CS323 Topic 1 September 6, 2019
Nonlinear Equations

Given a continuous function f(x), a value x = w for which f(w) = 0 is called a root or zero of
f and is a solution to the equation

f(z) =0.

We exclude the case where f(x) = ax + b, a # 0, because the solution is x = —b/a and can be
computed directly from the data describing f. This is the linear case. (Compare, e.g., to the case
f(x) = 2% +17).

This problem arises in (at least) two natural ways: (i) If we have two functions g(z) and h(x), it
is of interest to know when g(z) = h(x). In this case we have a root problem for f(z) = g(x) — h(x)
[example: g(x) = e and h(x) = sin(z)]; (ii) We have a function F(x) and we want to find where
it is minimized or maximized. In this case we have a root problem for f(z) = F'(z).

All the methods we study share the feature that they “generate” a sequence of approximations
Py, Py, ... that is intended to converge to a root w of f (by continuity, f(P,) — f(w) = 0 as

1. Method 1 - Bisection: The method starts (STEP 0) with an interval Iy = (ug, vo), uo < vo,
and f has opposite signs at the endpoints; thus f(ug)f(vg) < 0. By the intermediate value
theorem, f has a root w € Iy. We bisect Iy with the midpoint, Py = (up + vo)/2. This
is the initial approximation to w. If f(F,) = 0 we STOP. Otherwise we continue into the
next step, STEP 1, with one of the halves (i) Iy = (uo, Po) if f(uo)f(Fo) < 0 or else (ii)
I = (Po,vo) if f(Py)f(vg) < 0 (Precisely one of these two situations must hold - WHY?).
Clearly |I1| = £|Io| = (vo — u)/2 (]| = v — u denotes the length of the interval I = (u,v)).
In STEP n > 0 we have (from the previous step) an interval I,, = (u,,v,), and f has opposite
signs at the endpoints (f(u,)f(v,) < 0). By the intermediate value theorem, f has a root
w € I,. We bisect I,, with

Py = (tn + va) /2. (1)

If f(P,) =0 we STOP. Otherwise we continue into the next step, STEP n + 1, with one of
the halves (1) I,11 = (un, P,) if f(un)f(Py) < 0 or else (ii) 1,11 = (P, vy,) if f(Py)f(vn) <0
(Again, precisely one of these two situations must hold). Clearly |I,41| = 3|I,| = (v, —u,)/2.

o Let e, = P, —w denote the error if we stop at STEP n and take P,, the n* bisection, as
an approximation of the root w. Notice that |e,| < |I,|/2 because P, and w are in the
same half of I,,. Clearly |I,|/2 = (|I,_1]/2)/2 = -+ = |Iy|/2"** — 0 as n — oo. This
proves that the bisection method converges when started correctly.

e We can know in advance how many bisections steps will assure a suitably small error.
Given ¢ > 0, suppose it is required that e, < ¢ if we stop at STEP n. Then from
len] < (v — ug) /2", we deduce that n > log,((vo — ug)/e) — 1 steps are sufficient. In
a computer implementation of the bisection method, we might also like to require that
| f(P,)]| is small before we accept P, as a suitable approximation to w.



2. Method 2 - Regula-Falsi Suppose u,, < v, and f(u,)f(v,) < 0. We will use more informa-
tion about f than the mere fact that it has opposite signs at the endpoints of I, = (uy,v,).
Motivated by the observation that when I,, is small enough, f “looks like” a straight line on this
interval, we divide I,, by the point where the line through A = (u,, f(u,)) and B = (v, f(v,))
meets the x-axis. This is the point whose x-coordinate is

_ Un f (V) — U f(Un)
fon) = fun)

Regula-falsi IS bisection except that it uses the above instead of P, = (u,, + v,)/2.

P, (2)

e Regula-falsi converges if it is started correctly, but not because |I,,| — 0 ( simple examples
show this statement to be false). This underlies the problem with using regula-falsi in
practice - at what step, n, should it be stopped? Since |I,| may remain large, we can
only stop when |f(F,)| is small but unfortunately, this is no guarantee that e, is small.

e You should study handout 1 (through the homepage) - “Informative Traces of Bisection
and Regula-Falsi”.

3. Fixed Point Iteration A value z = u is a fized point of a function h(z) if h(u) = u. Fixed
points are thus the x-coordinates of the points where the graph of A meets the line y = .
There is a beautiful algorithm to find fixed points. It is called fixed point iteration (FPI), or
functional iteration:

e Guess P
e n<+10

WHILE P, # h(P,) DO

[ ] Pn+1 < h(Pn)

° n<n+1

ENDWHILE

RETURN P, (it is a fixed point)

We might hope that P,, — w but we should not expect it to stop in a finite number of steps
with P, = h(P,). To stop the above algorithm in practice, we would require | P, —h(P,)| to be
small, say less than €. The condition in the WHILE would then be WHILE |P, — h(P,)| > ¢
DO. We then return P,, an approximate fixed point, after n steps.

(a) Contraction mapping Principle: A function h(x) is a contraction on an interval
I = (a,b) if there is a constant k£ < 1 such that for all pairs u,v € (a,b),

[h(u) = h(v)| < Elu —vf;

ie., h(u) and h(v) are closer than u and v were. Therefore application of h “contracts”,
or brings function values closer than their arguments were. The mean value theorem
implies that h is a contraction if |h/(x)| < k for all = € (a,b), some k < 1.

The contraction mapping principle states that if (A) h(w) = w, (B) h is a contraction
on an interval I = (w — 6, w + ) for some § > 0, and (C) Py € I, then P, — w (in other
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words, the FPI algorithm above produces approximations P, = h(P,_1) that converge to
a fixed point w = h(w)). In fact if we knew that some P; € I that is enough in condition
C), since we could just (re)start the iterations at P;.

Sometimes it is difficult to find an interval I satisfying condition (B). An alternative
version of the theorem uses condition (B’), “h is a contraction on an interval I that
contains the fixed point w and satisfies the condition that h(x) € I whenever z € 1.”

Relevance to Root-Finding: Suppose we want to find roots of f(x). Define

9(x) =z — o(x) f(z), (3)

where (i) ¢ is continuous and (ii) ¢(z) = 0 implies f(z) = 0. Clearly g(w) = w if and
only if f(w) = 0; i.e., the roots of f are the fixed points of g. Our approach will be to
specify the function ¢(x) in (3) and then do FPI on the resulting g(z):

EL%J,é_ g(FZ)'

Each different way we choose ¢(x) in (3) and apply FPI to the resulting g(z) gives a new
root-finding method for f(x) [trite example: ¢(x) =1]. If P, — w = g(w), this FPI has
produced a root-finding method that converged to a root of f(x); i.e., it “worked”.

Convergence Rate of FPI: If FPI converges, P, — w = g(w), so the errors e, =
P, —w — 0. The question is how rapidly? Since P,y = g(P,) (def. of FPI) and
w = g(w) (def. of fixed point),

lent1l = [Py — w] = [g(Pn) — g(w)]. (4)

Applying the mean value theorem [see also Taylor’s theorem, n = 0 (Course Notes 3, eq
(8))], there is a point 6, between P, and w for which ¢g(P,) — g(w) = ¢'(0,)(FP, — w).
Using this in (4), and assuming ¢’ is continuous,

En+1

= 1g'(0x)] = 1g'(w)]. (5)
[. Assuming |¢'(w)| # 0 (and we may assume it is < 1), |¢'(w)| is the fraction by
which |e,| is reduced if we take one more FPI step and stop with e, .1, n large. This is
linear convergence, where - in the limit - errors are reduced by a fixed fraction in each
step.

II. If ¢'(w) = 0 both numerator and denominator of the ratio in (5) converge to zero,
but the numerator converges strictly faster. In this case Taylors theorem, n = 1, shows
(since ¢'(w) = 0) that g(P,) — g(w) = 2¢"(0,)(P, — w)* so using (4), and assuming the
continuity of ¢”,

1

= 215" (6] = 5lg"(w)]. (6

6n+1

2
€n

Assuming ¢”(w) # 0 the error on the next step is about |¢”(w)|/2 times the square
of the current error, n large. This is quadratic convergence. In general, the order of
convergence k, of FPI, is defined by

k=min (j > 0 : g9 (w) # 0);
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order k = 1 is linear convergence, order 2 is quadratic, etc. If the order of convergence
is k and ¢® is continuous, then

Cn+1 1 1
1~ 98] > o)l

a non-zero constant.

4. Method 3 - Chord Method: There is a parameter m # 0 for which we choose a fixed,
constant value. Using ¢(z) = 1/m in (3), do FPI on g(z) =  — f(x)/m. Thus

1

Rearranging the above expression we see that
m = ——————
Pn - Pn+1

so the chord method chooses P, as the x-coordinate of the point where the line of slope m
through (P,, f(P,)) meets the x-axis.

e convergence: For the chord method |¢'(z)| = |1 — f/'(x)/m|. Thus we know that if w
is a root of f and if 0 < f'(z)/m < 2 for all values of x € [ = (w — d,w + 4), then
iterations in (7) will converge as long as Fy € I (in fact if we knew that some P; € I
that is enough, since we just (re)start the iterations at ;).

e convergence rate: Suppose the iterations in (7) converge. Since ¢'(w) = 1— f'(w)/m =
0 only if m = f’(w), we conclude that the chord method is linear except for a single choice
of m as f'(w), in which (lucky) case it has at least a quadratic convergence rate.

5. Method 4 - Newton’s Method: Take ¢(z) = 1/f'(z) in (3) and do FPI on g(z) =
x — f(x)/f'(z). Thus

f(P)
P,y =P,— =g(P,). 8
Rearranging the above expression we see that
f(Pn> —0
!/ Pn —

so Newton’s method chooses P, 1 as the x-coordinate of the point where the tangent line to
f at x = P, meets the x-axis.

e convergence: For Newton’s method

Sy - L")
(f"(z))?

If (i) f” is continuous, (ii) f(w) = 0, and (iii) f'(w) # 0 then ¢'(w) = 0 and ¢’ is
continuous. Therefore there is an interval I = (w — §,w + ) on which |¢'(z)| < 1.
This proves that Newton’s method converges if Py is close enough to w (unfortunately it
is hard in some cases to know precisely what “close enough” means). This convergence
result is still true when f’(w) = 0 (i.e., (iii) fails and we have a tangency root), but the
proof argument used above no longer works.
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e convergence rate: Suppose the iterations in (8) converge and that f’(w) # 0. The
equation above shows ¢'(w) = 0, so in the case of a non-tangency root, Newton’s method
is at least quadratic. It is not difficult to show that when Newton’s method converges
to a tangency root w (i.e., f(w) =0 and f'(w) = 0), the rate is linear.

6. Secant Method: If we don’t know f’ but still want to use Newton’s method, we could
replace f'(P,) in (8) by the approximation

This gives the iteration for the secant method,

Pn—lf(Pn) - Pnf(Pn—l)
f(Pa) = f(Pac1)

It is not a fixed point iteration (in fact, compare (9) with (2)). It needs Py and P; to start,
and each iteration is a function of the previous two. P, is the x-coordinate of the point

where the line joining A = (P,,—1, f(P,-1)) and B = (P, f(F,)) meets the x-axis. When the
iterations in (9) converge to a non-tangency root w,

Pn+1 - n Z 1 (9)

6n+1
€n€n—1

—c>0

so its rate is clearly faster than linear but slower than quadratic. In fact it may be shown
that e,,1/eTV5/2 5 C' > 0. The exponent is about 1.618.

7. Acceleration of Convergence: Instead of taking P, 1 = ¢(F,), as in FPI, we will use
P!, as the x-coordinate of the point where the line joining A = (P,_1,9(Pn.—1)) and B =
(P, g(P,)) meets the line y = x (looking at the graph of g near a fixed point shows why this
may be a good idea). Using P,+1 = g(P,), P, = g(P,_1), and a little algebra,

/ :P o (Pn+1_Pn)2
n+1 n+1 F%447—'2F%'+'F%,1.

P!, is called the acceleration of P, ;. Writing AP; = P; — P;_; and A*P; = A(AP;) =

n

AP; — AP;_y = P; — 2P,_1 + P;_5, we get Aitken’s delta-squared formula:

AP, 1)?
'1 =P — BFun)” 10
n+1 +1 A2Pn+1 ( )
P, may be better than P,;; because of the following: Suppose ag, a1, ... is a sequence of
numbers that converges to w at a linear rate (and a; # w). Apply the acceleration formula
to ag, as, ... (i.e., a; = a; — (Aa;)*/A%a;, i > 2) to obtain aj, aj, . ... Then
a —w
o=l
|an — wl

i.e., the accelerated sequence converges to the same limit, only faster. There are two main
ways to use the acceleration idea.



e Aitkin’s Method: P, denotes the approximations of any linear method (regula-falsi,
chord, Newton with a tangency root, etc.). Just accelerate each P; and stop at step n if
|f(P!)| <e (orif |P, — P! .| is small).

e Steffanson’s Method: The basic method is some linearly converging FPI, like Newton
with a tangency root. From Py we do two FPI steps, P, = g(Fp), P, = g(P1). At this
point we accelerate P, by

(AP)?

=P - :

=P~

The basic iteration starts from @);. Two FPI steps yield P, = g(Q;) and P> = g(P;) and

Qis1 = P, — (AP)?/(A%P,) is the acceleration of P». We stop when |Q; — Q;_1] < &.

You should study Handout number 3 illustrating the value of accelleration.




