
GPUScheduler
User-Level Preemptive Scheduling for NVIDIA GPUs
Shaleen Garg, Kishore Kothapalli, Suresh Purini
CSTAR, International Institute of Information Technology, Hyderabad

Current GPU Model
When Multiple Programs come into picture, the model looks like
so.

Host

GPU
Memory

GPU(Device)

Copy
 Processing

Data

Copy
The

Result

Program
to

Run

SM 1 SM 2SM 0

...

GPU Working Model
User
Programs

Enough
SMs?

Yes
No

Program queue

Figure 1: GPU Working Model

Limitations of the Current Model
Assume arrival of two programs in the following order:
• P0(large kernel): Matrix Multiplication program on 213 x 213

sized matrices (∼ 3 seconds).
• P1(small kernel): Matrix Transpose program on 213 x 213 sized

matrices (∼ 3 Milliseconds).
The following is what happens when program P0 arrives before pro-
gram P1.

Native GPU Scheduling Scenario

Time in ms

Matrix Transpose (P1)

P0 arrives and starts executing

P0 fin
ishes executio

n

Glossary

Program running

Program waiting

P1 arrives and enqueues

Matrix Multiplication (P0)

P1 fin
ishes e

xecutio
n

1000 1500
3980 3983

Figure 2: Program P0 arrives before Program P1

Traits of a Good Scheduler
• Preemptive: To reduce wait time of a program waiting in the

queue.
• Low Overheads: To reduce scheduling overheads so as to re-

duce the response time.
• Flexibility: Ability to support different scheduling policies

to cater to different scheduling needs and Service Level Agree-
ments(SLAs).

Our Approach
We fullfill the above traits of a good scheduler by using the following
technique.
• We break the kernel into smaller micro-kernels to facilitate pre-

emption.
• Our State save policy involves saving one dim3 variable, hence

very low overheads.
• The scheduling framework can employ different scheduling poli-

cies in a plug and play fashion.

Launch PreProcessing

Ready
{#Blocks_Left}

OnGPU
{#Blocks_left}

PostProcessingEnd

User Program State Diagram

Figure 3: User Program State Diagram

Saving the State
Consider a GPUScheduler compliant program running. Its state
needs to be saved in order to resume computations when it is con-
text switched back at a later stage.

Time slice

State : (5, 0, 0)

Saving the State

Program P0

Program P1

State : (10, 0, 0) State : (15, 0, 0)

Time

0 4 5 9 10 14 15 20

Figure 4: Example Round Robin

Scheduler GPU

 P1 P2 P3

 P1 P2 P3

 P1 P2 P3

Launch{P1,B1}

Finished{P1, B1}

Launch{P2, B1}

Finished{P2, B1}

Launch{P3, B1}

 P1 P2 P3 Finished{P3, B1}

Launch{P1, B2}

t

t

t

Finished{P1, B2}

t

 P1 P2 P3 P4

(P4 added to
queue)

T
im

e

Glossary

Micro-kernels

Scheduled
Micro-Kernel

Figure 5: Example Round Robin

Example

Here is an example to show conversion of a native GPU program to a
GPUScheduler compliant GPU program.

Native vectorAdd Kernel Call
//############ WITHOUT USING THE SCHEDULER ##############
vecAdd <<<Block, ThreadSize>>>(d_a, d_b, d_c, numElements);

GPUScheduler compliant vectorAdd Kernel Call
//############ USING THE SCHEDULER ###############
//Finished Preprocessing
WantToRunKernel();
//Tells the Scheduler that preprocessing is finished.(Enqueue)

//Block is a dim3 variable defined and populated by the user
//It is the grid the user wants to run
KernelCall(Block,
vecAdd<<<Sc_Blocks, ThreadSize>>>(d_a, d_b, d_c, numElements));
//Sc_Blocks is a Scheduler defined dim3 variable
//Scheduler controls the block dimension to run per slice

FinishedKernel();
//Tells the Scheduler that Kernel process is finished.(Dequeue)
//Start Post Processing

Native Kernel Code for vectorAdd
//########## Kernel Code WITHOUT USING THE SCHEDULER ##########
__global__ void vecAdd(double *a, double *b, double *c, int n)
{

int id = blockIdx.x * blockDim.x + threadIdx.x;
//Makes sure we dont go out of bounds
if(id <= n)

c[id] = a[id] + b[id];
}

GPUScheduler compliant Kernel Code for vectorAdd
//############## Kernel Code USING THE SCHEDULER ###########
__global__ void vecAdd(double *a, double *b, double *c, int n)
{

int id = BlockIdx * blockDim.x + threadIdx.x;
//BlockIdx is a scheduler provided API for the user

//Makes sure we dont go out of bounds
if(id <= n)

c[id] = a[id] + b[id];
}

Experimental Results
Overheads ratio when Matrix Multiplication program is run with
and without using GPUScheduler.

 1

 10

 100

 1000

 10000

2
1
0

2
1
1

2
1
2

2
1
3

 0

 0.5

 1

 1.5

 2

 2.5

 3

T
im

e
 i
n

 m
s
e

c
s
(l
o

g
s
c
a

le
)

O
v
e

rh
e

a
d

 R
a

ti
o

 (
T

2
/T

1
)

Matrix Dimensions

Matrix Multiplication

Without Preemption(T1)
With Preemption(T2)

Overhead Ratio (T2/T1)

Figure 6: Overheads for Matrix Multiplication

Scheduling Scenario when GPUScheduler is used for two programs.

Matrix Transpose and Matrix Multiplication program run to-
gether in a round robin fashion.

Time in ms

Matrix Mul

Matrix Transpose

0

...

GPUScheduler Scheduling Scenario

(Matrix Transpose finished)

MatrixTranspose enqueued

MatrixTranspose started execution

10
00

10
18 20

18

26
00

20
36

30
36

30
54

40
54

Figure 7: Slice Diagram for Matrix Multiplication and Matrix Transpose

1
1For further queries, contact shaleen.garg@research.iiit.ac.in

