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Current GPU Model
When Multiple Programs come into picture, the model looks like
so.

Host

GPU 
Memory

GPU(Device)

Copy
 Processing 

Data

Copy 
The 

Result

Program 
to 

Run

SM 1 SM 2SM 0

...

GPU Working Model
User 
Programs

Enough 
SMs?

Yes
No

Program queue

Figure 1: GPU Working Model

Limitations of the Current Model
Assume arrival of two programs in the following order:
• P0(large kernel): Matrix Multiplication program on 213 x 213

sized matrices (∼ 3 seconds).
• P1(small kernel): Matrix Transpose program on 213 x 213 sized

matrices ( ∼ 3 Milliseconds).
The following is what happens when program P0 arrives before pro-
gram P1.
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Figure 2: Program P0 arrives before Program P1

Traits of a Good Scheduler
• Preemptive: To reduce wait time of a program waiting in the

queue.
• Low Overheads: To reduce scheduling overheads so as to re-

duce the response time.
• Flexibility: Ability to support different scheduling policies

to cater to different scheduling needs and Service Level Agree-
ments(SLAs).

Our Approach
We fullfill the above traits of a good scheduler by using the following
technique.
• We break the kernel into smaller micro-kernels to facilitate pre-

emption.
• Our State save policy involves saving one dim3 variable, hence

very low overheads.
• The scheduling framework can employ different scheduling poli-

cies in a plug and play fashion.
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Figure 3: User Program State Diagram

Saving the State
Consider a GPUScheduler compliant program running. Its state
needs to be saved in order to resume computations when it is con-
text switched back at a later stage.
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Figure 4: Example Round Robin
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Figure 5: Example Round Robin

Example

Here is an example to show conversion of a native GPU program to a
GPUScheduler compliant GPU program.

Native vectorAdd Kernel Call
//############ WITHOUT USING THE SCHEDULER ##############
vecAdd <<<Block, ThreadSize>>>(d_a, d_b, d_c, numElements);

GPUScheduler compliant vectorAdd Kernel Call
//############ USING THE SCHEDULER ###############
//Finished Preprocessing
WantToRunKernel();
//Tells the Scheduler that preprocessing is finished.(Enqueue)

//Block is a dim3 variable defined and populated by the user
//It is the grid the user wants to run
KernelCall(Block,
vecAdd<<<Sc_Blocks, ThreadSize>>>(d_a, d_b, d_c, numElements));
//Sc_Blocks is a Scheduler defined dim3 variable
//Scheduler controls the block dimension to run per slice

FinishedKernel();
//Tells the Scheduler that Kernel process is finished.(Dequeue)
//Start Post Processing

Native Kernel Code for vectorAdd
//########## Kernel Code WITHOUT USING THE SCHEDULER ##########
__global__ void vecAdd(double *a, double *b, double *c, int n)
{

int id = blockIdx.x * blockDim.x + threadIdx.x;
//Makes sure we dont go out of bounds
if(id <= n)

c[id] = a[id] + b[id];
}

GPUScheduler compliant Kernel Code for vectorAdd
//############## Kernel Code USING THE SCHEDULER ###########
__global__ void vecAdd(double *a, double *b, double *c, int n)
{

int id = BlockIdx * blockDim.x + threadIdx.x;
//BlockIdx is a scheduler provided API for the user

//Makes sure we dont go out of bounds
if(id <= n)

c[id] = a[id] + b[id];
}

Experimental Results
Overheads ratio when Matrix Multiplication program is run with
and without using GPUScheduler.
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Figure 6: Overheads for Matrix Multiplication

Scheduling Scenario when GPUScheduler is used for two programs.

Matrix Transpose and Matrix Multiplication program run to-
gether in a round robin fashion.
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Figure 7: Slice Diagram for Matrix Multiplication and Matrix Transpose
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