−1 and L1, and ρ1, a ray separating Ln and Rn. This
two-fan has n−1 blocks and the left half of block n. Also it contains 4n−2 red points



(half), 2n− 1 blue points (half) and 2n green points (one more than half). The next
(clockwise) two-fan that equitably partitions the red and the blue points is λ2 (a ray
separating L1 and R1) and ρ2 (a ray separating Rn and Ln+1) but now there are 2n−2
green points (one less than half).

In fact ALL two-fans that split both red and blue points evenly are either deficient
by one green or in excess by one green. Specifically, for each j = 1, . . . , n, we have
the two-fans with rays λ2j−1 and ρ2j−1 containing blocks [Lj Rj · · · Rj+n−2 Lj+n−2] (2n
green points); also for each j = 1, . . . , n, we have the two-fans with rays λ2j and ρ2j

containing blocks [Rj Lj+1 · · · Lj+n−1 Rj+n−1] (2n− 2 green points). Thus, with input
z∗, T must return a NO answer to the equitable two-fan query.

We consider only a restricted set I of inputs to T . A point z = (z0, . . . , zN−1) ∈ I if
zj = θj for j 6= 2 mod 16, and otherwise zj ∈ (0, 2π]. Only the first green point in the
odd numbered blocks is free to vary; the rest are the relevant θ’s. Each z ∈ I describes
an input set of N points, 6n− 3 of them fixed, specific points, while the other 2n− 1
points are arbitrary on the unit circle. Write X as the set of restricted inputs in which
T returns a NO answer.

For a permutation π = (π1, . . . , πn) of (1, . . . , n), define zπ ∈ I by

z16j−14 = θ16πj−14;

zπ describes the same N points as z∗ except that the first green points of the odd-blocks
of z∗ appear in permuted order in zπ. Therefore zπ ∈ X for every permutation. We
also claim that if π and ρ are distinct permutations, then zπ and zρ are in different path
connected components of I. We move along a continuous path p in I from zπ to zρ

(holding zj fixed, j 6= 2 mod 16). As we do, some green point leaves its half-block, say
Lk, and moves to an adjacent half-block, Rk−1 or Rk. Let j be the block where this first
occurs on p and let z(t) ∈ p denote the corresponding point in RN . The restricted input
described by this point is no longer in X because either [Rk−n−2 Lk−n−1 · · · Lk−1 Rk−1]
or [Rk Lk+1 · · · Lk+n−1 Rk+n−1] are now equitable partitions of all three colors. There-
fore X has n! path connected components, and the lemma now follows by Ben-Or’s
theorem [19].

The claimed lower bound for finding an equitable 2-fan is somewhat misleading: it
may be possible in o(n log n) time to determine a point Q, and two lines incident at
Q for which one of the four 2-fans is equitable. Lemma 1 just says that given only Q,
n log n steps are needed to know if there is an equitable 2-fan with apex Q, and to find
one if YES. Thus any search algorithm (like Bereg’s) that tests candidate apex points
P must have complexity at least n log n.

3 Other Equitable Partitionings in R2

Given n points in general position in R2, Willard [29] asked for a pair of non-parallel
lines `1 and `2 that equitably partition the points; i.e., in each of the four open quad-
rants they define, there are at most n/4 points. An efficient algorithm for this was



implied by results in Cole, Sharir, and Yap [15], and an optimal O(n) algorithm fol-
lows immediately using Megiddo’s separated, discrete ham-sandwich cut [25]. In fact
we can even insist that the lines are orthogonal: this is proved in Courant and Robbins
[16], or implied by a result of Bárány and Matoušek [8]) that uses Borsuk-Ulam along
with equivariant topology. Here we give an easy, direct combinatorial proof of exis-
tence, along the lines of [16]. From this argument we are led to an efficient orthogonal
partitioning algorithm. Specifically we prove

Theorem 1 Given a set S of n points in general position in R2, there exist orthogonal
lines `1 and `2 that equipartition S, and they may by found in Θ(n log n) RAM steps.

Proof: (Existence argument) A halving line for S has at most |S|/2 points in its
open halfspaces. For the existence, w.l.o.g. we may assume n = 4j + 1 is odd and
start with `1 as a vertical halving line incident with the point P ∈ S with median
x−coordinate, and `2 as a horizontal halving line incident with the point Q ∈ S of
median y−coordinate. Also suppose the open upper left quadrant has the most points,
say a, which we assume is > j or this partition is already equitable. We will rotate
`1 and `2 counter clockwise through π/2 radiands, always keeping them orthogonal,
and keeping `1 a halving line: i.e., `1 rotates about P until it first meets a point -
say P1 ∈ S. Next we rotate about P1 until `1 meets meets another point, P2, etc.
Except for the moments when `1 is incident with two points, Pi and Pi+1, it is always a
halving line for S. During this process, as `2 passes points of S, we will move it (always
maintaining its orthogonality to `1) so at most half the points of S are in either of its
open halfspaces. At the end of the rotation the upper-left quadrant has become the
original lower left, and now has < j points (because `2 is halving). Since its cardinality
changes by ±1 at each “event” in the rotation, there is a position where it has exactly
j points.

The complexity statement follows from the following two results.

Lemma 2 Given a set S of Θ(n) points in general position in R2 and a point Q ∈ R2,
Ω(n log n) steps are required by any algebraic decision tree that can decide if there is
an equitable partitioning of S by orthogonal lines incident with Q.

Proof: The argument is a construction sharing several features with that of Lemma
1, so we will be terse. We take Q to be the origin. Let N = 32k +9 and take N points
on the unit circle with arguments given by

θj =
2πj

N
, j = 1, . . . , N ;

since N is odd, no two are antipodal. The points of S will be those θj where j =
1, 2, 3, 4, 5 mod 8, so n = |S| = 20k + 5. (It may help to think of 4k + 1 groups of
equally-spaced points, 8 points per group, plus one extra point. Each open quadrant
has k + 1/4 groups. Points of S occupy the first 5 places in a group; the last 3 are
empty.)

If two orthogonal lines through Q = (0, 0) equipartition S there can be at most
5k + 1 points in any open quadrant. Let `1 and `2 be orthogonal lines through Q. It
is easy to see that



1. as they are rotated about Q (maintaining orthogonality), if neither is incident
with a point of S, then exactly two quadrants each contain 5k + 2 points of S,
and the other two contain a total of 10k + 1 points;

2. in addition, as either `1 (or `2) rotates across θi, . . . , θi+7, there is a position where
the four open quadrants contain 5k + 2, 5k + 2, 5k + 1, and 5k pts.

Thus, at the canonical input

z∗ = (θ1, . . . , θ5, θ9, . . . , θ13, . . . , θ32k+1 . . . , θ32k+5) ∈ R20k+5,

the decision tree must answer NO. On the other hand take k even and consider the
restricted set of inputs I where zj ∈ (0, 2π), and zi = θi for i 6= 11 mod(16). For each
π = (π1, . . . , π2k), a permutation of (1, . . . , 2k), define zπ ∈ I by

z16j−5 = θ16πj−5;

zπ and zρ are in different connected components because on a continuous path p(t) in
I from zπ to zρ, one of the middle points in an even numbered group is first to enter
an adjacent group, and at the input described by that p(t), there is an allignment of `1

and `2 that is incident with a point of S, and where each open quadrant has at most
5k + 1 points of S, a YES input.

As with Lemma 1, it may be possible in o(n log n) time to determine orthogonal
lines `1, `2 that equipartition the n given data points. The Lemma just says that given
only Q, n log n steps are needed to know if there exist orthogonal lines incident at Q
which do the job, so any search-based algorithm that tests candidate points must have
complexity at least n log n.

Lemma 3 Given a set S with n points in general position in R2, in O(n logn) RAM
steps we can find orthogonal lines `1 and `2 that equitably partition the points.

Proof: Dualizing the existence proof in Theorem 1, there is a point P1 = (−a, y1),
a > 0, that is dual to `1, and a point P2 = (1/a, y2), dual to `2 (`2 ⊥ `1), so that (i) at
most half of the lines in L (the set of lines dual to the n points in S) are above (below)
P1, (ii) at most half are above (below) P2, and (iii) bn/4c are above both P1 and P2.
We will search for P1, starting with a point Q = (−c, d) on the median level, and c > 0
chosen so that Q is to the left of the vertex of A(L) with min x-coordinate. The cost
to obtain Q is O(n log n) and we test it in O(n) time by computing Q′ = (−1/c, d′)
on the median level, and counting N(Q), the number of lines above both Q and Q′,
stopping with P1 = Q if N(Q) = bn/4c.

We could now use slope selection to carry out a binary search on the vertices of
A(L) and after log

(
n
2

)
search steps, each evaluating N(·) at the relevant point, we

determine P1 at a cost of O(n(log n)2). On the other hand in linear time we can find
vertical lines x = t1 and x = t2 with the property that P1 is in the strip they determine,
but there are at most εn2 vertices of A(L) that are also within the strip, ε > 0 small.
To do this we evaluate N at a point on x = t1 and the median level and also at a



point on x = t2 and the median level, and accept (t1, t2) if N is bigger than n/4 at
one point and smaller at the other. Now it is easy to prune a constant fraction of the
lines of L which cannot determine P1 and then recursing within the strip on L′, the
unpruned lines, we obtain P1 in time O(n log n): the strip in the next recursive step is
determined in time O(n), because we evaluate N(·) with respect to the original lines,
and there are O(log n) steps before only a constant number of lines remain, after which
we can finish in O(n) time by brute force search.

An interesting special case is where the n points of S are in convex position, so
their radial order is the same from every point interior to conv(S). This fact simplifies
the problem enough to allow us to find an orthogonal equipartitioning in linear time.

Lemma 4 An equitable orthogonal partitioning for n points in convex position can be
found in time O(n).

Proof: We may consider the points to be on the unit circle. The idea is a simple
prune and search. We begin with any partition formed by orthogonal halving lines, `1

and `2. Let a > n/4 be the size of the largest quadrant, say the northwest as in the
existence argument. Instead of rotating `1 and `2 counterclockwise we proceed using
O(log n) binary search steps. The first one, for example, finds the point Q ∈ S in the
northwest quadrant that has the median argument, and constructs `′1 as the halving
line through it, and then `′2 as the halving line orthogonal to `′1, all performed in O(n)
time. If the “new” northwest quadrant has a quarter of the points, we are done. If
it has a′ > n/4 points, we continue counterclockwise; otherwise we have jumped too
far with `′1, `′2 and so now we continue the search clockwise. In both these cases, a/2
points may be removed from further consideration.

After each such step, done in linear time, we find a new pair of orthogonal halving
lines and can decide if the search continues in the counter clockwise direction, or not.
At this point at least 1/8 of the points may be removed from further consideration
and the search continues on the remaining points. The ability to “prune” the constant
fraction at each step inplies that the entire cost is linear. The details are omitted.

Next, we consider the equitable partitioning induced by three lines incident at a
point. Buck and Buck proved that for any continuous measure on a compact set, three
such lines may be found for which each sector has a 1/6 fraction of the measure, and
it is straightforward to extend this to an equipartitioning for points in the plane. Here
we show

Theorem 2 Given a set S of n points in general position in R2, in Θ(n log n) RAM
steps we can find lines `1, `2, and `3, incident at a common point, and no sector
contains more than n/6 points of S. If the points are in convex position the six-way
partitioning may be found in linear time.

Proof: Because the ideas are so similar to what was used for orthogonal equipartition-
ing, we omit many details. As before, the existence argument drives the formulation



of an efficient algorithm, and suggests the framework for prune-and-search in the case
of convex position.

Let `1 be any halving line. There is a unique line `2 that splits the points of S in
both halfspaces in a “two-to-one” ratio; i.e., two opposite quadrants each contain n/6
points and the other two contain n/3 each. Notice that both lines are halving.

Let Q = `1 ∩ `2 and consider the unique line `3 that is a (separated) ham-sandwich
cut for the points of S in the two quadrants with n/3 points. We rotate this structure
counterclockwise preserving (i) the fact that `1 is halving, (ii) the fact that `2 is two-to-
one splitting, and (iii) the fact that `3 halves the points in each of the `1, `2 quadrants
that contain n/3 points.

As in Theorem 1 we rotate the entire structure about a point P ∈ S that is incident
with `1. When `1 meets another point of S, that new point becomes the center of
rotation. “Events” occur when any line passes a point of S. If `2 crosses points of S,
we move it so it is still halving. If `3 crosses points of S in one of the `1, `2 quadrants that
contains n/3 points we move it so it is still halving for that quadrant. Let A = `1 ∩ `3

and B = `2 ∩ `3. The punchline is that after rotation through π radiands, σ, the sign1

of triangle ∆ABQ, becomes −σ and since the rotation is continuous and σ changes by
±1, there is a moment when σ = 0, and the three lines pass through Q.

We will again use slope selection to guide a binary search on the vertices of the
arrangement of lines dual to points in S. `1 begins as the vertical line through the
point of S with median x−coordinate (or in the dual, the vertex on the median level
with smallest x−coordinate), found in O(n log n). `2 and `3 may now be found in
O(n), along with the vertices of the triangle determined by these three lines, and σ, its
sign. The next binary search step uses slope selection to find (in the dual) the vertex
with median x−coordinate (say x = t) and then chooses the new `1 as the line on the
median level with this x coordinate. Now the new `2 and `3 are determined in O(n)
time and the new value of σ: if it is zero, we are done; if it has the same sign as the
previous configuration, we continue the search to the right, and otherwise to the left.
There are O(log

(
n
2

)
) steps, each at a cost of O(n log n) for a total cost of O(n(log n)2).

We can reduce the overall cost to O(n logn) by doing the O(logn) slope selections
approximately, getting more and more accurate as the search narrows in on the solution,
as in the optimal slope selection algorithm [14]. For example the first binary search step
only needs to return a vertex with x−coordinate of rank less than 3n2/4 but greater
than n2/4 and this can be done in linear time. In this fashion the total binary search
cost is O(n log n), details omitted.

We also omit a construction, similar in conception to Lemma 2, showing that
Ω(n log n) steps are necessary for any algebraic decision tree that can decide if a set
S with Θ(n) points in R2 admits an equitable partitioning by three lines through a
given point Q ∈ R2. When the points of S are in convex position, the binary search
steps can be done in linear time by ordinary selection in the primal. In addition points
may be pruned after each search step, allowing an overall linear time algorithm for the

1Given distinct points C, D, E ∈ R2, the sign of triangle ∆CDE is 1 if C is to the left of the
directed line from D to E, −1 if C is to the right, and 0 if the points are collinear. The sign is also 0
if the points are not distinct.



convex case.

Finally, we consider the equitable partitioning induced by a convex quadrilateral
and the two lines through its opposite vertices, the “cobweb” partitioning discovered
by Schulman [27]. Each of the eight open regions of this configuration has at most n/8
points of S.

Theorem 3 Given a set S of n points in general position in R2, in O(n log n) RAM
steps we can find a cobweb partitioning.

Proof: (Brief outline) The upper bound is based on Schulman’s existence proof, which
already had an algorithmic flavor. From a starting construction with two halving lines
and five sides of a “pseudo-quadrilateral”, the algorithm either ends successfully, or
rotates the structure to the next position. By the time the first diagonal has rotated
into the original position of the second diagonal, a solution must have been discovered.
As in the previous cases we can carry out the search via binary search, guided by an
approximate slope selection which becomes more accurate as the solution is approached.

We believe that the convex case is linear and that the general algorithm is optimal.

4 Some Other Partitioning Problems

There are many fascinating questions of a similar flavor to the ones considered so far.
Some concern the algorithmic aspects of partitionings whose existence is guaranteed
by Borsuk-Ulam, as most of the previous results. Others pertain to the existence (or
not) of a particular structure.

First, consider the following equipartitioning assertion (Ad) concerning a set S of
n points in general position in Rd:

(Ad) there exist d, (d−1)-dimensional hyperplanes in Rd, so that none of the
2d “orthants” they determine have more than n/2d points of S

A1 just says there is always a median, a point splitting S into n/2 smaller items and
n/2 bigger ones. A2 say that a two-line equipartitioning exists for S (and in fact we
know that these lines may be taken to be orthogonal). Yao et. al [30] proved A3,
guaranteeing the existence of three planes in R3 that have at most n/8 points of S
in any octant, and in fact one of the planes may be taken as an arbitrary halving
plane. Finally for d ≥ 5, Avis [5] showed the existence of sets so that no matter how d
hyperplanes are chosen in Rd, there will always be at least 2d − d2 orthants with NO
points of S. The big open case is d = 4. Avis’ result cannot guarantee any empty
orthants and so the possibile truth of A4 remains intriguingly open.

The d = 3 case is also interesting. The theorem in [30] allowed one of the three
equipartitioning planes to be an arbitrary halving plane. It is not known if this extra
degree of freedom may be used to prove the existence of a (1/8) equipartitioning with an
extra property, say two of the planes having orthogonal normals, or one plane normal
to the line common to the other two, etc.



Because this equipartitioning is so natural, Yao et. al. discussed the computational
complexity. They discribed an O(n7) algorithm starting with any halving plane and
then, using three points of S for each of the other two planes, iterated through the(

n
6

)
possibilities, testing each configuration in linear time, and knowing that one of

them is guaranteed to work. This is already too slow for say, 50 points. The same
idea can be refined, noticing that each of the other planes is a halving plane, and then
using a recent bound of Sharir, Smorodinsky, and Tardos [28] on the number of three
dimensional halving sets. This would imply an O∗(n6) algorithm, the * signifying the
presence of log factors. In fact each of the other planes is a simultaneous halving
plane for the points above the initial plane and for the points below it. We conjecture
that there are O(n2) such planes and this now would give an O∗(n5) algorithm. More
formally

Conjecture 1 Let A and B be sets of n points in general position in R3 with disjoint
convex hulls. The number of halving sets of A ∪ B that simultaneously bisect both A
and B is O(n2).

Another familiar combinatorial consequence of Borsuk-Ulam is the necklace theorem
[2], [3]: a strand of gems of d different types, 2ni jewels of type i, may be equipartitioned
with at most d cuts. The cuts create d + 1 sub-strands which may then be partitioned
into two groups in such a way that each group has ni jewels of type i. Its clear that d
cuts may be necessary, namely if the jewels of each type are consecutive; the theorem
says d is always sufficient.

One nice (combinatorial) proof of this theorem represents the necklace as a sequence
of N = 2n1 + · · · + 2nd points on the moment curve in Rd and then uses the ham-
sandwich theorem. The computational complexity of this approach is O∗(Hd−1), by a
result of Lo et. al. [23], Hj denoting the number of halving sets in Rj . For d = 3
types of jewels, the complexity is O∗(n4/3) by virtue of Dey’s bound on planar k-sets
[17]. This should be compared to the O(n3) search of all possible 3 cuts. It would be
interesting to know if there is a more efficient algorithm.
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