
CS323 Review Sheet 3a November 11, 2019
Approximation by Polynomials

Given a continuous function f(x) on an interval [a, b], the goal is to find a function g(x) as an
approximation to f . One of the reasons for wanting such an approximation could be that we want
to compute

∫

f(x)dx or f ′(x) (1)

but for some reason, we cannot perform these operations directly on f , (for example if the integral
of f is not known). The hope is that we can use

∫

g(x)dx or g′(x) (2)

polynomials. Therefore our approximating functions g(x) will always be polynomials.

1. Polynomials A function of the form

Pn(x) = a0 + a1x+ a2x
2 + · · ·+ ajx

j + · · ·+ anx
n , an 6= 0, (3)

is a polynomial of degree n. The coefficients a0, . . . , an are real numbers. Pn is clearly con-
tinuous. If we evaluate Pn at cx + d, c 6= 0, we can collect terms with the same power of x
and write the result as Pn(cx+ d) = b0 + b1x+ · · ·+ bnx

n. Also it is clear from the binomial
theorem that bn = anc

n so Pn(cx+d) is also a polynomial of degree n. Some other facts about
polynomials are:

(a) If we differentiate (3) with respect to x we see

P ′
n(x) = a1 + 2a2x+ · · ·+ jajx

j−1 + · · ·+ nanx
n−1,

a polynomial of degree n− 1. In fact differentiating j times, and writing P (j)
n as the jth

derivative,

P (j)
n (x) = j!aj +

(j + 1)!

1!
aj+1x+ · · ·+ n!

(n− j)!
anx

n−j . (4)

(b) If we integrate (3) with respect to x we see

∫

Pn(x)dx = a0x+
a1
2
x2 + · · ·+ aj

j + 1
xj+1 + · · ·+ an

n+ 1
xn+1 + C,

a polynomial of degree n + 1

(c) If we add Pn(x) + Qm(x), polynomials of different degrees m 6= n, the result is a poly-
nomial of degree = max (m,n). If the degrees are the same, the sum is a polynomial of
degree ≤ n (e.g., coefficients of xn could cancel). If we multiply polynomials, the result,
Pn(x)Qm(x) is a polynomial of degree m+ n.

(d) Horner’s Method to evaluate Pn: Given a0, . . . , an and a point x = t at which we
want to evaluate Pn, the following describes an efficient procedure to compute Pn(t) in
(3).

• poly← an

• FOR i = 1 TO n DO

1

• poly ← poly∗t + an−i

• ENDFOR

Clearly this uses n multiply and n add steps and returns the value of Pn(t) in the variable
poly.

(e) Finally the Fundamental Theorem of Algebra states that a non-zero polynomial of degree
n has n complex roots. This means that Pn has at most n real roots (or else Pn is
identically zero). We will use this observation to deduce that if there are n + 1 distinct
values u0, u1, . . . , un, ui 6= uj, i 6= j, and if Pn(uj) = 0, j = 0, . . . , n, then Pn(x) = 0 for

all x.

2. Taylor Polynomials: Given a function f(x) which is n times differentiable, we will take a
value x = u and construct a polynomial that “resembles” f in n+1 different ways. Specifically
the polynomial

Tn(x) = a0 + a1(x− u) + · · ·+ aj(x− u)j + · · ·+ an(x− u)n (5)

will be forced to satisfy the following n+ 1 conditions:

f (j)(u) = T (j)
n (u) , j = 0, 1, . . . , n. (6)

When j = 0, this says that f(u) = Tn(u). The other n conditions say that f and Tn have the
same first n derivatives at the point x = u.

Each one of these conditions will determine one of the coefficients in (5). For example when
j = 0, (6) says that f(u) = Tn(u) and using this in (5), Tn(u) = a0. Therefore we learn that

a0 = f(u).

In general we want to differentiate (5) j times. From (4)

T (j)
n (x) = j!aj +

(j + 1)!

1!
aj+1(x− u) + · · ·+ n!

(n− j)!
an(x− u)n−j,

so T (j)
n (u) = j!aj . Using (6) we learn that

aj =
f (j)(u)

j!
.

Using these values in (5), the nth Taylor polynomial for f , expanded about u is

Tn(x) = f(u) + f ′(u)(x− u) + · · ·+ f (j)(u)

j!
(x− u)j + · · ·+ f (n)(u)

n!
(x− u)n. (7)

Note also that we can express (7) (use 0! ≡ 1) as

Tn(x) =
n∑

j=0

f (j)(u)

j!
(x− u)j = Tn−1(x) +

f (n)(u)

n!
(x− u)n.

(a) An example: Actually this is two examples of computing T2, the quadratic Taylor
polynomial for f(x); we do it twice with different values of u. Let f(x) =

√
x. We will

compute T2(x) expanded about u = 1 and about u = 9/4 with the help of the following
table:

2

j f (j)(x) f (j)(1) aj • f (j)(9/4)) aj
0 x1/2 1 1 • 3/2 3/2

1 1
2
x−1/2 1/2 1/2 • 1/3 1/3

2 −1
4
x−3/2 −1/4 −1/8 • −2/27 −1/27

3 3
8
x−5/2 •

Therefore the second Taylor Polynomial expanded about u = 1 is

T2(x) = 1 +
1

2
(x− 1)− 1

8
(x− 1)2

and the second Taylor Polynomial expanded about u = 9/4 is

T2(x) = 3/2 +
1

3
(x− 9

4
)− 1

27
(x− 9

4
)2.

Note that T2(2) = 1.375, in the first case, and 1.4143519 in the second; the latter is an
excellent approximation to

√
2.

(b) Taylor’s Theorem: f(x)− Tn(x) is the error of the n
th Taylor polynomial at the point

x. Taylor’s theorem says exactly what it is in terms of n, x, u, and derivatives of f : “If
f has n + 1 continuous derivatives, there is a point θ between x and u such that

f(x)− Tn(x) =
f (n+1)(θ)

(n+ 1)!
(x− u)n+1.′′ (8)

(c) The example again: We will apply Taylor’s Theorem to bound the error of the ap-
proximations made in (a). First, for the case u = 1, Taylor’s theorem says that

√
x− T2(x) =

θ−5/2

16
(x− 1)3

for some value of θ between x and 1. Taking x = 2,

√
2− 1.375 =

θ−5/2

16
, θ ∈ (1, 2),

and this implies that 1.385417 ≤
√
2 ≤ 1.4375. Now for the case u = 9/4, Taylor’s

Theorem says
√
x− T2(x) =

θ−5/2

16
(x− 9

4
)3

for some value of θ between x and 9/4. Again taking x = 2,

√
2− 1.4143519 = − θ−5/2

(16)(64)
, θ ∈ (2, 9/4),

and this implies that 1.4141078 ≤
√
2 ≤ 1.4143305.

3. Interpolation: Given n + 1 distinct values u0, u1, . . . , un, ui 6= uj, i 6= j, we will find
a polynomial In(x) that has the same value as f at each of the ui; i.e., f(ui) = In(ui),
i = 0, 1, . . . , n. These ui are called collocation points and In is said to interpolate f (or agree
with f) at these collocation points.

3

(a) Interpolation Theorem: Given f(x) and n+1 distinct collocation points u0, u1, . . . , un,
there is a unique polynomial In of degree at most n that interpolates f (note that this
says that n + 1 distinct points in the plane determine a unique nth degree polynomial
passing through them [e.g. 2 points determine a line]). To verify this statement, note
that

In(x) =
n∑

i=0

f(ui)







∏

j 6=i

(

x− uj

ui − uj

)





(9)

is a degree at most n polynomial that interpolates (note that for each i, the expression
in curly brackets is a polynomial of degree n which equals 1 when x = ui and equals 0
when x = uj, j 6= i). Suppose Pn is another. The function h(x) ≡ In(x) − Pn(x) is a
polynomial of degree at most n and it has roots at u0, u1, . . . , un (i.e., n + 1 roots). By
the fundamental theorem of algebra h is identically zero, so In is unique. The formula
in (9) is called Lagrange’s Form of In.

(b) An Example: Let f(x) =
√
x and take u0 = 1, u1 = 9/4, and u2 = 4. Then from (9),

I2(x) = 1

{

(x− 9/4)(x− 4)

(1− 9/4)(1− 4)

}

+
3

2

{

(x− 1)(x− 4)

(9/4− 1)(9/4− 4)

}

+ 2

{

(x− 1)(x− 9/4)

(4− 1)(4− 9/4)

}

.

Langrage’s form if I2, above, can be simplified to (−4x2 + 55x + 54)/105 and I2(2) =
148/105 = 1.4095238 is its approximation to

√
2.

(c) Error of Interpolation: Let In(x) be the polynomial of degree at most n that in-
terpolates f(x) at u0, u1, . . . , un, n + 1 distinct collocation points. Assuming f (n+1) is
continuous, the following formula expresses the error, EIn(t) ≡ f(x)− In(x):

f(x)− In(x) =
f (n+1)(θ)

(n + 1)!
(x− u0)(x− u1) · · · (x− un) =

f (n+1)(θ)

(n + 1)!

n∏

j=0

(x− uj), (10)

for some value of θ, min(x, u0, u1, . . . , un) ≤ θ ≤ max(x, u0, u1, . . . , un). Note that this
expression is zero at each collocation point. Also, it is instructive to compare (10) to (8).

(d) The Example Again: The error formula says there is a θ between min(x, 1, 9/4, 4) and
max(x, 1, 9/4, 4) for which

EI2(x) ≡ f(x)− I2(x) =
(x− 1)(x− 9/4)(x− 4)

16θ5/2
.

Therefore
√
2 − 1.4095238 = 1/(32θ5/2) for some θ ∈ (1, 4), and this implies that

1.4105004 ≤
√
2 ≤ 1.4407738.

(e) Cost to evaluate In(x) We describe the evaluation of the expression in (9) for a given
value of x via the following pseudocode for a procedure “LAGRANGE”. The inputs are
n (the degree), an array U[0, 1, . . . , n] with the n+ 1 collocation points, and x, where In
is being evaluated. The output is VAL which = In(x). The procedure can call f(z) to
obtain the value of f at z.

4

LAGRANGE(n, U, x; VAL)

• VAL ← 0

• FOR i = 0 TO n DO

• PROD ← f(U [i])

• FOR j = 0 TO n DO

• IF j 6= i DO

• {PROD ← PROD*(x− U [j])/(U [i] − U [j])}

• ENDFOR

• VAL ← VAL + PROD

• ENDFOR

¿From this procedure, or from (9) itself, we easily see that In(x) is obtained using 2n(n+1)
multiply or divide steps, and 2n2 +3n add or subtract steps, and n+1 evaluations of f .
This is much more work than the cost of evaluating the polynomial a0+a1x+ · · ·+anx

n

using Horner’s method, namely, n multiply and n add steps (see 1d).

To be able to use the efficient Horner evaluation, we need to write In(x) as a0+a1x+· · ·+
anx

n. This is called the standard form of In. To learn the coefficients for the standard
form note that In(ui) = f(ui) implies

a0 + a1(ui) + a2(ui)
2 + · · ·+ an(ui)

n = f(ui),

a linear equation in the n+1 unknown aj ’s. There are n+1 such equations, one for each
collocation point. The system may be written as

Ca = f,

where cij = (ui)
j and fi = f(ui), i, j = 0, 1, . . . , n. By the interpolation theorem it has

a unique solution. Conclusion: The entries of C may be computed in (n + 1)(n − 1)
multiplication steps. Because the first column of C is all ones, the system may be solved
in (n3−n)/3+n2 operations (∗ or /) which gives the coefficients of In in the standard form,
and now In(x) can be evaluated in n multiplications and n add/subtracts by Horner’s
method.

(f) Newton’s Form of In is a representation whose coefficients can be found in n2 multiply

or divide OPS and which can be evaluated in n multiplication OPS:

i. What it is: Suppose In(x) interpolate f at u0, u1, . . . , un. Add a new collocation
point un+1 and let In+1 interpolate at the original n + 1 points and at un+1. Then
h(x) = In+1(x) − In(x) is a polynomial of degree at most n + 1 and it has a root
at each original collocation point, u0, . . . , un. Therefore for some constant cn+1,
h(x) = cn+1(x− u0)(x− u1) · · · (x− un) and this gives

In+1(x) = In(x) + cn+1(x− u0)(x− u1) · · · (x− un); (11)

To learn the value of cn+1, put x = un+1 and use the fact that In+1 interpolates to
see that

cn+1 =
f(un+1)− In(un+1)

(un+1 − u0)(un+1 − u1) · · · (un+1 − un)
=

f(un+1)− In(un+1)
∏n

i=0(un+1 − ui)
. (12)

5

In what follows now, Ij(x) denotes the degree at most j polynomial that interpolates
f at u0, u1, . . . , uj. So I0(t) is a constant, namely

I0(x) = c0 = f(u0).

Using (11) with n = 0,
I1(x) = c0 + c1(x− u0);

and from (12), c1 =
f(u1)−c0
u1−u0

. Using the above in (11), with n = 1,

I2(x) = c0 + c1(x− u0) + c2(x− u0)(x− u1).

c0 and c1 were already found; c2 is obtained from (12). Continuing in this way, we
obtain Newton’s form of the interpolating polynomial:

In(x) =

I2(x)
︷ ︸︸ ︷

c0 + c1(x− u0)
︸ ︷︷ ︸

I1(x)

+c2(x− u0)(x− u1) + · · ·

︸ ︷︷ ︸

In−1(x)

+cn(x− u0)(x− u1) · · · (x− un−1)

which we abbreviate as

In(x) = c0 +
n∑

i=1

ci







i−1∏

j=0

(x− uj)






. (13)

ii. Its evaluation cost: We describe a “Horner-like” method to evaluate (13) effi-
ciently. The following pseudo-code is a procedure “NEWTON”. The inputs are
n (the degree), an array U [0, 1, . . . , n] with the n + 1 collocation points, an array
c[0, 1, . . . , n] with the n+ 1 coefficients used in (13), and x, where In is being evalu-
ated. The output is VAL which equals In(x)

NEWTON(n, U, c, x;VAL)

• VAL← c[n]

• FOR i = 1 TO n DO

• VAL ← VAL∗(x− U [n− i]) + c[n− i]

• ENDFOR

Each traversal of the loop performs two + or - OPS and one * OP, a total of n
multiplications and 2n additions or subtractions, assuming we already “know” the

coefficients c0, c1, . . . , cn in (13).

iii. How to obtain it: We get the coefficients c0, c1, . . . , cn for Newton’s form as follows.
c0 = f(u0) and c1 = (f(u1)−f(u0))/(u1−u0) always, and we now proceed inductively.
Assuming we already know c0, . . . , cj, j ≥ 1, we will use (12) [with n = j] to obtain
cj+1, the next coefficient. This is possible because Ij(uj+1) in (12) depends only on
c0, . . . , cj, which we have already obtained. The following pseudo-code describes a
procedure “GETC”. The inputs are n ≥ 1, the degree, and an array U [0, 1, . . . , n]
with the n + 1 collocation points. It outputs the array c[0, 1, . . . , n] of coefficients
for Newtons form of In.

6

GETC(n, U ; c)

• c[0]← f(U [0])

• c[1]← (f(X [1]− f(X [0]))/(X [1]−X [0])

• FOR i = 2 TO n DO

• run NEWTON(i− 1, U, c, U [i];VAL)

• PROD ← U [i]− U [0]

• FOR j = 1 TO i− 1 DO

• PROD ← PROD∗(U [i]− U [j])

• ENDFOR

• c[i]← (f(U [i])− VAL)/PROD

• ENDFOR

We count the total number of multiply or divide steps to compute the c′is: To get
cj+1 using (12) we note that (i) there are j multiplications and j + 1 subtractions
in the denominator; (ii) the numerator has 1 subtraction; (iii) one division is done
to compute the ratio; (iv) finally, using NEWTON, we can evaluate Ij(uj+1) in the
numerator with j multiply steps and 2j additions or subtractions. Therefore the
total work for cj+1 is 2j + 1 multiply or divide steps and 3j + 1 add or subtract
steps. Summing from j = 0, 1, . . . , n − 1, the work to obtain all coefficients for In
is n2 multiply or divide steps, and 3n2/2 + n/2 add/subtract steps. Noticing that
c0 = f(u0) and that there is one evaluation of f in (12), we can add n+1 evaluations
of f to the previous cost. [Note: The multiplications can be cut roughly in half
using a technique called divided differences.]

4. Runge’s Example: We want to approximate f(x) = 1/(1 + 9x2) on [−1, 1]. Let In(x) be
the interpolating polynomial based on n+1 evenly spaced collocation points uj = −1+2j/n,
j = 0, 1, . . . , n. Examination of graphs of this approximation showed large errors near −1 and
1 which increased in size with n (see Handout 7). In fact Runge proved

d(
1

1 + 9x2
, In(x))→∞ as n→∞ ,

where d(g, h) ≡ max (|g(x)− h(x)| , a ≤ x ≤ b) (in our case [a, b] = [−1, 1]). This shows that
interpolation does not necessarily give better approximations as the number of collocation
points increases (in fact bad collocation points can even produce approximations with errors
that diverge to ∞, a disastrous result).

5. Minimax (or “Best”) Approximation: Given a function f on [a, b] and an integer n > 0,
we want to approximate f by a polynomial of degree at most n. The quality of an approxi-
mating polynomial Pn is measured by its distance from f , namely

d(f, Pn) = max {|f(x)− Pn(x)|, a ≤ x ≤ b}.

A polynomial Mn(x) is a “best” approximation of f if d(f,Mn) ≤ d(f, Pn) for every polyno-

mial Pn of degree at most n (Mn has least distance from f ; no nth degree polynomial is closer).
Therefore

d(f,Mn) = min {d(f, Pn) : Pn a polynomial of degree ≤ n} = min
Pn

{max
a≤x≤b

|f(x)− Pn(x)|}

7

= min
a0,a1,...,an

[max {|f(x)− (a0 + a1x+ · · ·+ anx
n)|, a ≤ x ≤ b}].

The last equation indicates why Mn is also called the “minimax” approximation. About 100
years ago Chebycheff proved that

(a) Mn exist and is unique: i.e., d(f,Mn) < d(f, Pn) for all polynomials Pn 6= Mn of degree
at most n;

(b) Mn interpolates f : i.e., there are at least n + 1 collocation points u0 < · · · < un in [a, b]
for which f(ui) = Mn(ui), i = 0, 1, . . . , n;

(c) Mn equi-oscillates: i.e., there are at least n+2 oscillation points y0 < · · · < yn+1 in [a, b]
with yi < ui < yi+1, i = 0, . . . , n, for which

f(yi)−Mn(yi) = −[f(yi+1)−Mn(yi+1)], i = 0, . . . , n,

and in fact d(f,Mn) = |f(yi) − Mn(yi)|, i = 0, . . . , n. Also if a degree at most n
polynomial Pn equioscillates, it is minimax; i.e., Pn = Mn.

(d) If f is a polynomial of degree at most n+1 then the ui are the Chebycheff points in [a, b]
and Mn is the Chebycheff interploation (see Topic 6, below).

The Runge example shows there is a disastrous way to choose collocation points. Property
(b) shows there is an optimal way to choose them and no other polynomial approximation -
interpolating or not - is as good.

• Example 1: Let f(x) = sin x, 0 ≤ x ≤ π and take n = 1. The claim is thatM1(x) = 1/2.
This line is above f by 1/2 at x = 0, below f by 1/2 at x = π/2, and above f by 1/2 at
x = π. Every other line will deviate from sin x by more than 1/2 at one or more of these
points. Checking the statements of Chebycheff’s theorem for this example: (b) u0 = π/6
and u1 = 5π/6; (c) y0 = 0, y1 = π/2, y2 = π and d(sinx, 1/2) = 1/2.

• Example 2: Let f(x) = x2, −1 ≤ x ≤ 1 and take n = 1. Again, M1(x) = 1/2 is the
minimax straight line approximation. Note that: (b) f(x) = M1(x) when x2 = 1/2, or
at u0 = −

√
2/2 and u1 =

√
2/2; (c) y0 = −1, y1 = 0, y2 − 1 and d(x2, 1/2) = 1/2; (d)

M1 IS the degree 1 Chebycheff interpolation for f (see Topic 6, below).

• Example 3: Let f(x) = x4, −1 ≤ x ≤ 1 and take n = 1. Once again, M1(x) = 1/2 is
the minimax straight line approximation. Note that: (b) f(x) = M1(x) when x4 = 1/2,
or at u0 = −2−1/4 and u1 = 2−1/4 = .8408964153...; (c) y0 = −1, y1 = 0, y2 − 1 and
d(x4, 1/2) = 1/2.

• Example 4: Let f(x) = x2, 0 ≤ x ≤ 3 and take n = 1. Because f is increasing
and its slope is increasing, we will be able to use (c) to find M1. First note that the
line y = 3x interpolates f at x = 0 and at x = 3. Next observe that the difference
h(x) = 3x−x2 has a unique maximum when x = 3/2, and that h(3/2) = 9/4. Therefore
the line M1(x) = 3x− 9/8 has property (c): it is below f by 9/8 at y0 = 0, above f by
9/8 at y1 = 3/2, and below f by 9/8 at y2 = 3 (we dropped y = 3x “halfway” down
towards its point of greatest deviation from f). Also d(f,M1) = 9/8.

6. Chebycheff Interpolation: We want to approximate a function f(x) defined on [−1, 1].
The (n + 1) Chebycheff points for [−1, 1] are defined by

uj = cos
[(

2j + 1

n+ 1

)
π

2

]

, j = 0, 1, . . . , n. (14)

8

The polynomial Cn(x) that interpolates f at the Chebycheff points is called the nth Chebycheff
interpolation of f . Plotting f(x) = 1/(1+9x2) and Cn(x) on [−1, 1] suggests that d(f, Cn)→ 0
(see handout 8).

To do Chebycheff interpolation on an arbitrary interval [a, b], we map [−1, 1] linearly onto

[a, b] by x = a+ (y+1)
2

(b− a), y ∈ [−1, 1]. The Chebycheff points on [a, b] are

tj = a+
(uj + 1)

2
(b− a), (15)

the uj being the Chebycheff points in [−1, 1] defined by (14). The polynomial Cn that inter-
polates f at these collocation points is the nth Chebycheff interpolation.

(a) An Example: Let f(x) = x2, 0 ≤ x ≤ 3 and take n = 1 (i.e., we seek the linear
Chebycheff interpolation). To find the Chebycheff points for [0, 3], (14) gives u0 =

cos (π/4) =
√

(2)/2 and u1 = cos (3π/4) = −
√

(2)/2; from (15), t0 = 3/2 + 3
√

(2)/4 and

t1 = 3/2− 3
√

(2)/4. Therefore C1(x) = c0+ c1(x− t0) (from (13)), where c0 = f(t0) and

c1 = (f(t1)− f(t0))/(t1 − t0) (from (12)) and

C1(x) = (
3

2
+

3
√
2

4
)2 + 3(x− (

3

2
+

3
√
2

4
)) = 3x− 9/8.

Referring to Example 4, above, we see that C1 = M1 in agreement with condition (d) in
Chebycheff’s theorem.

(b) Convergence: Chebycheff interpolation is always “good” because

d(f, Cn)→ 0 , n→∞

by a theorem of M. Powell. Actually Powell proved that there is a constant αn for which
d(f, Cn) < αnd(f, Pn) for any polynomial Pn of degree at most n; the coefficient αn

may be taken to be about log n, and we can take Pn = Mn to be the minimax, or best
approximation to f . It is known that d(f,Mn) < β/n2 for some β > 0, under quite
general conditions, so we can say d(f, Cn) < β log n/n2 which converges to zero. (Again,
its good to look at handout 8.)

7. Least Squares Approximation: We want to approximate a continuous function f(x),
defined on the interval [a, b], by the “best” polynomial Pk of degree at most k. To express Pk

we have k + 1 basis functions φ0(x), φ1(x), . . . , φk(x), where φi(x) is a polynomial of degree
exactly = i. The most familiar case is the monomial basis where, for each i = 0, 1, . . . , k,

φi(x) = xi.

Given a basis, any polynomial Pk of degree at most k has a unique representation

Pk(x) = a0φ0(x) + a1φ1(x) + · · ·+ akφk(x) =
k∑

i=0

aiφi(x). (16)

Note that the standard form of the interpolating polynomial uses the monomial basis and
Newton’s form uses the basis where φ0 = 1 and

φi(x) =
i−1∏

j=o

(x− uj).

9

(a) Continuous LSQ: We want to choose coefficients in (16) to minimize

d(f, Pk) ≡
∫ b

a
[f(x)− Pk(x)]

2dx =
∫ b

a
[f(x)−

k∑

i=0

aiφi(x)]
2dx. (17)

The integral is a function E(a0, a1, . . . , ak) of the k+1 unknown coefficients. Setting the
partial derivative of E w.r.t. ai equal to zero (a necessary condition for the min) we get

a0

∫ b

a
φ0(x)φi(x)dx+ a1

∫ b

a
φ1(x)φi(x)dx+ · · ·+ ak

∫ b

a
φk(x)φi(x)dx =

∫ b

a
f(x)φi(x)dx.

Call this equation (∗)i, a linear equation in the unknowns a0, a1, . . . , ak. The equations
in (∗)i for i = 0, 1, . . . , k, form the system called the normal equations for continuous
least squares:

Ca = d,

where, from (∗)i, cij =
∫ b
a φi(x)φj(x)dx and di =

∫ b
a f(x)φi(x)dx , i, j = 0, 1, . . . , k. The

solution gives the minimizing choice of coefficients a0, a1, . . . , ak in (17). With this choice,
Pk in (16) is the continuous least-squares approximation to f on [a, b], expanded in the

basis φ0, φ1, . . . , φk. Note that C is symmetric; i.e., cij = cji. Also note that when
[a, b] = [0, 1] and we are in the monomial basis,

cij =
∫ 1

0
φi(x)φj(x)dx =

∫ 1

0
xixjdx =

1

i+ j + 1
, i, j = 0, 1, . . . , k ; (18)

i.e., C = Hk, the Hilbert matrix of size k + 1.

• An Example: Let f(x) = x2, 0 ≤ x ≤ 3 and take k = 1; i.e., we seek the continuous
linear least-squares approximation to f . We will use the momonial basis φi(x) = xi.
Since cij =

∫ 3
0 xixjdx and di =

∫ 3
0 x2xidx, the augmented coefficient matrix of the

normal equations is
(

3 9/2 | 9
9/2 9 | 81/4

)

.

The solution, a0 = −3/2, a1 = 3, gives P1(x) = 3x − 3/2 as the continuous least-
squares straight line approximation to x2 on [0, 3]. (Compare to C1(x) = 3x− 9/8,
the Chebycheff Interpolation of f , which is also minimax).

(b) Discrete LSQ: Given n + 1 data points u0, u1, . . . , un in [a, b] and k < n we want to
choose coefficients a0, a1, . . . , ak in (16) to minimize

d(f, Pk) ≡
n∑

ℓ=0

[f(xℓ)− Pk(xℓ)]
2 =

n∑

ℓ=0

[f(xℓ)−
k∑

i=0

aiφi(xℓ)]
2. (19)

The sum in (19) is a function E(a0, a1, . . . , ak) of the coefficients. Setting the partial
derivative of E w.r.t. ai equal to zero (a necessary condition for the min) we get

a0
n∑

ℓ=0

φ0(xℓ)φi(xℓ) + a1
n∑

ℓ=0

φ1(xℓ)φi(xℓ) + · · ·+ ak
n∑

ℓ=0

φk(xℓ)φi(xℓ) =
n∑

ℓ=0

f(xℓ)φi(xℓ).

Call this equation (∗)i∗, a linear equation in the unknown a0, a1, . . . , ak. The equations
(∗)i, i = 0, 1, . . . , k, form the system called the normal equations for discrete least squares:

Ca = d,

10

where cij =
∑n

ℓ=0 φi(xℓ)φj(xℓ) and di =
∑n

ℓ=0 f(xℓ)φi(xℓ) , i, j,= 0, 1, . . . , k. The solu-

tion gives the minimizing choice of coefficients a0, a1, . . . , ak in (19). With this choice, Pk

in (16) is the discrete least-squares approximation to f on [a, b], expanded in the basis φ0, φ1, .
Note that C is symmetric; i.e., cij = cji.

• An Example: Let f(x) = x2, take k = 1 and use points x0 = 0, x1 = 1, x2 = 2,
x3 = 3. We seek P1, the discrete LSQ straight line approximation to f , based on
these 4 data points, and in the monomial basis. From the definition of cij and di,
the augmented coefficient matrix of the normal equations is

(

4
∑3

ℓ=0 xℓ |
∑3

ℓ=0 x
2
ℓ

∑3
ℓ=0 xℓ

∑3
ℓ=0 x

2
ℓ |

∑3
ℓ=0 x

3
ℓ

)

=

(

4 6 | 14
6 14 | 36

)

.

The solution, a0 = −1, a1 = 3, gives P1(x) = 3x − 1 as the discrete least-squares
straight line approximation to x2 on [0, 3], based on the 4 given data points.

(c) Weighted (Discrete) LSQ: In discrete least squares we may not have equal confidence
in the values of f at the different data points (think of f(t) as a “measurement” dependent
on t, some measurements being more reliable than others). To reflect our desire to have
the reliable points influence the approximation more than the unreliable ones, we give
weight wi ≥ 0 to the point xi (if wi = c, for all i = 0, 1, . . . , n, then all points are equally
reliable). Given k < n we want to choose coefficients a0, a1, . . . , ak in (16) to minimize

d(f, Pk) ≡
n∑

ℓ=0

wℓ [f(xℓ)− Pk(xℓ)]
2 =

n∑

ℓ=0

wℓ [f(xℓ)−
k∑

i=0

aiφi(xℓ)]
2. (20)

As in the unweighted case, the optimal coefficients can be shown to satisfy normal equa-

tions for weighted least squares, namely

Ca = d,

where cij =
∑n

ℓ=0wℓφi(xℓ)φj(xℓ) and di =
∑n

ℓ=0wℓf(xℓ)φi(xℓ) , i, j,= 0, 1, . . . , k; notice

that if all weights are equal, we get the solution to the (unweighted) least squares. In the
previous discrete least squares example, suppose we regard the data at x3 = 3 to have one
third the reliability of the other data. This corresponds to weights w0 = w1 = w2 = 3
and w3 = 1. Setting up, then solving the normal equations to minimize (20) gives
P1(t) = −3/4 + 25

8
t as the best line. Observe that it “respects” the data at x3 = 3 less

than in the unweighted case in the sense that P1 permits a larger error at that point.

8. Orthogonal Bases: To solve the k+1 normal equations for continuous least squares, Ca = d,
we expect to do (k + 1)3/3 multiplications. Moreover, if we are in the monomial basis on
[0, 1], (18) shows that C is the Hilbert matrix, so we can expect very large roundoff errors in
computing a0, a1, . . . , ak, the coefficients of Pk.

Suppose our basis functions satisfied

∫ b

a
φi(x)φj(x)dx = 0 , i 6= j.

A basis with this property is called orthogonal. In this case the matrix C in the normal
equations is diagonal. The advantages are:

11

• It is easy to compute the solution (k + 1 divisions).

• There is no propagation of roundoff error.

(a) Legendre Basis on [−1, 1]: Let L0(x) = 1 and L1(x) = x and define

Lk+1(x) =
2k + 1

k + 1
xLk(x)−

k

k + 1
Lk−1(x) , k ≥ 1. (21)

Li is the ith Legendre function. The first few are (using (21)): L2(x) = (3x2 − 1)/2;
L3(x) = (5x3−3x)/2; L4(x) = (35x4−30x2+3)/8. Note that for i ≤ 4, Li is a polynomial
of degree = i. Therefore, (20) implies that for any k, Lk is a polynomial of degree = k.
It can be shown by induction that

∫ 1
−1 Li(x)Lj(x)dx = 0, i 6= j (verify it for the specific

cases, above). Therefore the Legendre functions form an orthogonal basis on [−1, 1].
(b) Arbitrary [a, b]: To get an orthogonal basis on [a, b] we just map [−1, 1] linearly onto

[a, b] and take the image of the Legendre functions: Specifically, letting

y = −1 + 2(x− a)/(b− a)

be the linear transformation, define

φi(x) = Li(y) = Li(−1 +
2(x− a)

b− a
). (22)

Checking orthogonality,

∫ b

a
φi(x)φj(x)dx =

∫ b

a
Li(−1+

2(x− a)

b− a
)Lj(−1+

2(x− a)

b− a
)dx =

b− a

2

∫ 1

−1
Li(y)Lj(y)dy,

which is zero when i 6= j.

(c) The example again: As before, f(x) = x2, 0 ≤ x ≤ 3. From (22) the first few

basis functions are φ0(x) = L0(y) = 1, φ1(x) = L1(−1 + 2x/3) = −1 + 2x/3, φ2(x)

= L2(−1 + 2x/3) = 3(−1 + 2x/3)2/2− 1/2 = 1− 2x+ 2x2/3 .

The normal equations for P1(x) are
(∫ 3

0 φ0(x)φ0(x)dx
∫ 3
0 φ0(x)φ1(x)dx | ∫ 3

0 x2φ0(x)dx
∫ 3
0 φ1(x)φ0(x)dx

∫ 3
0 φ1(x)φ1(x)dx | ∫ 3

0 x2φ1(x)dx

)

=

(

3 0 | 9
0 1 | 9/2

)

.

Reading off the solution a0 = 3, a1 = 9/2, the least-squares straight line approximation
to x2, in the orthogonal basis, is

P1(x) = 3φ0(x) + 9/2φ1(x) = 3 + 9/2(−1 + 2x/3).

To express P1 in in the monomial basis, simplify the above to 3x − 3/2, in agreement
with the earlier, direct computation of P1 in the monomial basis. Also note that once we
know P1 in the monomial basis, there is no need to set up and solve the normal equations
for the orthogonal basis. Just write

P1(x) = 3x− 3/2 = a0φ0(x) + a1φ1(x) = a0 + a1(−1 + 2x/3).

Equating the coefficients of x, 2a1/3 = 3. Equating the constant terms, a0− a1 = −3/2.
Therefore a1 = 9/2 and a0 = 3, as we discovered from the normal equations, above.

12

