
CS323 Topic 2 October 1, 2019
Systems of Linear Equations

Consider the following set of n equations:

a11x1 + a12x2 + · · ·+ a1jxj + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2jxj + · · ·+ a2nxn = b2

· · · · ·
ai1x1 + ai2x2 + · · ·+ aijxj + · · ·+ ainxn = bi

· · · · ·
an1x1 + an2x2 + · · ·+ anjxj + · · ·+ annxn = bn

(1)

The a’s on the left hand side of each equation are n2 given coefficients. The b’s on the right are n
given numbers. The x’s are unknowns. Clearly aij is the coefficient of the jth unknown in equation
i. Each equation is linear in the x’s; that is, they appear with exponent one, multiplied by scalar
constants. The task is to assign numerical values to the n unknowns so that the all the equations
are satisfied simultaneously.

If we store the coefficients in the matrix

A =








a11 a12 · · · a1n
a21 a22 · · · a2n

an1 an2 · · · ann








,

and let x denote the (column) vector of unknowns and b, the vector of right-hand sides (we underline
to distinguish vectors from scalars), then (1) may be expressed more succinctly as

Ax = b . (2)

By the definition of matrix multiplication of vectors, Ax is the vector whose ith component is
∑n

i=1 aijxj , the left-hand side of the ith equation in (1).
Given A and b (n2 + n inputs), (2) asks for vectors x that are mapped by A (via matrix

multiplication) to b. These are the solutions of the system. It is possible that there are no solutions,
a single, unique solution, or an infinite number of solutions. The data defining the system in (1) or
(2) may be stored in the augmented coefficient matrix

A′ ≡ (A|b) =








a11 a12 · · · a1n | b1
a21 a22 · · · a2n | b2

an1 an2 · · · ann | bn








. (3)

1. Gaussian Elimination and Backsolving: This is the main computational method for
solving linear systems. Gaussian elimination operates on (3) in a sequence of “steps”. After
each step we have a new system with the same solution set as (3). The final system, the
reduced form of (3) is

C ′ ≡ (C|d) =











c11 c12 · · · c1,n−1 c1n | d1
0 c22 · · · c2,n−1 c2n | d2

0 0 · · · cn−1,n−1 cn−1,n | dn−1

0 0 · · · 0 cnn | dn











. (4)

1

Notice that in column j, all the coefficients are zero in the rows below row j.

The “steps” are done by the following algorithm, GEBS. The inputs are n, the size of the
system, and A and b, the data describing the system; the output is the solution vector x.

GEBS(n, A , b ; x)

• FOR j = 1 TO n− 1 DO [process column j]

– IF akj = 0, k = j, . . . , n THEN STOP (no unique solution), ELSE

∗ i← min (k ≥ j : akj 6= 0)

∗ IF i 6= j SWAP ROWi ↔ ROWj [now ajj 6= 0]

– ENDIF

– FOR k = j + 1 TO n DO [eliminate xj from equation k]

∗ c← akj/ajj [this is the pivot value]

∗ Rowk ← Rowk − c ∗ (Rowj) [pivot step]

– ENDFOR

• ENDFOR

At this point we have arrived at the reduced system in (4) with the guarantee that cjj 6= 0,
j < n (the cjj are the pivots). If also cnn 6= 0 the system has a unique solution. The last
equation in (4) (cnnxn = dn) implies that xn = dn/cnn. The remaining x’s are found by
backsolving, as follows: The kth equation in (4) is

ckkxk + ck,k+1xk+1 + · · ·+ cknxn = dk .

If we knew the solution values of xk+1, . . . , xn, they may be used in the above equation to
evaluate

xk = (dk − (ck,k+1xk+1 + · · ·+ ck,nxn))/ckk , (5)

the solution value of xk. Thus, starting with xn, we iterate (5) for k = n− 1, n− 2, . . . , 1.

• IF cnn = 0 THEN STOP (if dn 6= 0, NO solution); ELSE, an infinite number

– ELSE xn ← dn/cnn
– FOR k = n− 1 DOWNTO 1 DO

∗ xk ← (dk −
∑n

i=k+1 ckixi)/ckk
– ENDFOR

• ENDIF

In fact the system (1) has a unique solution if and only if Gaussian elimination arrives at (4)
and cnn 6= 0.

2. Gauss-Jordan Reduction This is a sequence of “steps” which produces as a final, reduced
form of (3), the system

C ′ ≡ (C|d) =











c11 0 · · · 0 0 | d1
0 c22 · · · 0 0 | d2

· · ·
0 0 · · · cn−1,n−1 0 | dn−1

0 0 · · · 0 cnn | dn











. (6)

2

The Gauss-Jordan reduction steps are the same as those in Gaussian elimination except the
outer FOR loop runs from 1 to n and the inner FOR loop is FOR k = 1 TO n, k 6= j. At
this point we have (6) and cii 6= 0, i = 1, . . . , n. Note that this coefficient matrix is diagonal,
so equation i is ciixi = di. Therefore, after Gauss-Jordan reduction, we can solve with

FOR i = 1 TO n DO {xi = di/cii} ENDFOR.

3. Pivoting Strategy: Simple examples show that GEBS (and Gauss-Jordan) can produce very
large roundoff errors when carried out in k-digit arithmetic (see handout on this topic). One
class of remedies is based on pivoting strategies. They look for a different pivot row because
the one currently in the jth position is expected to generate roundoff errors. The candidates
for the pivot row to be used to eliminate xj are rows j through n.

• Partial Pivoting: The partial pivoting strategy says that the best row for eliminating
xj will have the largest value of |ajj| (because the pivot value is c = akj/ajj). Thus
instead of the IF in lines 3-6 of GEBS we use

– find i : |aij| = max (|akj|, k = j, . . . , n)

– IF |aij | = 0 THEN STOP (no unique sol.), ELSE

– IF i 6= j SWAP ROWi ↔ ROWj [ajj 6= 0]

The same change may be added to Gauss-Jordan reduction. We still seek candidates for
the pivot row from rows j through n, even though with Gauss-Jordan, this pivot is used
in all rows 6= j.

• Scaled Partial Pivoting: In multiplying c ∗ (ROWj) to eliminate xj from equation i
we have

aij
ajj
∗ ((

j−1
︷ ︸︸ ︷

0, . . . , 0, ajj, aj,j+1, . . . , ajn|bj)
︸ ︷︷ ︸

ROWj

= aij ∗ (

j−1
︷ ︸︸ ︷

0, . . . , 0, 1,
aj,j+1

ajj
, . . . ,

ajn
ajj
|
bj
ajj

) .

Scaled-partial pivoting wants all the ratios to be small so aij wont be multiplied by too
large a number.

We look for the row that best achieves this as follows: For each candidate row (k =
j, . . . , n) we compute its SIZE, or good-scaling-coefficient by

σk =

{

∞ if akj = 0
max (|ak,ℓ| , ℓ = j + 1, . . . , n)/|akj| otherwise

We take row i as the pivot row if it is the best scaled row; i.e.,

σi ≡ min (σk , k = j, . . . , n) <∞.

If σi = ∞ there is no unique solution. The same strategy also applies to Gauss-Jordan
reduction.

4. Cost of Gaussian Elimination and Backsolving: We will count the number of * and /
steps used in the above procedures (the number of + and - steps could be counted in the same
way).

3

Suppose we have already processed columns 1 through j− 1. We will compute the cost of the
FOR k = j + 1 TO n loop. For each k, one divide step is needed to compute c = akj/ajj.
Then we multiply each entry of row j by c (before subtracting the product from row k), as
follows

c ∗ (

j−1
︷ ︸︸ ︷

0, . . . , 0, ajj, aj,j+1, . . . , ajn|bj)
︸ ︷︷ ︸

ROWj

: (7)

the first j−1 entries are 0 because we have already processed columns 1 through j−1. There
is no need to multiply c by 0 (we know the answer). There is no need to multiply c by ajj (we
know the product is akj). Therefore n− j + 1 multiplications are needed for (7), and, adding
the division used to compute c, a total of n− j + 2 multiply or divide steps (we will just say
“steps”) were performed in eliminating xj from equation k. Since the FOR k loop is executed
n − j times, the cost to eliminate xj from all equations below the jth is (n − j)(n − j + 2)
steps. Summing from j = 1, . . . , n− 1 the cost of Gaussian elimination is

GE =
n−1∑

j=1

(n− j)(n− j + 2),

which may be simplified to (2n3 + 3n2 − 5n)/6. Equation (5) has 1 division and n − k
multiplications, so the FOR k = n− 1 in backsolving costs

∑n−1

k=1 n− k + 1 steps. Adding the
one division in xn = dn/cnn, the total work in backsolving is

BS = n(n + 1)/2,

and so the total cost to obtain the solution is

GEBS =
n3 − n

3
+ n2 (8)

multiply/divide steps. Observe that the work increases as the cube of n, the size of the
system. This means if you double the size of a system you would work eight times as hard.
Also note that the coefficient of n3 is 1/3. One would expect the running time of any decent
implementation of GEBS to grow as the cube of the number of equations being solved.

Since partial pivoting does no multiplications or divisions, it may be included at no cost (ac-
tually n(n−1)/2 comparisons are performed, but when n is large, this will have no noticeable
effect on the running time). Scaled partial pivoting does less than n(n + 1)/2 division steps.
However it also makes about n3/3 comparisons which would increase the running time by a
constant factor.

5. Cost of Gauss-Jordan Reduction: As with Gaussian elimination, the cost of the pivot
step to eliminate xj from an equation is n − j + 2. Here this is done in n − 1 equations.
Therefore the reduction costs

GJ =
n∑

j=1

(n− 1)(n− j + 2) = (n− 1)[
(n+ 1)(n+ 2)

2
− 1],

steps, and adding the n divisions needed to solve the reduced system, we find that the total
is

n3 − n

2
+ n2 ; (9)

4

this means that for large n Gauss-Jordan is 50% more costly (or time-consuming) than Gaus-
sian elimination. The added costs of pivot strategies are the same as with Gaussian elimina-
tion.

6. Computing Inverses: Suppose A−1 exists. Gauss-Jordan reduction is a sequence of opera-
tions that transforms the matrix A in (3) to the matrix C in (6), and no cii = 0. If we now
perform n more row operations on C (divide rowi by cii, i = 1, . . . , n) we will have reduced A
to I. We can denote this as

[EkEk−1 · · ·E1]A = I.

The matrices Ei are elementary matrices, each performing one of the row operations in the
above reduction process. Thus EkEk−1 · · ·E1 = A−1 which shows that the sequence of row
operations that reduces A→ I also reduces I → A−1.

A counting argument shows that the inverse may be computed in this way with n3 * or /
operations.

7. LU Factorization: Suppose we reduce A in (3) to the matrix

U =








c11 c12 · · · c1,n−1 c1n
0 c22 · · · c2,n−1 c2n

0 0 · · · 0 cnn








by Gaussian elimination using only pivot steps E1, . . . , Em, and no row swaps. Then

U = EkEk−1 · · ·E1A .

If we write
L = E−1

1 E−1

2 · · ·E
−1

k ,

then
LU = (E−1

1 E−1

2 · · ·E
−1

k)(EkEk−1 · · ·E1A) = A. (10)

To obtain L = (ℓij), start with L = I. Then, during the Gaussian elimination, if Ei is the
pivot step

rowk ← rowk − c(rowj) , k > j , (11)

we change L by ℓkj ← c. Therefore

L =











1 0 · · · 0 0 0
ℓ21 1 · · · 0 0 0

ℓn−1,1 ℓn−1,2 · · · ℓn−1,n−2 1 0
ℓn1 ℓn2 · · · ℓn,n−2 ℓn,n−1 1











is (unit) lower-triangular and it was obtained without any multiply or divide steps. The
equation A = LU is called the LU factorization of A, obtained with a cost of (n3 − n)/3
operations. It is not necessary to maintain two separate matrices for L and U because of the
pattern of 0’s. Thus when the pivot in (11) is done (on columns j to n of A), a zero is created
at akj . In the compact notation we would store ℓkj = c at this location. Thus, when Gaussian

5

elimination is completed, L is stored under the diagonal of A (except ℓii = 1) and U is stored
on, and above the diagonal.

Once A has been factored, it is easy to solve Ax = b. Note that Ax = (LU)x = L(Ux) = Ly,
where we write y for Ux. First we solve Ly = b for y. This is called forward substitution due
to the shape of L. Then we solve Ux = y for x by backsolving. The cost is n2 (n(n− 1)/2 for
forward substitution and n(n + 1)/2 for backsolving).

8. LUP Factorization: It is possible that A cannot be factored as in (10), even if A−1 exists.
However for every invertible A there are matrices L and U as in (10), and an n-vector p (the
components are a permutation of the first n integers), such that

LU = A(p) . (12)

The right hand side of (12) denotes A with its rows permuted according to p. This is called
an LUP factorization of A.

To obtain it we reduce A to U , now allowing row swaps (e.g., as required by some pivoting
strategy). We maintain L and U in compact notation as A. We keep p as an extra column.
Initially pi = i; i.e., p is the identity permutation. Pivots are handled as in the previous
section. They do not change p. When we swap rowj ↔ rowk, j being the pivot row in U
and k > j, we do the same swap in L and also in p. Thus in compact notation with p as an
augmented column, the entire jth and kth rows of A′ are swapped (all n+ 1 columns).

Suppose we have an LUP factorization of A and want to solve Ax = b. This system is
equivalent to A(p)x = b(p). Since LU = A(p) we first solve Ly = b(p) for y by forward
substitution and then backsolve Ux = y for x.

6

