Let me know if you have questions or spot errors or misprints

- 1a) $I_{2}(t)=A+B+C$ where $A=f(1) *[(x-2) *(x-4)] /[(-1) *(-3)], B=f(2) *[(x-1) *$ $(x-4)] /[(1) *(-2)]$, and $C=f(4) *[(x-1) *(x-2)] /[(3) *(2)]$.
- 1b) I counted $2+, 6-, 3 *$ and $8 /$.
- 1c) $a_{0}+a_{1} * x_{i}+a_{2} *\left(x_{i}\right) * * 2=f\left(x_{i}\right)$, for $i=0,1,2$. Plugging the $x_{i}^{\prime} s$ into the eqns we get: $1 \cdot a_{0}+x_{0} * a_{1}+\left(x_{0}\right) * * 2 * a_{2}=f\left(x_{0}\right)\left(=1 / x_{0}\right] 1 \cdot a_{0}+x_{1} * a_{1}+\left(x_{1}\right) * * 2 * a_{2}=f\left(x_{1}\right)\left(=1 / x_{1}\right]$ $1 \cdot a_{0}+x_{2} * a_{1}+\left(x_{2}\right) * * 2 * a_{2}=f\left(x_{2}\right)\left(=1 / x_{2}\right]$ and the x_{i} 's are known, so solve for the a_{i} 's.
- 1d) We have $I_{2}(x)=f(x)$ at $x=x_{0}, x_{1}, x_{2}$. We add $x_{3} \neq x_{i}, i=0,1,2$, to get $I_{3}(x)=$ $I_{2}(x)+c_{3} *\left(x-x_{0}\right) *\left(x-x_{1}\right) *\left(x-x_{2}\right)$ and evaluating that at $x=x_{3}$ shows that $c_{3}=$ $\left[f\left(x_{3}\right)-I_{2}\left(x_{3}\right) /\left[\left(x-x_{0}\right) *\left(x-x_{1}\right) *\left(x-x_{2}\right)\right]\right.$
To compute c_{3} I counted $5 *$ ops. and $1 /$ ops. (to evaluate $I_{2}\left(x_{3}\right)$ and then to compute the denominator, above).
- 1e) $T_{1}(t)=f(u)+(t-u) * f^{\prime}(u)=1 / u+(t-u)\left(-1 / u^{2}\right)=1 / 2-(t-2) / 4$.
- 1f) $E\left(T_{1}(t)\right)=f(t)-T_{1}(t)=f^{\prime \prime}(\theta) *(t-u)^{2} / 2=$ for some θ between t and u. Now use $f^{\prime \prime}(\theta)=2 /(\theta)^{3}$ and use the θ between u and t with smallest absolute val.
- 1 g$\left.) u_{j}=\cos ((2 * j+1) * \pi) /(2 *(n+1))\right), j=0,1, \ldots, n$. On $[-1,1]$ we get $u_{0}=\cos (\pi / 6)=$ $\sqrt{(3)} / 2, u_{1}=0$, and $u_{2}=-u_{0}$.
- 1 h$) f(1)=1$ and $f(4)=1 / 4$ and the line L through these two points $[A=(1,1)$ and $B=(4,1 / 4)]$ has equation $y=5 / 4-x / 4$ and L is above f on this interval. The maximum of $L(x)-f(x)=5 / 4-x / 4-1 / x$ occurs when $L^{\prime}(x)=f^{\prime}(x)$, i.e., when $x=2$ and that max. difference is $1 / 4$, So if we subtract $1 / 8$ from $L(x)$ (giving $y=9 / 8-x$) this new line equi-oscillates w.r.t f so it is the linear minimax approx. on $[1,4]$.
- 1i)
- 1j)
- 3) This question tests your geometric understanding of polynomial approximation methods. Very little computation should be needed. Consider the function

$$
f(x)=\frac{1}{1+9 x^{2}}, \quad-1 \leq x \leq 1
$$

and the following four approximations (also on $[-1,1]$): $g(x)=1, h(x)=11 / 20, p(x)=2 / 11$, $q(x)=1 / 10+18(x+1) / 100$.

- 3b) g is T_{1}
-3 c) p is C_{1}
$-3 \mathrm{~d}) h$ is minimax
$\left.-3 \mathrm{e}^{*}\right) g$ is better because dist $(\mathrm{f}, \mathrm{g})=9 / 10$ with minimax dist.

