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Needs ?
                   Expensive Hardware

- Users Contend for Same Resource

- Exorbitant Wait times

- Native GPUs follow leftover policy

                   Cloud Service Providers

- Usual to Overbook their hardware

- Rely on user non-consumption

- Fails when faces high traffic 

                   E-Waste

- Hardware getting old rapidly

- Simulates a bigger GPU using Software

- Not explored much

                   Energy Impact

- No need for more hardware 

- Less energy consumption

- Lesser heat generation



Literature Survey
● Wu et al. FLEP (ASPLOS ‘17) [Software]

➢ MicroKernels for weighted Round-Robin Scheduling
➢ Assumes that GPU Memory accommodates all programs
➢ Experiments show at most three loads running concurrently

● Xu et al. Warped-Slicer (ISCA ‘16) [Simulator]
➢ Pairs programs such that they use all the resources on SMs
➢ Needs prior profiling to find suitable coexisting Kernels

● Anguilera et al. Fair Share (ICCD ‘14) [Simulator]
➢ Proposes allocation policy based on Fairness to all programs
➢ Uses Spatial multitasking instead of cooperative multitasking
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“
The best ideas are often also the 

simplest



Some Definitions

❏ Compute Kernel - Upto 3-D grid of GPU computations

❏ Grid - Consists of many Blocks (CTAs)

❏ Compute Block - Independent Unit of computations

❏ Index - Identity of each block (3 tuple of integers)

❏ Timeslice - Time of exclusive access to the GPU(s)



Stages of Preemption

Resume

Start from where 
we stopped last 

Pause

Pause the Kernel 
after its time slice 
for context 
switching

Save State

Snapshot of the 
current program 
state



The Changeover
Native GPU (FIFO) Scheduler (Round-Robin)



Memory Management

Current 
Program

Next to 
Run

GPU Memory

CPU Main Memory 

Waiting 
in Queue

● Realistic Approach

● Double Buffering

● Memory transfers (PCI) 
concurrent to compute

● Guarantees ½ GPU 
memory to each kernel
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Scheduler - The Middleman
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Multi-GPU Support

● Multi-GPU installations common

● Simulates an aggregate GPU from 
many small GPUs

● Intra-Kernel Parallelism

● Workload divided automatically



“
The best systems do not bother 

their users



User Ease

● Assisted Cooperation

● Modified API

● Usual Execution

● Transparent Working

Pre-compile 
Stage

Extract
Metadata

Helper 
Files

Modified

Compiler

cudaMalloc()  -> customCudaMalloc()

cudaMemcpy() -> customCudaMemcpy()

Kernel Call -> KC(vectorAdd<<<>>>())

Original
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Experimental Programs
Characteristics Input Memory footprint 

(MiB)
Native 

Runtime (sec)

BFS Memory Graph 1321 0.4

Gaussian Compute Matrix 883 327.45

Kmeans Memory Point Coord. 1006 0.07

matMul Compute Matrices 5424 54.19

matTrans Memory Matrix 5433 0.17

dxtc Compute Image 2280 20.78

StringSort Memory List of Strings 3072 0.203

TOTAL 19420



Single Program on One GPU

● Average slowdown is 4 - 5 %

● Overheads decrease with 
increase in timeslice

● Overheads ~0.1 ms



Single Program on Two GPUs

● Average speedup ~1.65 x

● No additional user effort



All Programs on One GPU

● The real test of Fire

● First to show this !

● Overheads as anticipated



All Programs on Two GPUs

● Another test of Fire

● First to show this !

● Automatic speedup of ~1.5 x



Future Work

▷ Extend to a cluster setting

▷ Support heterogeneous multi-GPUs

▷ Extend it to commonly used libraries



Conclusion

✓ Capable of things never done before

✓ Provides a deployable solution

✓ Transparent & Easy to use

✓ Flexible scheduling algorithms



Thanks!
Any Questions?
You can contact us at:
shaleen.garg@research.iiit.ac.in

kkishore@iiit.ac.in

suresh.purini@iiit.ac.in


