- 1b) The chord method will NOT converge. $m=10$ is positive but $f^{\prime}(x)=-3 x^{2}$ is not. If $P_{0}>w, P_{n} \rightarrow \infty$ and if $P_{0}<w, P_{n} \rightarrow-\infty$.
- 2d) Newtons method is FPI on $g(x)=x-\left(9-x^{3}\right) /\left(-3 x^{2}\right)=2 x / 3+3 / x^{2}$, which has a fixed point at $w=9^{1 / 3}$. Since $g^{\prime}(x)=2 / 3-6 / x^{3}$ and $g^{\prime \prime}(x)=18 / x^{4}, g^{\prime}(w)=0$ but $g^{\prime \prime}(w) \neq 0$, the convergence rate will be (exactly) quadratic, if FPI does converge.
To study the convergence, note that g is a contraction when

$$
-1<2 / 3-6 / x^{3}<1
$$

The right hand inequality is true for all $x>0$ (as $w>0$ we ignore it), and the left hand one when $x^{3}>18 / 5$, so g is a contraction on the set $S=\left((18 / 5)^{1 / 3}, \infty\right)$. Observe that (i) $2^{3}>18 / 5$, so $P_{0} \in S$; (ii) that $9>18 / 5$, so $w \in S$; (iii) $x \in S$ implies $g(x) \in S$. This is true because $g(w)$ is the min of $g(x)$ for all $x>0$, and $g(w)=w \in S$. All conditions for the contraction mapping principle are satisfied so YES, it converges when $P_{0}=2$.
Since $P_{0} \notin S$ we are justified to say "I dont know". However for every $0<P_{0}<w, P_{1}>w$ so $P_{1} \in S$. Newtons method will converge here for any $P_{0}>0$.

- 5) The costs are THE SAME: To compute $A C$ we study the cost for the $j^{\text {th }}$ column of the product. The first element takes j^{*} OPS, the second takes $j-1$, etc., so the column j cost is $j(j+1) / 2$, and the cost for all of $A C$ is $\sum_{j=1}^{n} j(j+1) / 2=n^{3} / 6+n^{2} / 2+n / 3$.
For the Gauss-Jordan to reduce A to I, we need to "zero-out" column j above the $j^{\text {th }}$ row. Suppose we already did the first $j-1$ columns. For row $i<j$ we compute the pivot value $c=a_{i j} / a_{j j}$ and subtract $c *$ row $_{j}{\text { from } \text { row }_{i} \text {. To do the same operation on the right-hand term }}_{\text {. }}$ which began as I, we just write the value c in position row $_{i} \operatorname{col}_{j}$. This pivot step uses $n-j$ multiplications. Since there are $j-1$ rows, the cost of column ${ }_{j}$ is $(n-j+1)(j-1)$. To reduce A to diagonal, we did $\sum_{j=2}^{n}(n-j+1)(j-1)=\left(n^{3}-n\right) / 6$ OPS. These operations on A, when performed on I, simply wrote the pivot values. Now we divide each row by the diagonal term $a_{i, i}$. The cost is $n(n+1) / 2$ which when added to $\left(n^{3}-n\right) / 6$ gives $n^{3} / 6+n^{2} / 2+n / / 3$.

