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Current GPU Model

When Multiple Programs come into picture, the model looks like
0.
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Traits of a Good Scheduler

e Preemptive: To reduce wait time of a program waiting in the
queue.

e Low Overheads: To reduce scheduling overheads so as to re-
duce the response time.

e Flexibility: Ability to support different scheduling policies
to cater to different scheduling needs and Service Level Agree-
ments(SLAs).

Figure 1: GPU Working Model
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Figure 5: Example Round Robin
Example

Here is an example to show conversion of a native GPU program to a
GPUScheduler compliant GPU program.

//##hukuanusss VITHOUT USING THE SCHEDULER ####uistiuny
vecAdd <<<Block, ThreadSize>>>(d_a, d_b, d_c, numElements);

//#suuasaynass USING THE SCHEDULER ############HHHE

//Finished Preprocessing

WantToRunKernel ) ;

//Tells the Scheduler that preprocessing is finished.(Enqueue)

//Block is a dim3 variable defined and populated by the user
//Tt is the grid the user wants to run
KernelCall(Block,

_Blocks, Tt i d_a, d_b, d_c, nunElements));
//Sc_Blocks is a Scheduler defined dim3 variable
//Scheduler controls the block dimension to run per slice

FinishedKernel();
//Tells the Scheduler that Kernel process is finished.(Dequeue)
//Start Post Processing
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rnel Code for
//###usuutey Kernel Code WITHOUT USING THE SCHEDULER #i##fiusssut
__global__ void vecAdd(double *a, double #b, double *c, int n)

int id = blockIdx.x * blockDim.x + threadIdx.x;
//Makes sure we dont go out of bounds
if(id <= n)

clid] = a[id] + b[id];

1el Code for vectorAdd

reduler compliant

/[##huiakaiaEE Kernel Code USING THE SCHEDULER #fiiuiii
__global__ void vecAdd(double *a, double *b, double *c, int n)

int id = BlockIdx * blockDim.x + threadIdx.x;
//Blockldx is a scheduler provided API for the user

//Makes sure we dont go out of bounds
if(id <= n)
clid] = alid] + blid];




