1. Given the following linear system

$$
A=\left(\begin{array}{rrr}
-2 & 2 & -3 \\
1 & 2 & -3 \\
3 & 0 & 6
\end{array}\right), \underline{b}=\left(\begin{array}{r}
-3 \\
0 \\
9
\end{array}\right) .
$$

(a) Use Gaussian elimination - no pivoting - to find the $L U$ factorization of A in compact notation, showing and explaining each step. Write down L and U and show that $A=L U$
(b) Using the above factorization, solve $A \underline{x}=\underline{b}$ by forward substitution (solve $L \underline{y}=\underline{b}$ for \underline{y}, then backsolving the system $U \underline{x}=\underline{y}$ to obtain \underline{x}.
(c) Repeat (a), now using partial pivoting to get L, U, and \underline{p} such that $L U=A(\underline{p})(A$ with its rows given according to the permutation vector \underline{p}). Verify that this gives the same solution.
2. Consider $f(t)=\sqrt{t}$.
(a) Find T_{0} and T_{1}, the Taylor polynomials for f of degrees zero and one, expanded about $u=16 / 9$.
(b) What are the approximations of $\sqrt{2}$?
(c) Use Taylor's theorem to express the error of these approximations at the point t.
(d) Use these expressions to bound the errors when $t=2$. What do you learn about $\sqrt{2}$ in the two cases, above?
(e) Repeat the above for T_{2}, the quadratic Taylor approximation, expanded about 49/25.
(f) Compute the second Taylor polynomial for $f(t)=\sin (\pi t)$, expanded about $t=1 / 2$. Graph f and T_{2} on $[0,1]$. What does this approximation say about $\sqrt{2}$ (use $\sin (\pi / 4)=$ $\sqrt{2} / 2)$?
3. Given $f(t)=\sin (\pi t)$ and collocation points $x_{0}=-1 / 6, x_{1}=1 / 2$, and $x_{2}=0$.
(a) Find Lagrange's form of $I_{0}(t)$ the degree $=0$ interpolation of f based on x_{0}, and $I_{1}(t)$, the linear interpolation based on x_{0} and x_{1}. Graph f, I_{0} and I_{1} on $[0,1]$.
(b) Using $\sin (\pi / 4)=\sqrt{2} / 2$, write down the approximations of $\sqrt{2}$ given by I_{0} and I_{1}.
(c) Use the error formula to express the error of I_{1} at $t=1 / 4$. Then show how to get bounds on the approximation of $\sqrt{2}$.
4. Consider $f(t)=\sqrt{t}$ and collocation points $x_{0}=1, x_{1}=16 / 9$, and $x_{2}=9 / 4$.
(a) Set up, then solve the equations to find $I_{1}(t)$, the straight line interpolating f at x_{0} and x_{1} in the standard form. What is its approximation of $\sqrt{2}$? Check that this agrees with Lagranges form of I_{1}.
(b) Use the error formula to express the error, $f(2)-I_{1}(2)$, of the above approximation. Now bound the error. What do these bounds say about $\sqrt{2}$?
(c) Finally find $I_{2}(x)$, the degree 2 polynomial interpolating f at x_{0}, x_{1}, and x_{2}, in Newton's form.

