
Share-a-GPU
Providing Simple and Effective Time-Sharing on GPUs

Shaleen Garg, Kishore Kothapalli, Suresh Purini

Computer Systems Group

Needs ?
 Expensive Hardware

- Users Contend for Same Resource

- Exorbitant Wait times

- Native GPUs follow leftover policy

 Cloud Service Providers

- Usual to Overbook their hardware

- Rely on user non-consumption

- Fails when faces high traffic

 E-Waste

- Hardware getting old rapidly

- Simulates a bigger GPU using Software

- Not explored much

 Energy Impact

- No need for more hardware

- Less energy consumption

- Lesser heat generation

Literature Survey
● Wu et al. FLEP (ASPLOS ‘17) [Software]

➢ MicroKernels for weighted Round-Robin Scheduling
➢ Assumes that GPU Memory accommodates all programs
➢ Experiments show at most three loads running concurrently

● Xu et al. Warped-Slicer (ISCA ‘16) [Simulator]
➢ Pairs programs such that they use all the resources on SMs
➢ Needs prior profiling to find suitable coexisting Kernels

● Anguilera et al. Fair Share (ICCD ‘14) [Simulator]
➢ Proposes allocation policy based on Fairness to all programs
➢ Uses Spatial multitasking instead of cooperative multitasking

Overview

● Introduction

● Our Technique

● Experiments

● Conclusion

Overview

● Introduction

● Our Technique

● Experiments

● Conclusion

“
The best ideas are often also the

simplest

Some Definitions

❏ Compute Kernel - Upto 3-D grid of GPU computations

❏ Grid - Consists of many Blocks (CTAs)

❏ Compute Block - Independent Unit of computations

❏ Index - Identity of each block (3 tuple of integers)

❏ Timeslice - Time of exclusive access to the GPU(s)

Stages of Preemption

Resume

Start from where
we stopped last

Pause

Pause the Kernel
after its time slice
for context
switching

Save State

Snapshot of the
current program
state

The Changeover
Native GPU (FIFO) Scheduler (Round-Robin)

Memory Management

Current
Program

Next to
Run

GPU Memory

CPU Main Memory

Waiting
in Queue

● Realistic Approach

● Double Buffering

● Memory transfers (PCI)
concurrent to compute

● Guarantees ½ GPU
memory to each kernel

Wait

Prepare
State

State
Restored

Ready to
Launch

Launch
mKernel

mKernel
finished

More
mKernels

No More
mKernels

Program States
Restore
State

Finish

Ready to
Launch

Running

Save
State

Scheduler - The Middleman

Scheduler

Kernel(s)

GPU(s)

R
eq

ui
re

d
 T

im
e S

lic
e

R
ea

dy
 to

 L
au

nc
h

Yi
el

de
d

 G
PU

Yi
el

de
d

 G
PU

M
emPrepare

 State

Launch
 m

K
ernel

M
em

cpy

R
un m

K
ernel

M
em

cpy

D
on

e M
em

cp
y

D
on

e
m

K
er

ne
l

D
on

e M
em

cp
y

When Next in Line
Enqueue

When GPU Free

GPU Mem
loaded

GPU Busy GPU Mem
Free

Wait

Restore
State

Ready
To

Launch

Running

Save
State

Finish

GPU Free

Multi-GPU Support

● Multi-GPU installations common

● Simulates an aggregate GPU from
many small GPUs

● Intra-Kernel Parallelism

● Workload divided automatically

“
The best systems do not bother

their users

User Ease

● Assisted Cooperation

● Modified API

● Usual Execution

● Transparent Working

Pre-compile
Stage

Extract
Metadata

Helper
Files

Modified

Compiler

cudaMalloc() -> customCudaMalloc()

cudaMemcpy() -> customCudaMemcpy()

Kernel Call -> KC(vectorAdd<<<>>>())

Original

Overview

● Introduction

● Our Technique

● Experiments

● Conclusion

Overview

● Introduction

● Our Technique

● Experiments

● Conclusion

Experimental Programs
Characteristics Input Memory footprint

(MiB)
Native

Runtime (sec)

BFS Memory Graph 1321 0.4

Gaussian Compute Matrix 883 327.45

Kmeans Memory Point Coord. 1006 0.07

matMul Compute Matrices 5424 54.19

matTrans Memory Matrix 5433 0.17

dxtc Compute Image 2280 20.78

StringSort Memory List of Strings 3072 0.203

TOTAL 19420

Single Program on One GPU

● Average slowdown is 4 - 5 %

● Overheads decrease with
increase in timeslice

● Overheads ~0.1 ms

Single Program on Two GPUs

● Average speedup ~1.65 x

● No additional user effort

All Programs on One GPU

● The real test of Fire

● First to show this !

● Overheads as anticipated

All Programs on Two GPUs

● Another test of Fire

● First to show this !

● Automatic speedup of ~1.5 x

Future Work

▷ Extend to a cluster setting

▷ Support heterogeneous multi-GPUs

▷ Extend it to commonly used libraries

Conclusion

✓ Capable of things never done before

✓ Provides a deployable solution

✓ Transparent & Easy to use

✓ Flexible scheduling algorithms

Thanks!
Any Questions?
You can contact us at:
shaleen.garg@research.iiit.ac.in

kkishore@iiit.ac.in

suresh.purini@iiit.ac.in

