Hand in solutions to problens marked with a $\left(^{*}\right)$ in class next Wed., Dec. 11, 2019. The others are for your own practice and benefit, but wont be graded.

1. $\left(^{*}\right)$ Let $f(x)=x^{2}$ on $[0,1]$. Set up, then solve, the normal equations for $P_{1}(x)$, the (continuous) least squares approximation to f of degree $=$ one, expandeded in the monomial basis. Then find $d_{2}\left(f, P_{1}\right) \equiv \int_{0}^{1}\left(f(x)-P_{1}(x)\right)^{2} d x$, the error of the approximation.
2. $C_{1}(x)$, the linear Tchebycheff interpolation of f is $C_{1}(x)=x-1 / 8$. Compute $d_{2}\left(f, C_{1}\right)$. Also compute $d_{\infty}\left(f, C_{1}\right) \equiv \max \left(\left|f(x)-C_{1}(x)\right| 0 \leq x \leq 1\right)$ and $d_{\infty}\left(f, P_{1}\right)$. What do these calculations show?
3. Now repeat using the basis $\phi_{0}(x)=1$ and $\phi_{1}(x)=2 x-1$. Check that the two expressions for P_{1} are equivalent. Finally, show how to use the answer in 1) to find P_{1} in the second basis without setting up and solving normal equations.
4. Repeat for $g(x)=e^{x}$ on $[0,1]$.
5. (*) Take $x_{i}=i / 5, i=0, \ldots, 5$. Set up and solve the normal equations to find the discrete least squares straight line approximation to f from (1), in the monomial basis and then in the basis in 2).
6. $\left(^{*}\right)$ Find $\phi_{0}, \phi_{1}, \phi_{2}$ the first three orthogonal basis functions for the interval $[-2,3]$. Then find the coefficient matrix of the normal equations to determine the second (i.e., degree at most two, or quadratic), continuous least squares approximation to f on this interval in both monomial and orthogonal bases.
7. Let $f(x)=x^{3}$ on $[-2,3]$. Using the previous results,
(a) Find $P_{2}(x)$, the degree at most two (i.e., quadratic) continuous-least-squares approximation to f, expanded in the monomial basis.
(b) Now show how to express P_{2} in the orthogonal basis using only the basis functions from 5)
(c) Finally check the answer in b) by by solving the normal equations for P_{2}, expanded in the orthogonal basis.
