- Clearly written solutions to the problems will be due sometime after Oct. 9, 2019
- You may discuss the problems with other students but you are expected to write-up your solutions entirely ALONE, and without the help or input from anyone else. When you finish please write clearly on the first page the following pledge: "This write up is entirely my own work done alone, without help or input from others although I did discuss the problems with" (and then list the colleagues with whom you interacted for this HW).
- 1. We want to represent each of the following real numbers in a k = 7 digit computer: (i) 1.817120593 (close to $(6)^{1/3}$); (ii) 1.414213562 (close to $\sqrt{2}$); (iii) -.0013456; (iv) 101.266.
 - (a) Write down the normalized floating point representation using chopping. Compute the error and the relative error.
 - (b) Repeat using rounding. Which method is more accurate?
- 2. Suppose you were computing $(6)^{1/3}(\omega)\sqrt{2}$ on a 6-digit computer, where (ω) stands for one of the arithmetic operators +, -, * or /. Use (i) and (ii) in problem 1 for the "true" values.
 - (a) Show what the 6 digit computer would obtain in each of the 4 possibilities for ω using the chopping convention.
 - (b) Compute the relative errors of the calculations in a).
 - (c) Repeat a) and b) using the rounding convention. Is rounding better than chopping?
- 3. x' is an approximation of 40.214213562 whose relative error has absolute value less than $5 * 10^{-5}$. Describe the largest interval in which x' can lie.
- 4. a', b', and c' are positive integers obtained by chopping the fractional part from a, b, and c, respectively. Find in terms of a', b', and c', the smallest interval containing
 - (a) a + b.
 - (b) $a \times b$ (× denotes multiplication).
 - (c) $(a/b) \times c$.
- 5. Perform the following computations (i) exactly, (ii) using three-digit chopping arithmetic, and (iii) using three-digit rounding arithmetic. Then compute the relative errors of the final results.
 - (a) $\frac{3}{4} + \frac{1}{5}$
 - (b) $\left(\frac{3}{4}\right)\left(\frac{1}{5}\right)$
 - (c) $\left(\frac{1}{3} \frac{3}{11}\right)\frac{4}{5} + \frac{3}{20}$
 - (d) $\left(\frac{1}{3} + \frac{3}{11}\right) + \frac{3}{20}$
 - (e) Repeat (a) and (c), above, now using four digits. Does this give greater accuracy? Is a k + 1 digit computer always more accurate than a k digit one?
- 6. We want to find the maximum of the function $f(x) = e^{-x} \cos x, x \ge 0$.
 - (a) On the same graph sketch e^{-x} and $\cos x$, x > 0.
 - (b) Argue that f has a global maximum in the interval $(0, 2\pi)$. Is this an appropriate starting interval for the bisection method applied to solving f'(x) = 0? Carefully explain.

- 7. You want to find the root of $f(x) = x^3 + 2$.
 - (a) Starting with the interval (-2, -1) (is this appropriate?) do two steps of bisection.
 - (b) How many steps are needed to guarantee that the error is less than .005?
 - (c) Now do two regula-falsi steps, as in (a). Which seems better?
 - (d) Do two Newton steps starting with P_0 , the initial bisection from (a).
 - (e) Do two Secant steps starting with P_0 and P_1 from (a).
 - (f) DO three stepts of the chord method using m = 5.
 - (g) Use Aitkin's accelleration to accellerate the last two approximations of the chord method, above.