GPUScheduler

User-Level Preemptive Scheduling for NVIDIA GPUs

Shaleen Garg, Kishore Kothapalli, Suresh Purini

CSTAR, International Institute of Information Technology, Hyderabad

Matrix Transpose

Matrix Mul

Program P1

Matrix Multiplication (P0)

Our Approach

We fulfill the above traits of a good scheduler by using the following technique:

- We break the kernel into smaller micro-kernels to facilitate preemption.
- Our State save policy involves saving one dim3 variable, hence very low overheads.
- The scheduling framework can employ different scheduling policies in a plug and play fashion.

Saving the State

Consider a GPUScheduler compliant program running. Its state needs to be saved in order to resume computations when it is context switched back at a later stage.

Traits of a Good Scheduler

- **Preemptive** To reduce wait time of a program waiting in the queue.
- **Low Overheads** To reduce scheduling overheads so as to reduce response time.
- **Flexibility** Ability to support different scheduling policies to cater to different scheduling needs and Service Level Agreement (SLA).

Current GPU Model

When Multiple Programs come into picture, the model looks like so.

Limitations of the Current Model

Assume arrival of two programs in the following order:

- P0 (large kernel): Matrix Multiplication program on $2^{13} \times 2^{13}$ sized matrices (~ 3 seconds).
- P1 (small kernel): Matrix Transpose program on $2^{13} \times 2^{13}$ sized matrices (~ 3 milliseconds).

The following is what happens when program P0 arrives before program P1.

Example

Here is an example to show conversion of a native GPU program to a GPUScheduler compliant GPU program.

Experimental Results

Overheads ratio when Matrix Multiplication program is run with and without using GPUScheduler.

Figure 1: GPU Working Model

Figure 2: Program P0 arrives before Program P1

Figure 3: User Program State Diagram

Figure 4: Example Round Robin

Figure 5: Example Round Robin

Figure 6: Overheads for Matrix Multiplication

Figure 7: State Diagram for Matrix Multiplication and Matrix Transpose

For further queries, contact shaleen.garg@research.iiit.ac.in