GPUScheduler

User-Level Preempti

Scheduling for NVIDIA GPUs

Shaleen Garg, Kishore Kothapalli, Suresh Purini
CSTAR, International Institute of Information Technology, Hyderabad

Current GPU Model

When Multiple Programs come into picture, the model looks like
0.

GPU Working Model

Programs
Program
to
Run
(GPU(Device)
Copy
The
Result
o el
cesing =

Traits of a Good Scheduler

e Preemptive: To reduce wait time of a program waiting in the
queue.

e Low Overheads: To reduce scheduling overheads so as to re-
duce the response time.

e Flexibility: Ability to support different scheduling policies
to cater to different scheduling needs and Service Level Agree-
ments(SLAs).

Figure 1: GPU Working Model

TFor further querics, contact shaleen gargGrescarchiiit-ac.in

-

N
[

‘2
)

Scheduler GPU
P1L P2 P3 Launch{P1,B1}
t
inis 1, B1]
PL P2 P3 1 } oy
L[| [—— I
icro kernes|
o
£ soaes
= I»e
P1 P2 P3 Finished{P2, B1}
Launch{P3, B1}
t
P1 P2 P3 Finished{P3, B1}
- Launch{P1, B2}
. (P4 added to
P1 P2 P3 P4 Finished{P1, B2}, queue)
_ eee
Figure 5: Example Round Robin
Example

Here is an example to show conversion of a native GPU program to a
GPUScheduler compliant GPU program.

//##hukuanusss VITHOUT USING THE SCHEDULER ####uistiuny
vecAdd <<<Block, ThreadSize>>>(d_a, d_b, d_c, numElements);

//#suuasaynass USING THE SCHEDULER ############HHHE

//Finished Preprocessing

WantToRunKernel) ;

//Tells the Scheduler that preprocessing is finished.(Enqueue)

//Block is a dim3 variable defined and populated by the user
//Tt is the grid the user wants to run
KernelCall(Block,

_Blocks, Tt i d_a, d_b, d_c, nunElements));
//Sc_Blocks is a Scheduler defined dim3 variable
//Scheduler controls the block dimension to run per slice

FinishedKernel();
//Tells the Scheduler that Kernel process is finished.(Dequeue)
//Start Post Processing

LA

INTERNATIONAL INSTITUTE OF
INFORMATION TECHNOLOGY

HYDERABAD

rnel Code for
//###usuutey Kernel Code WITHOUT USING THE SCHEDULER #i##fiusssut
__global__ void vecAdd(double *a, double #b, double *c, int n)

int id = blockIdx.x * blockDim.x + threadIdx.x;
//Makes sure we dont go out of bounds
if(id <= n)

clid] = a[id] + b[id];

1el Code for vectorAdd

reduler compliant

/[##huiakaiaEE Kernel Code USING THE SCHEDULER #fiiuiii
__global__ void vecAdd(double *a, double *b, double *c, int n)

int id = BlockIdx * blockDim.x + threadIdx.x;
//Blockldx is a scheduler provided API for the user

//Makes sure we dont go out of bounds
if(id <= n)
clid] = alid] + blid];

