
CS323 Topic 1 September 6, 2019

Nonlinear Equations

Given a continuous function f(x), a value x = w for which f(w) = 0 is called a root or zero of
f and is a solution to the equation

f(x) = 0.

We exclude the case where f(x) = ax + b, a 6= 0, because the solution is x = −b/a and can be
computed directly from the data describing f . This is the linear case. (Compare, e.g., to the case
f(x) = x3 + 17).

This problem arises in (at least) two natural ways: (i) If we have two functions g(x) and h(x), it
is of interest to know when g(x) = h(x). In this case we have a root problem for f(x) = g(x)−h(x)
[example: g(x) = e−x and h(x) = sin(x)]; (ii) We have a function F (x) and we want to find where
it is minimized or maximized. In this case we have a root problem for f(x) = F ′(x).

All the methods we study share the feature that they “generate” a sequence of approximations
P0, P1, . . . that is intended to converge to a root w of f (by continuity, f(Pn) → f(w) = 0 as
n→∞).

1. Method 1 - Bisection: The method starts (STEP 0) with an interval I0 = (u0, v0), u0 < v0,
and f has opposite signs at the endpoints; thus f(u0)f(v0) < 0. By the intermediate value
theorem, f has a root w ∈ I0. We bisect I0 with the midpoint, P0 = (u0 + v0)/2. This
is the initial approximation to w. If f(P0) = 0 we STOP. Otherwise we continue into the
next step, STEP 1, with one of the halves (i) I1 = (u0, P0) if f(u0)f(P0) < 0 or else (ii)
I1 = (P0, v0) if f(P0)f(v0) < 0 (Precisely one of these two situations must hold - WHY?).
Clearly |I1| =

1
2
|I0| = (v0 − u0)/2 (|I| = v − u denotes the length of the interval I = (u, v)).

In STEP n > 0 we have (from the previous step) an interval In = (un, vn), and f has opposite
signs at the endpoints (f(un)f(vn) < 0). By the intermediate value theorem, f has a root
w ∈ In. We bisect In with

Pn = (un + vn)/2. (1)

If f(Pn) = 0 we STOP. Otherwise we continue into the next step, STEP n + 1, with one of
the halves (i) In+1 = (un, Pn) if f(un)f(Pn) < 0 or else (ii) In+1 = (Pn, vn) if f(Pn)f(vn) < 0
(Again, precisely one of these two situations must hold). Clearly |In+1| =

1
2
|In| = (vn−un)/2.

• Let en = Pn−w denote the error if we stop at STEP n and take Pn, the n
th bisection, as

an approximation of the root w. Notice that |en| < |In|/2 because Pn and w are in the
same half of In. Clearly |In|/2 = (|In−1|/2)/2 = · · · = |I0|/2

n+1 → 0 as n → ∞. This
proves that the bisection method converges when started correctly.

• We can know in advance how many bisections steps will assure a suitably small error.
Given ε > 0, suppose it is required that en < ε if we stop at STEP n. Then from
|en| < (v0 − u0)/2

n+1, we deduce that n > log2((v0 − u0)/ε)− 1 steps are sufficient. In
a computer implementation of the bisection method, we might also like to require that
|f(Pn)| is small before we accept Pn as a suitable approximation to w.

1

2. Method 2 - Regula-Falsi Suppose un < vn and f(un)f(vn) < 0. We will use more informa-
tion about f than the mere fact that it has opposite signs at the endpoints of In = (un, vn).
Motivated by the observation that when In is small enough, f “looks like” a straight line on this
interval, we divide In by the point where the line through A = (un, f(un)) and B = (vn, f(vn))
meets the x-axis. This is the point whose x-coordinate is

Pn =
unf(vn)− vnf(un)

f(vn)− f(un)
. (2)

Regula-falsi IS bisection except that it uses the above instead of Pn = (un + vn)/2.

• Regula-falsi converges if it is started correctly, but not because |In| → 0 (simple examples
show this statement to be false). This underlies the problem with using regula-falsi in
practice - at what step, n, should it be stopped? Since |In| may remain large, we can
only stop when |f(Pn)| is small but unfortunately, this is no guarantee that en is small.

• You should study handout 1 (through the homepage) - “Informative Traces of Bisection
and Regula-Falsi”.

3. Fixed Point Iteration A value x = u is a fixed point of a function h(x) if h(u) = u. Fixed
points are thus the x-coordinates of the points where the graph of h meets the line y = x.
There is a beautiful algorithm to find fixed points. It is called fixed point iteration (FPI), or
functional iteration:

• Guess P0

• n← 0

• WHILE Pn 6= h(Pn) DO

• Pn+1 ← h(Pn)

• n← n + 1

• ENDWHILE

• RETURN Pn (it is a fixed point)

We might hope that Pn → w but we should not expect it to stop in a finite number of steps
with Pn = h(Pn). To stop the above algorithm in practice, we would require |Pn−h(Pn)| to be
small, say less than ε. The condition in the WHILE would then be WHILE |Pn − h(Pn)| ≥ ε
DO. We then return Pn, an approximate fixed point, after n steps.

(a) Contraction mapping Principle: A function h(x) is a contraction on an interval
I = (a, b) if there is a constant k < 1 such that for all pairs u, v ∈ (a, b),

|h(u)− h(v)| ≤ k|u− v|;

ie., h(u) and h(v) are closer than u and v were. Therefore application of h “contracts”,
or brings function values closer than their arguments were. The mean value theorem
implies that h is a contraction if |h′(x)| ≤ k for all x ∈ (a, b), some k < 1.

The contraction mapping principle states that if (A) h(w) = w, (B) h is a contraction
on an interval I = (w− δ, w+ δ) for some δ > 0, and (C) P0 ∈ I, then Pn → w (in other

2

words, the FPI algorithm above produces approximations Pn = h(Pn−1) that converge to
a fixed point w = h(w)). In fact if we knew that some Pj ∈ I that is enough in condition
C), since we could just (re)start the iterations at Pj .

Sometimes it is difficult to find an interval I satisfying condition (B). An alternative
version of the theorem uses condition (B’), “h is a contraction on an interval I that
contains the fixed point w and satisfies the condition that h(x) ∈ I whenever x ∈ I.”

(b) Relevance to Root-Finding: Suppose we want to find roots of f(x). Define

g(x) = x− φ(x)f(x), (3)

where (i) φ is continuous and (ii) φ(x) = 0 implies f(x) = 0. Clearly g(w) = w if and
only if f(w) = 0; i.e., the roots of f are the fixed points of g. Our approach will be to
specify the function φ(x) in (3) and then do FPI on the resulting g(x):

Pn+1 ← g(Pn).

Each different way we choose φ(x) in (3) and apply FPI to the resulting g(x) gives a new
root-finding method for f(x) [trite example: φ(x) = 1]. If Pn → w = g(w), this FPI has
produced a root-finding method that converged to a root of f(x); i.e., it “worked”.

(c) Convergence Rate of FPI: If FPI converges, Pn → w = g(w), so the errors en ≡
Pn − w → 0. The question is how rapidly? Since Pn+1 = g(Pn) (def. of FPI) and
w = g(w) (def. of fixed point),

|en+1| = |Pn+1 − w| = |g(Pn)− g(w)|. (4)

Applying the mean value theorem [see also Taylor’s theorem, n = 0 (Course Notes 3, eq
(8))], there is a point θn between Pn and w for which g(Pn) − g(w) = g′(θn)(Pn − w).
Using this in (4), and assuming g′ is continuous,

∣

∣

∣

∣

en+1

en

∣

∣

∣

∣

= |g′(θn)| → |g
′(w)|. (5)

I. Assuming |g′(w)| 6= 0 (and we may assume it is < 1), |g′(w)| is the fraction by
which |en| is reduced if we take one more FPI step and stop with en+1, n large. This is
linear convergence, where - in the limit - errors are reduced by a fixed fraction in each
step.

II. If g′(w) = 0 both numerator and denominator of the ratio in (5) converge to zero,
but the numerator converges strictly faster. In this case Taylors theorem, n = 1, shows
(since g′(w) = 0) that g(Pn)− g(w) = 1

2
g′′(θn)(Pn − w)2 so using (4), and assuming the

continuity of g′′,
∣

∣

∣

∣

∣

en+1

e2n

∣

∣

∣

∣

∣

=
1

2
|g′′(θn)| →

1

2
|g′′(w)|. (6)

Assuming g′′(w) 6= 0 the error on the next step is about |g′′(w)|/2 times the square

of the current error, n large. This is quadratic convergence. In general, the order of
convergence k, of FPI, is defined by

k = min (j > 0 : g(j)(w) 6= 0);

3

order k = 1 is linear convergence, order 2 is quadratic, etc. If the order of convergence
is k and g(k) is continuous, then

en+1

ekn
=

1

k!
|g(k)(θn)| →

1

k!
|g(k)(w)|,

a non-zero constant.

4. Method 3 - Chord Method: There is a parameter m 6= 0 for which we choose a fixed,
constant value. Using φ(x) = 1/m in (3), do FPI on g(x) = x− f(x)/m. Thus

Pn+1 = Pn −
1

m
f(Pn) = g(Pn). (7)

Rearranging the above expression we see that

m =
f(Pn)− 0

Pn − Pn+1

so the chord method chooses Pn+1 as the x-coordinate of the point where the line of slope m
through (Pn, f(Pn)) meets the x-axis.

• convergence: For the chord method |g′(x)| = |1 − f ′(x)/m|. Thus we know that if w
is a root of f and if 0 < f ′(x)/m < 2 for all values of x ∈ I = (w − δ, w + δ), then
iterations in (7) will converge as long as P0 ∈ I (in fact if we knew that some Pj ∈ I
that is enough, since we just (re)start the iterations at Pj).

• convergence rate: Suppose the iterations in (7) converge. Since g′(w) = 1−f ′(w)/m =
0 only ifm = f ′(w), we conclude that the chord method is linear except for a single choice
of m as f ′(w), in which (lucky) case it has at least a quadratic convergence rate.

5. Method 4 - Newton’s Method: Take φ(x) = 1/f ′(x) in (3) and do FPI on g(x) =
x− f(x)/f ′(x). Thus

Pn+1 = Pn −
f(Pn)

f ′(Pn)
= g(Pn). (8)

Rearranging the above expression we see that

f ′(Pn) =
f(Pn)− 0

Pn − Pn+1

so Newton’s method chooses Pn+1 as the x-coordinate of the point where the tangent line to
f at x = Pn meets the x-axis.

• convergence: For Newton’s method

g′(x) =
f(x)f ′′(x)

(f ′(x))2
.

If (i) f ′′ is continuous, (ii) f(w) = 0, and (iii) f ′(w) 6= 0 then g′(w) = 0 and g′ is
continuous. Therefore there is an interval I = (w − δ, w + δ) on which |g′(x)| < 1.
This proves that Newton’s method converges if P0 is close enough to w (unfortunately it
is hard in some cases to know precisely what “close enough” means). This convergence
result is still true when f ′(w) = 0 (i.e., (iii) fails and we have a tangency root), but the
proof argument used above no longer works.

4

• convergence rate: Suppose the iterations in (8) converge and that f ′(w) 6= 0. The
equation above shows g′(w) = 0, so in the case of a non-tangency root, Newton’s method
is at least quadratic. It is not difficult to show that when Newton’s method converges
to a tangency root w (i.e., f(w) = 0 and f ′(w) = 0), the rate is linear.

6. Secant Method: If we don’t know f ′ but still want to use Newton’s method, we could
replace f ′(Pn) in (8) by the approximation

f ′(Pn) ≈
f(Pn)− f(Pn−1)

Pn − Pn−1
.

This gives the iteration for the secant method,

Pn+1 =
Pn−1f(Pn)− Pnf(Pn−1)

f(Pn)− f(Pn−1)
, n ≥ 1. (9)

It is not a fixed point iteration (in fact, compare (9) with (2)). It needs P0 and P1 to start,
and each iteration is a function of the previous two. Pn+1 is the x-coordinate of the point
where the line joining A = (Pn−1, f(Pn−1)) and B = (Pn, f(Pn)) meets the x-axis. When the
iterations in (9) converge to a non-tangency root w,

en+1

enen−1
→ c > 0

so its rate is clearly faster than linear but slower than quadratic. In fact it may be shown
that en+1/e

(1+
√
5)/2

n → C > 0. The exponent is about 1.618.

7. Acceleration of Convergence: Instead of taking Pn+1 = g(Pn), as in FPI, we will use
P ′
n+1 as the x-coordinate of the point where the line joining A = (Pn−1, g(Pn−1)) and B =

(Pn, g(Pn)) meets the line y = x (looking at the graph of g near a fixed point shows why this
may be a good idea). Using Pn+1 = g(Pn), Pn = g(Pn−1), and a little algebra,

P ′
n+1 = Pn+1 −

(Pn+1 − Pn)
2

Pn+1 − 2Pn + Pn−1
.

P ′
n+1 is called the acceleration of Pn+1. Writing ∆Pj = Pj − Pj−1 and ∆2Pj = ∆(∆Pj) =

∆Pj −∆Pj−1 = Pj − 2Pj−1 + Pj−2, we get Aitken’s delta-squared formula:

P ′
n+1 = Pn+1 −

(∆Pn+1)
2

∆2Pn+1
. (10)

P ′
n+1 may be better than Pn+1 because of the following: Suppose a0, a1, . . . is a sequence of

numbers that converges to w at a linear rate (and ai 6= w). Apply the acceleration formula
to a2, a3, . . . (i.e., a

′
i = ai − (∆ai)

2/∆2ai, i ≥ 2) to obtain a′2, a
′
3, Then

|a′n − w|

|an − w|
→ 0;

i.e., the accelerated sequence converges to the same limit, only faster. There are two main
ways to use the acceleration idea.

5

• Aitkin’s Method: Pn denotes the approximations of any linear method (regula-falsi,
chord, Newton with a tangency root, etc.). Just accelerate each Pi and stop at step n if
|f(P ′

n)| < ε (or if |P ′
n − P ′

n−1| is small).

• Steffanson’s Method: The basic method is some linearly converging FPI, like Newton
with a tangency root. From P0 we do two FPI steps, P1 = g(P0), P2 = g(P1). At this
point we accelerate P2 by

Q0 = P2 −
(∆P2)

2

∆2P2
.

The basic iteration starts from Qi. Two FPI steps yield P1 = g(Qi) and P2 = g(P1) and
Qi+1 = P2 − (∆P2)

2/(∆2P2) is the acceleration of P2. We stop when |Qi −Qi−1| < ε.

You should study Handout number 3 illustrating the value of accelleration.

6

