CS323 HW3 corrected Dec. 5, 2019

Hand in solutions to problems marked with a (*) in class next Wed. The others are for your own practice and benefit, but wont be graded.

- 1. (*) Let $f(x) = x^2$ on [0, 1]. Set up, then solve, the normal equations for $P_1(x)$, the (continuous) least squares approximation to f of degree = one, expandeded in the monomial basis. Then find $d_2(f, P_1) \equiv \int_0^1 (f(x) P_1(x))^2 dx$, the error of the approximation.
- 2. $C_1(x)$, the linear Tchebycheff interpolation of f is $C_1(x) = x 1/8$. Compute $d_2(f, C_1)$. Also compute $d_{\infty}(f, C_1) \equiv \max(|f(x) C_1(x)| 0 \le x \le 1)$ and $d_{\infty}(f, P_1)$. What do these calculations show?
- 3. Now repeat using the basis $\phi_0(x) = 1$ and $\phi_1(x) = 2x 1$. Check that the two expressions for P_1 are equivalent. Finally, show how to use the answer in 1) to find P_1 in the second basis without setting up and solving normal equations.
- 4. Repeat for $g(x) = e^x$ on [0, 1].
- 5. (*) Take $x_i = i/5$, i = 0, ..., 5. Set up and solve the normal equations to find the *discrete* least squares straight line approximation to f from (1), in the monomial basis and then in the basis used in problem 3.
- 6. (*) Find ϕ_0, ϕ_1, ϕ_2 the first three orthogonal basis functions for the interval [-2, 3]. Then find the coefficient matrix of the normal equations to determine the second (i.e., degree at most two, or quadratic), continuous least squares approximation to f on this interval in both monomial and orthogonal bases.
- 7. Let $f(x) = x^3$ on [-2, 3]. Using the previous results,
 - (a) Find $P_2(x)$, the degree at most two (i.e., quadratic) continuous-least-squares approximation to f, expanded in the monomial basis.
 - (b) Now show how to express P_2 in the orthogonal basis using only the basis functions from 5)
 - (c) Finally check the answer in b) by solving the normal equations for P_2 , expanded in the orthogonal basis.