- Clearly written solutions to the problems will be due sometime after Oct. 9,2019
- You may discuss the problems with other students but you are expected to write-up your solutions entirely ALONE, and without the help or input from anyone else. When you finish please write clearly on the first page the following pledge: "This write up is entirely my own work - done alone, without help or input from others - although I did discuss the problems with" - (and then list the colleagues with whom you interacted for this HW).

1. We want to represent each of the following real numbers in a $k=7$ digit computer: (i) 1.817120593 (close to $(6)^{1 / 3}$); (ii) 1.414213562 (close to $\sqrt{2}$); (iii) -.0013456; (iv) 101.266 .
(a) Write down the normalized floating point representation using chopping. Compute the error and the relative error.
(b) Repeat using rounding. Which method is more accurate?
2. Suppose you were computing $(6)^{1 / 3}(\omega) \sqrt{2}$ on a 6 -digit computer, where (ω) stands for one of the arithmetic operators,,$+- *$ or $/$. Use (i) and (ii) in problem 1 for the "true" values.
(a) Show what the 6 digit computer would obtain in each of the 4 possibilities for ω using the chopping convention.
(b) Compute the relative errors of the calculations in a).
(c) Repeat a) and b) using the rounding convention. Is rounding better than chopping?
3. x^{\prime} is an approximation of 40.214213562 whose relative error has absolute value less than $5 * 10^{-5}$. Describe the largest interval in which x^{\prime} can lie.
4. a^{\prime}, b^{\prime}, and c^{\prime} are positive integers obtained by chopping the fractional part from a, b, and c, respectively. Find in terms of a^{\prime}, b^{\prime}, and c^{\prime}, the smallest interval containing
(a) $a+b$.
(b) $a \times b$ (\times denotes multiplication).
(c) $(a / b) \times c$.
5. Perform the following computations (i) exactly, (ii) using three-digit chopping arithmetic, and (iii) using three-digit rounding arithmetic. Then compute the relative errors of the final results.
(a) $\frac{3}{4}+\frac{1}{5}$
(b) $\left(\frac{3}{4}\right)\left(\frac{1}{5}\right)$
(c) $\left(\frac{1}{3}-\frac{3}{11}\right) \frac{4}{5}+\frac{3}{20}$
(d) $\left(\frac{1}{3}+\frac{3}{11}\right)+\frac{3}{20}$
(e) Repeat (a) and (c), above, now using four digits. Does this give greater accuracy? Is a $k+1$ digit computer always more accurate than a k digit one?
6. We want to find the maximum of the function $f(x)=e^{-x}-\cos x, x \geq 0$.
(a) On the same graph sketch e^{-x} and $\cos x, x>0$.
(b) Argue that f has a global maximum in the interval $(0,2 \pi)$. Is this an appropriate starting interval for the bisection method applied to solving $f^{\prime}(x)=0$? Carefully explain.
7. You want to find the root of $f(x)=x^{3}+2$.
(a) Starting with the interval $(-2,-1)$ (is this appropriate?) do two steps of bisection.
(b) How many steps are needed to guarantee that the error is less than .005 ?
(c) Now do two regula-falsi steps, as in (a). Which seems better?
(d) Do two Newton steps starting with P_{0}, the initial bisection from (a).
(e) Do two Secant steps starting with P_{0} and P_{1} from (a).
(f) DO three stepts of the chord method using $m=5$.
(g) Use Aitkin's accelleration to accellerate the last two approximations of the chord method, above.
