
GPUScheduler : User Level Preemptive Scheduling for NVIDIA GPUs

Shaleen Garg∗, Kishore Kothapalli∗ and Suresh Purini†
†Centre For VLSI & Embedded Systems Research(CVEST)
∗Centre For Security Theory & Algorithmic Research(CSTAR)

International Institute of Information Technology, Hyderabad, India
Email: {shaleen.garg@research., kkishore@, suresh.purini@}iiit.ac.in

Abstract—In this paper, we present a novel approach to
extend the concepts of time sharing and preemption to GPGPU
computational space. Our technique is applicable to any batch
GPGPU program written in Compute Unified Device Architec-
ture(CUDA) API provided for C/C++ programming languages.
It also gives the user freedom to use different scheduling
algorithms to schedule the GPGPU programs satisfying specific
system level agreements. Our easy-to-use and minimal API
makes it very easy for users to run their programs using the
GPUScheduler.

Keywords-Scheduler, preemption, GPGPU, NVIDIA, CUDA,
time sharing, SIMD

I. INTRODUCTION

GPUs are being increasingly deployed in computer sys-
tems research at a multitude of levels ranging from single
node installations to supercomputers [3]. The popularity of
GPUs can be attributed to their high FLOPS to Watt ratio,
and their low cost. This has led to a massive amount of
research on GPU computing where one sees libraries, tools,
applications, and algorithms, e.g., [2], [1], [6].

One drawback in all of the above is the way the GPU is
exposed to the user. The GPU does not expose an operating
system of its own and acts like an external device that is to
be attached to a host. The GPU can be invoked only by the
host, usually the CPU, along with passing the data and the
program to be run. Moreover, once the GPU is invoked by
starting a kernel to be run on the GPU, the host has to wait
for the completion of the kernel. During this time, the GPU
resources cannot be timeshared for executing other kernels.

Since CUDA Version 3.1, limited resource sharing is
enabled on the GPU by supporting execution of multiple
kernels. However, kernels that run simultaneously split the
resources of the GPU provided the resource requirement
of the kernels executing simultaneously do not exceed the
resources available on the GPU. These limitations mean that
effective resource sharing on GPUs is not available.

In the absence of resource sharing, users sharing a GPU
resource are left to use the GPU in a first-come-first-served
(FCFS) basis. In such an FCFS order, it is clear that users
trying to run short jobs will have to wait for a potential
long job submitted earlier to finish. As GPUs are used for
varied computations, the behavior of applications and their
time taken can vary significantly. For instance, a matrix

multiplication program running on a Tesla K40c GPU on
a matrix of size 215x215 runs in 2.7 seconds where as
a coAuthersDBLP program (betweeness-centrality problem)
on 300k × 1 million takes 1.25 hours [6].

Traditional CPUs on the other hand have supported time-
sharing from a long time and use Round-Robin (RR)
scheduling or its variants. In the RR model, the entire CPU
resources are given to one program for a fixed time quantum.
At the end of the time quantum, the program currently
using the CPU is context-switched out by storing the entire
state of the program including the contents of the hardware
registers. Another program is loaded for execution. This
process continues till all programs are finished.

Developing such a seemingly simple RR scheduling al-
gorithm for GPUs is fraught with several challenges. Imple-
menting the RR scheduling algorithm requires one to be able
to stop a program under execution arbitrarily, capture and
store the state of a program that is currently under execution,
(re)start a program by restoring the state of the program. In
the absence of access to the internal hardware and other
aspects of the GPU, these are difficult to support directly.

Past attempts at such round-robin GPU scheduling re-
ported by Calhoun and Jiang [4] are not efficient. When only
one program is running in their framework, the slowdown
experienced is an order of magnitude compared to running
the same program outside of the proposed framework.

In this paper, we present a simple and efficient framework
that supports a round-robin scheduling mechanism on GPUs.
Our framework is to divide the kernel into multiple micro
kernels so as to simulate preemption on GPU. This prevents
starvation of programs with smaller run time.

II. THE NVIDIA GPU ARCHITECTURE

The NVidia Tesla K40c GPU, that we use for our ex-
periments, has 2880 compute cores arranged as 192 cores
each in 15 Streaming Multiprocessors SMXs. It has 12 GB
on board memory and 64 KB of on chip memory per each
SMX. An L2 cache of 1.5 MB is shared among all SMXs.
Each SMX has a hardware scheduler which schedules 32
threads at a time. This group is called a warp and a half-warp
is a group of 16 threads that execute in a SIMD fashion. For
programming the K40c GPU, we use CUDA Version 7.5.17
as described in [5].

GPU programs called kernels are structured as a logical
grid of up to three dimensional blocks of up to three
dimensional threads. A thread is the smallest grain of the
computational hierarchy. Each thread and block is identified
by its three dimensional id. Physically, thread blocks are
scheduled on Streaming Multiprocessors (SMxs) which is a
group of very small computational units known as Streaming
Processors (SPs). SMs contain special functional units and
Load/Store units common to the SPs in that SMX. We refer

Figure 1. NVIDIA Execution Model

the reader to Figure 1 and the CUDA refernence manual [5]
for more details.

III. OUR APPROACH

Our focus is on enabling multiple kernels to use the GPU
resource in a time sharing manner. We assume that, alike
most operating system scheduling algorithms, there is a pool
of runnable programs that are contending for the resource
(GPU) and that the programs are independent of each other.

In our scheduler framework, a user program can have a
number of states as shown in the Figure 2. The Launch
state is the first state acquired when the user launches the
program for execution. The program then moves to the
state preprocessing which involves all the work before
the kernel launch and device data load instructions like
cudaMalloc and cudaMemcpy. Once, the preprocessing
is done, the GPUScheduler deems the program to be ready
for GPU execution. This is characterized by the program
entering the state Ready. The size of the execution unit is

defined by the attribute #blocks_left. This attribute is pro-
gram dependent and will be determined apriori. The program
cycles in the states Ready and OnGPU till #blocks_left is
non-zero. Once all the blocks are run on the GPU, i.e., the
program finishes execution, the program state changes to
postprocessing where all the cpu computations and
memory copies from the device take place and thereafter it
ends. The GPUScheduler does not take control over the pre
and post kernel computations as they concern the CPU and
device memory copies. NVIDIA devices natively support
multiple memory copy requests concurrently.

Launch PreProcessing

Ready
{#Blocks_Left}

OnGPU
{#Blocks_left}

PostProcessingEnd

User Program State Diagram

Figure 2. User Program State Diagram while running

The user kernel that runs on a GPU can be viewed
as a grid of CUDA block computations. Threads inside a
block can choose to communicate with each other using
shared memory but threads across different blocks cannot
communicate by design. Also, blocks are run concurrently
natively, and there is no guarantee to the order of running
of the blocks in the kernel. The final results are not affected
by the order of execution of the blocks. This gives us the
ability to divide big kernels into smaller kernels, referred to
as micro kernels. The attribute #Blocks_Left indicates
the numer of blocks in each micro kernel. This allows us
to hide the complexity involved in dividing kernels from
the user by providing an easy to use API to call user
kernels. The preparation of micro kernels and their execution
is done by our scheduling framework and the user can
use the framework API to access this functionality. The
API can be understood by considering the CUDA code
snippets as shown in Figure 3. Unlike the usual CUDA
kernel as shown in the top box of Figure 3, program using
our scheduler use the variable Sc_Blocks instead of the
Block CUDA defined variable. The variable Sc_Blocks
is defined by the scheduler. The user also has to use
the function KernelCall instead of issuing the kernel
call as mentioned in the CUDA manual. The user also

includes two function calss WantToRunKernel() and
FinishedKernel() to indicate the end of preprocessing
and the start of the postprocessing phases.

Native vectorAdd Kernel Call

//############ WITHOUT USING THE SCHEDULER ##############
vecAdd <<<Block, ThreadSize>>>(d_a, d_b, d_c, numElements);

GPUScheduler compliant vectorAdd Kernel Call

//############ USING THE SCHEDULER ###############
//Finished Preprocessing
WantToRunKernel();
//Tells the Scheduler that preprocessing is finished.(Enqueue)

//Block is a dim3 variable defined and populated by the user
//It is the grid the user wants to run
KernelCall(Block,
vecAdd<<<Sc_Blocks, ThreadSize>>>(d_a, d_b, d_c, numElements));
//Sc_Blocks is a Scheduler defined dim3 variable
//Scheduler controls the block dimension to run per slice

FinishedKernel();
//Tells the Scheduler that Kernel process is finished.(Dequeue)
//Start Post Processing

Figure 3. Code snippets of using the scheduler framework.

Within the kernel program, there are a few changes that
the user has to notice. Our framework provides variables
such as BlockIdx that can be used to compute the nec-
essary thread-specific offsets and also a mapping from a
microkernel to the user kernel block. Refer to the following
code snippets to observe the changes made to a rudimentary
vectorAdd kernel function.

Native Kernel Code for vectorAdd

//########## Kernel Code WITHOUT USING THE SCHEDULER ##########
__global__ void vecAdd(double *a, double *b, double *c, int n)
{

int id = blockIdx.x * blockDim.x + threadIdx.x;

//Makes sure we dont go out of bounds
if(id <= n)

c[id] = a[id] + b[id];
}

GPUScheduler compliant Kernel Code for vectorAdd

//############## Kernel Code USING THE SCHEDULER ###########
__global__ void vecAdd(double *a, double *b, double *c, int n)
{

int id = BlockIdx * blockDim.x + threadIdx.x;
//BlockIdx is a scheduler provided API for the user

//Makes sure we dont go out of bounds
if(id <= n)

c[id] = a[id] + b[id];
}

These offsets and variables serve multiple purposes in
our framework. These changes make sure that the kernel
program uses variables provided by the scheduler framework
to correctly compute the required indices and offsets. Using
these framework specific variables also ensures that in the
user program no computations are repeated and hence allows
us to argue about the correctness of the framework.

We provide these offsets as a set of APIs which can be
used in the kernel. This helps in minimizing the changes
made in the user program to make it easy to schedule and
also makes it hassle free and usable.

A. Implementation Details

The scheduler is constructed over a message passing
model. We use FIFO queues provided by the Linux kernel
for message passing between the user programs and the
GPUScheduler. Each user program is responsible for sending
its current state(Figure 2) to the GPUScheduler. We provide
multiple predefined macros for the users to use in their
programs. These macros do the needful after each state is
achieved like updating the GPUScheduler and waiting for a
message from GPUScheduler.

We note that other Linux kernel functionalities such as
POSIX signals are not sufficient to support our framework.
In particular, POSIX signals may not count the number of
signals and rather indicate the presence or absence of a
signal. In such a case, the multiplicity of particular events
such as multiple programs sending the same signal is lost.

B. Discussion

Currently, our framework supports the round-robin
scheduling algorithm to schedule multiple kernels. Alterna-
tively, one can choose to use different scheduling algorithms
in a plug-and-play fashion to suit their needs. For instance,
one can imagine a round-robin plus priority based schedul-
ing algorithm. The framework, the API, and the mechanisms
that a user has to follow to access our framework can largely
remain unchanged.

As noticed in in Figure 4, each user kernel program is
divided into multiple micro kernels. The size of micro kernel
for each program depends on the number of blocks the
program can finish in the specified time slice; for example,
program P2, has a bigger micro kernel as compared to
program P1. Program P2 has a smaller micro kernel in the
end because those are the computations left after the first
micro kernel execution and are kept for the next time slice.
Currently, for each program, we pick block size using em-
pirical study. Other methods like ones mentioned in Pai et al.
[] can be incorporated to our GPUScheduler in a later stage.
However, new programs can join the queue concurrently
while execution. This makes our model dynamic and can
result in a shorter turnaround time for user programs.

Since our scheduling framework runs as a user level
program, and not a system level program, there are certain
limitations of our framework. For instance, our framework
currently cannot catch signals such as SIGKILL intended
for the user program. However, in future, we hope that our
framework can be written as a system (kernel) program on
the CPU so that the signals intended for user GPU programs
can be processed registered by the framework also.

From the user point of view, when using our scheduler,
each user program should necessarily use the APIs provided
by the framework. Otherwise, the framework cannot do the
necessary scheduling. We note that the above restrictions are
natural and do not restrict any class of programs.

C. Sources of Overheads

Preemptive scheduling algorithms are useful as they im-
prove the resource usage and reduce the turnaround time for
short jobs. Preemptive scheduling algorithms by nature how-
ever introduce overheads in many ways. In our framework,
we note the following overheads.

For each kernel, the required offset variables are to be
loaded on the device memory using cudaMemcpyToSymbol.
While the kernel is executing, the new block numbers have
to be calculated using those offsets provided. Further, each
program kernel is typically broken into multiple kernel calls.
Each kernel invocation is an expensive operation. Hence,
we try to increase the time slice in order to run more blocks
which decrease the number of total kernel calls per program.

IV. EXPERIMENTAL RESULTS

In this section, we study our framework on two example
instances. In the experiments reported in this section, we take
the time slice to be 1 ms. The time slice can be changed
according to the system’s requirements. All the experiments
are performed on an NVIDIA Tesla K40c GPU with driver
version 375.66 attached to an Intel Xeon E5-2650 CPU. To
proram the GPU, we use CUDA version 7.5.17.

We conduct two experiments. In one experiment, we study
the overhead of our scheduler on a sample program of vector
addition. The second experiment studies how two kernels
can share the GPU resource.

A. Overhead

VectorAdd is one of the basic problems in HPC. We
take double precision VectorAdd of different size vectors
as examples in our results. We run the VectorAdd program
fom the CUDA samples in two different modes: one without
using the scheduler, and the other using the scheduler
framework with no other program also using the scheduler
framework.

Figure 5 shows the difference between runtimes of vec-
torAdd programs when run with the preemptive scheduler
and natively. All the times are in milliseconds. As can be
observed from Figure 5, the two version of the vectorAdd
program differ in their runtime by no more than a factor of
two. This difference can be explained by the overheads of
the framework.

However, this overhead can be minimized by several
means such as increasing the time slice. This increase can
be achieved by increasing the number of blocks in each
micro kernel. Figure 6 shows the runtime of the vectorAdd
program with vector length 215 when run using the scheduler
framework with different time slices. It can be seen that the
runtime decreases significantly as the time slice is increased.
The same trend was observed for vector lengths 220 and
225 respectively. This suggests that the time slice should be
chosen so as to minimize the overhead of scheduling.

Scheduler GPU

 P1 P2 P3

 P1 P2 P3

 P1 P2 P3

Launch{P1,B1}

Finished{P1, B1}

Launch{P2, B1}

Finished{P2, B1}

Launch{P3, B1}

 P1 P2 P3 Finished{P3, B1}

Launch{P1, B2}

t

t

t

Finished{P1, B2}

t

 P1 P2 P3 P4
(P4 added to
queue)

And So On

T
im

e

Figure 4. RoundRobin Scheduling Algorithm

0 200000 400000 600000 800000 1000000
Length of Vector

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Ti
m

e
ta

ke
n

in
 m

s

(32768, 0.0475)

(1048576, 0.111616)

(32768, 0.08776)

(1048576, 0.1767)Without Preemption
With Preemption

Running different sized vectorAdd Kernels Individually

Figure 5. Running VectorAdd of different vector lengths with and without
preemption

0 5 10 15 20 25 30 35
TimeSlice in ms as a function of blocks

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e
ta

ke
n

in
 m

s

Running a 2^15 Vector Length vectoradd individually

Figure 6. Running 215 VectorAdd with different time slices

B. Multiple Programs

To demonstrate how multiple programs can timeshare the
GPU using our framework, we pick the matrix transpose
and the (dense) matrix multiplication programs. These pro-
grams exist as sample programs in the CUDA installation.
We consider two scenarios in which these programs are
run: without using the scheduler framework, and using the
scheduler framework.

Figure 7 shows how the scheduler switches across the two
programs at the end of every time slice. Note that while the
time slice is fixed, the number of blocks of the transpose
program that run in each time slice is more than the number
of blocks of the multiplication program. At the end of six
time slices, of which the transpose program uses three time
slices, the transpose program ends. In the absence of other
programs using the scheduler framework, all the next time
slices are used by the multiplication program.

Figure 8 shows the overhead of using hte scheduling
framework as the ratio of time when run together using the
framework to the time taken when run alone. This ratio is
computed for input square matrices of various sizes ranging
from 1024 rows to 8192 rows. As can be seen, we note that
the overheads ratio is near 1.5 for the multiplication program
and near 2.5 for the transpose program.

V. RELATED WORK

Preemptive thread block scheduling, Pai et al. [7] uses
linear profiling technique to predict kernel runtime. Using
these runtime, they use non-preemptive Shortest Job First
scheduling algorithm to schedule the kernels. This is a
static model i.e., all the kernels should arrive at the same
time in order for the SJF scheduling algorithm to schedule
smallest kernels first. In a scenario where a small kernel
arrives after the execution of a large kernel has already

started, the waiting time shall be very high. The profiling
techniques proposed by them could be used to predict time-
slices for each kernel in GPUScheduler queue for improved
performance.

Kernlets by Zhong et al. [8] uses a similar model of
dividing kernels into micro-kernels so as to run multiple
kernels at once using the concurrent kernel function provided
by the NVIDIA architecture. They claim that this increases
the throughput of the device. They assume that each kernel
they are provided, does not use all of the computational
units in the GPU, hence, multiple kernels can be scheduled
on the device concurrently provided the size of the kernel in
decreased. Also, any kernel has to be submitted as PTX of
SASS code to their kernel slicer in order to run. Our model
provides the users to run their programs transparently, just
like they would do natively.

Preemption of CUDA kernel [4] by Calhoun et al. 2012,
is trying to achieve the same objective as we are trying to do.
They are taking a user level snapshot of each kernel variable
in order to capture state before preempting the kernel. This
makes their scheduling algorithm significantly slow. Their
results show a slowdown of at least 40x. We capture state
just by taking care of the number of blocks finished in the
computational grid.

VI. CONCLUSION

In this paper we have presented a scheduling framework
that can allow multiple programs to share time on a GPU
in a roundobin manner. The usage and effectives of the
proposed framework is studied with example GPU kernels.
In future, we would like to see how to extend the framework
to multiple GPUs and also provide more compiler assisted
mechanisms that make the framework more usable.

REFERENCES

[1] Cuda applications. geforce.com/hardware/technology/cuda/applications.

[2] The cusparse library project.
http://docs.nvidia.com/cuda/cusparse/.

[3] Top500 supercomputer sites. www.top500.org.

[4] Jon Calhoun and Hai Jiang. Preemption of a CUDA kernel
function. In 13th ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and Paral-
lel/Distributed Computing, SNPD 2012, Kyoto, Japan, August
8-10, 2012, pages 247–252, 2012.

[5] NVidia Corporation. http://docs.nvidia.com/cuda/cuda-c-
programming-guide/.

[6] C. Pachorkar, M. Chaitanya, K. Kothapalli, and D. Bera.
Efficient parallel ear decomposition of graphs with application
to betweenness-centrality. In 2016 IEEE 23rd International
Conference on High Performance Computing (HiPC), pages
301–310, Dec 2016.

Time in μ seconds

matrixMul

matrixTranspose

0

...

Matrix Multiplication and Matrix Transpose Time Slice Diagram

(MatrixTranspose finished)

10
00

10
18 20
18

20
36

30
36

30
54 40
54

40
72

50
72

50
90

60
90

61
08

71
08

71
26

71
26

71
44

Figure 7. MatrixMul & MatrixTranspose time slice diagram

 0

 0.5

 1

 1.5

 2

 2.5

 3

2
1

0

2
1

1

2
1

2

2
1

3

O
v
e

rh
e

a
d

 R
a

ti
o

Matrix Dimensions

Matrix Transpose and Matrix Multiplication Overheads

Matrix Transpose
Matrix Multiplication

Figure 8. Overheads while Running matrixMul and matrixTranspose
concurrently

[7] Sreepathi Pai, R. Govindarajan, and Matthew J.
Thazhuthaveetil. Preemptive thread block scheduling
with online structural runtime prediction for concurrent
GPGPU kernels. In International Conference on Parallel
Architectures and Compilation, PACT ’14, Edmonton, AB,
Canada, August 24-27, 2014, pages 483–484, 2014.

[8] Jianlong Zhong and Bingsheng He. Kernelet: High-throughput
gpu kernel executions with dynamic slicing and scheduling.
IEEE Trans. Parallel Distrib. Syst., 25(6):1522–1532, June
2014.

