(e~ cee?

(S0 RN~

Declarative Network Path Queries

Srinivas Narayana
May 13, 2016

Advisor: Prof. Jennifer Rexford

Management = Measure + Control

Network Controller

Measure Control
Software-Defined
Networking (SDN)

S —
\e/

Enabling Easier Measurement Matters

* Networks are asked to do a lot!
* Partition-aggregate applications
« Growth in traffic demands
* Stringent performance requirements
* Avoid expensive outages

« Difficult to know where things go wrong!
* Humans are slow in troubleshooting
 Human time is expensive

« Can we build programmatic tools to help?

Example: Where’'s the Packet Loss?

Suspect: Faulty network device(s) along the way.

A

B
I =

1000 pkts 850 pkts ®

Example: Where’'s the Packet Loss?

|ldea: “Follow” the path of packets through the network.

Packet rewrite

850 pkts ®

Switch ACL counters

1p.src==a & 1ip.dst==b -> count
1p.dst==b > fwd port 2

NetFlow
Sampling
Inaccuracy

Example: Where’'s the Packet Loss?

of collecting
(unnecessary) data
to answer a given
guestion

with multiple
datasets: traffic,
forwarding, topology

Example: Where’'s the Packet Loss?

of collecting
with multiple (unnecessary) data
datasets: traffic, to answer a given
forwarding, topology question

Pattern: Combining Traffic & Forwarding

 Traffic matrix

* Uneven load balancing

* DD0S source identification
* Port-level traffic matrix

« Congested link diagnosis
* Slice isolation

* Loop detection

* Middlebox traversal order
* Incorrect NAT rewrite

* Firewall evasion

Resource management
Policy enforcement
Problem diagnosis

Sources: Feldman et al 2001, Patel et al 2013, Savage et al 2000, Varghese and Estan 2004, Duffield and
Grossglauser2001, Kazemian et al 2012, Fayazbakhsh etal 2014, Handigol etal 2014, Zhu et al 2015, and 8
conversations with network operators at Microsoft and Amazon

Approach

Path Query System

Declarative Query Specification Query-Driven Measurement

Independent of Forwarding Accurate Answers
Independent of Other Measurements Pay Exactly For What You Query
Independent of Hardware Details Commodity (“Match-Action”) Hardware

Path Query Language Query Run-Time System
9

Approach

1. Path Query Language

Query Expressions Forwarding Statistics

{} S 3. Optlmlza@
2. Query Run-Time System

SDN controller

e Payloads
I @
Statistics

Approach

1. Path Query Language

Expressive measurement
specification

3. Optimizations

2. Query Run-Time System | Efficient measurement

Accurate data plane
measurement

11

Contributions

* Regular-expression-based language for traffic
monitoring

« With SQL-like aggregation and capture locations

* Run-Time: Deterministic finite state automata on
packets using match-action switch rules

* Collect exactly those packets that satisfy queries

« Compiler optimizations: to speed up or completely
remove expensive overlapping actions on packets

* Result: Debug networks with practical overheads

12

How to design general
measurement primitives

... that are efficiently implemented
in the network?

13

Measurement Use Cases

 Traffic matrix

* Uneven load balancing

* DD0S source identification
* Port-level traffic matrix

- Congested link diagnosis What are the

« Slice isolation
?
+ Loop detection common patterns”

 Middlebox traversal order
e Incorrect NAT rewrite
* Firewall evasion

Sources: Feldman et al 2001, Patel et al 2013, Savage et al 2000, Varghese and Estan 2004, Duffield and
Grossglauser2001, Kazemian et al 2012, Fayazbakhsh etal 2014, Handigol etal 2014, Zhu et al 2015, and 14
conversations with network operators at Microsoft and Amazon

(1) Path Query Language

 Test predicates on packets at single locations:
srcip=10.0.0.1
port=3 & dsti1p=10.0.1.10

« Combine tests with regular expression operators!
sw=1 A sw=4
srcip=A A true* A sw=3
ingress() A ~(sw=firewall)* A egress()

ingress_~_ - & —_ 4 egress

L Tl el
ingress —e\ /l-ﬁ\ /@ —= egress

ingress//, ™~ == — %\egress

(1) Path Query Language

* Aggregate results with SQL-like grouping operators

in_group(ingress(), [sw])
A true¥*

A out_group(egress(), [sw])

(ingress(), egress()) |#pkts
switch pairs

(51, S2) 300
(51, S5) 200
(52, S5) 300

* Return packets, counters, or samples (NetFlow/sFlow)

(1) Path Query Language
» Capture upstream, downstream or midstream

Upstream Midstream Downstream

e VAVAV e

—) Packet flow on query path =——————p

» Match predicates at switch ingress, egress or both
in_atom(dstip=128.1.2.3)
in_out_atom(dstip=128.1.2.3, dstip=10.1.2.3)

17

(1) Evaluation: Query Examples

Example

Query code

Description

A simple path

in_atom(switch=S1) ~ in_atom(switch=S4)

Packets going from switch S1 to S4 in the network.

Slice isolation

truex "~ (in_out_atom(slicel, slice2) |
in_out_atom(slice2, slicel))

Packets going from network slice slice 1 to
slice2, or vice versa, when crossing a switch.

Firewall
evasion

in_atom(ingress()) ~ (in_atom(~switch=FW))*
~ out_atom(egress())

Catch packets evading a firewall device FW when
moving from any network ingress to egress interface.

DDoS sources

in_group(ingress(), [switch]) ~ truex

~

out_atom(egress(), switch=vic)

Determine traffic contribution by volume from all
ingress switches reaching a DDoS victim switch vic.

Switch-level

in_group(ingress(), [switch]) ~ truex

Count packets from any ingress to any egress switch,

traffic matrix ~ out_group(egress(), [switch]) with results grouped by (ingress, egress) switch pair.
Congested link in_group(ingress(), [switch]) = truex Determine flows (switch sources — sinks) utilizing a
diagnosis ~ out_atom(switch=sc) “ in_atom(switch=dc) congested link (from switch sc to switch dc), to help

® truex " out_group(egress(), [switch]) reroute traffic around the congested link.
Port-to-port in_out_group(switch=s, true, Count traffic flowing between any two ports of switch s,
traffic matrix [inport], [outport]) grouping the results by the ingress and egress interface.
Packet loss in_atom(srcip=H1) ~ in_group(true, [switch]) ~ Localize packet loss by measuring per-path traffic flow
localization in_group(true, [switch]) ° out_atom(dstip=H2) along each 4-hop path between hosts H1 and H2.

Loop detection

port = in_group(true, [switch, inport]);

~ ~

Detect packets that visit any fixed switch and port twice

port ~ truex " port in their trajectory.
Middlebox order (true* "~ in_atom(switch=FW) ~ true*) & Packets that traverse a firewall FW, proxy P and intrusion
(true* " in_atom(switch=P) " true*) & detection device IDS, but do so in an undesirable order [51].
(true* ~ in_atom(switch=IDS) " truex) &
~(in_atom(ingress()) ** in_atom(switch=FW) *x
in_atom(switch=P) ** in_atom(switch=IDS) **
out_atom(egress()))
NAT debugging in_out_atom(switch=NAT & dstip=192.168.1.10, Catch packets entering a NAT with destination IP 192.168.1.10

dstip=10.0.1.10)

and leaving with the (modified) destination IP 10.0.1.10.

FOCMP dehnooino in ant orann(aeuwiterh=81 & armn nrad

Meaanre EOMP traffic enlittino on ewitch Q1 far a emall

Sources: Feldman et al 2001, Patel et al 2013, Savage et al 2000, Varghese and Estan 2004, Duffield and
Grossglauser 2001, Kazemian et al 2012, Fayazbakhsh etal 2014, Handigol etal 2014, Zhu et al 2015, and
conversations with network operators at Microsoft and Amazon

18

(I) Language: Related Work

Atomic Predicates Boolean tests on [Foster11] Switch input and output
located packets [Monsanto13] differentiation

Packet Trajectories = Regular [Tarjan79], Additional regex
expressions on [Handigol14] operators (&, ~)
atomic predicates

Result Aggregation Group results by SQL groupby, Group anywhere along a

location or header [Foster11] path
fields
Capture Location Get packets -- N/A

before or after
queried path

Capture Result Actions on [Monsanto13] Sampling (sFlow); path-
packets satisfying based forwarding
queries

How do we implement
path queries efficiently?

In general, switches don’'t know
prior or future packet paths.

20

Match-Action Packet Processin

(Ternary) Bit Pattern, e.g.,
srcip=A

matchl = actionl
[match?2 = actionZ2 |

Forward/Drop/Modify

dstip<B;
fwd(2)

—

Multiple but limited # stages (e.g., 16)
Limited # rules per stage (e.g., 2K)

How to observe pkt paths downstream?

* Analyze packet paths in the data plane itself
» Write path information into packets!

[{sw: S1 [{sw: S1, ... [{sw: S1, ...
port: 1 {sw: S2 {sw: S2, ...
srcmac: ... port: 3 {sw: S3
srcip: ... srcmac: ... port: 2

] . —

* Pros: accurate path information ©
« Cons: too much per-packet information ®

« Cons: can't match regular expressions on switches
22

Reducing Path Information on Packets

* Observation 1: Queries already tell us what's needed!
* Only record path state needed by queries

* Observation 2: Queries are regular expressions
* Regular expressions =» Finite automaton (DFA)
* Distinguish only paths corresponding to DFA states

23

Reducing Path Information on Packets

Record only DFA state on packets (1-2 bytes)

Use existing “tag” fields! (e.g., VLAN)

24

(1) Query Run-Time System
*(sw=1 & srcip=A) N (sw=4 & dstip=B)

sw=1 & sw=4 &
srcip=A dstip=B

|) |)

Switch 1:
state=Q0 & srcip=A
= state=Q1

Switch 4:
state=Q1 & dstip=B
= state=0Q2
AND count!

(1) Query Run-Time System

« Each packet carries its own DFA state

* Query DFA transitions distributed to switches
e ... a@s match-action rules!

» Packet satisfies query iff it reaches accepting states
« “Pay for what you query”

26

(II) You Pay For What You Query

Ratio overhead:total

e

O
N

all packets, every hop —8—

© o o
~ O O

path query —e—
firewall-evading pkts —a—

02 04 06 08

1

Ratio firewall-evading:egress

27

(II) Run-Time: Deterministic Transitions

*p1: sw=S1
*p2: dstip=10.0.0.2

accept p2
dstip 10.0.0.2
dstip 10.0.0.2
accept p1

Switch S1

28

(II) Run-Time: Deterministic Transitions

*p1: sw=S1
*p2: dstip=10.0.0.2
 [rouble: Packet should only be in one automaton state!

accept p2
dstip 10.0.0.2
dstip 10.0.0.2
accept p1

Switch S1

29

(II) Run-Time: Deterministic Transitions

*p1: sw=S1
*p2: dstip=10.0.0.2
« Solution: Split predicates into disjoint parts

ol & ~p2 ‘ acceptp1 only
dstip 10.0.0.2 ~p1&p2
Stip accept p2 only
pl & pZ

e ‘ accept p1 and p2
~pl & ~p2

Switch S1 dead

30

(II) Run-Time: Composition

DFA- Forwarding DFA-
Transitioning Accepting
l All acting on
the same data

plane packets!

=
—

Use policy composition operators and compiler

Composing software-defined networks. Monsanto et al., 2013
A fast compiler for NetKAT. Smolka et al., 2015

(II) Run-Time: Composition

DFA- Forwarding DFA-
Transitioning Accepting

dstip=A => fwd(l)

state=Q0 & switch=S1 & srcip=A = state<(Ql

dstip=B > fwd(2) |

state=Q1 & switch=54 & dstip=A => state<(Q2

>>

dstip=C => fwd(3)

state=Q0 & switch=S1 & srcip=A & dstip=B S w10
2 state<Ql, fwd(2) pentlow 1.
(for example)

Composing software-defined networks. Monsanto et al., 2013 32
A fast compiler for NetKAT. Smolka et al., 2015

(II) Run-Time: Generate Switch Rules

orward/Drop/Modify
state<Q1;
fwd(2)

matchl = actionl

Bit pattern:
state=Q0 & switch=S1 &
srcip=A & dstip=B

[match?2 = actionZ2 |

Result: unified switch rules for
forwarding and measurement

33

(II) Run-Time: Other detalls in paper...
* Handle groupby aggregation

* Testing predicates before and after forwarding

« Upstream query compilation

34

(Il) Run-Time: Related Work

Approach

Expressiveness

Sources of inaccuracy

Sources of overhead

Policy checking (§1.5.1)

Header space analysis [52,53]

Locations and headers

No actual packets
Only control plane view

Policy analysis

Out-of-band approaches (§1.5.2)
Infer using traffic matrix [32,119]

Switch-level paths

Forwarding dynamism
Downstream packet drop
Opaque multipath routing

Load collection [21]
Traffic collection [1, 14, 87]

Upstream inference [53,121]

Locations and headers

Ambiguous upstream path
Packet modification

Traffic collection [1, 14, 87]
Policy analysis

Join per-hop info [27,40,96, 122]

Locations and headers

Ambiguous packet joins

Packet digests (every hop)
Topological sort

In-band approaches (§1.5.3)

Record interfaces [83,90]

Interface-level paths

Record few interfaces

Packet space for interfaces

Path tracing [102,118]

Interface-level paths

Strong assumptions

Packet space for interfaces
Data plane rules

Our approach (§1.6)
DFA on packet state [65, 66]

Locations and headers

None

Packet space for DFA state
Data plane rules
Query compile time

35

How well does it work?

36

Evaluation of initial prototype

* Prototype on Pyretic + NetKAT + OpenVSwitch
* Publicly available: http://frenetic-lang.org/pyretic/

 Queries: traffic matrix, DDoS detection, per-hop packet
loss, firewall evasion, slice isolation, congested link

* Run all queries together on Stanford backbone
« Compile time:|> 2 hours
« Switch rules: (estimated per switch)|{1M
» Packet state: 10 bits

37

Problem: Cross-Products

(DFA- >> Forwarding) + DFA-
Transitioning Accepting

dstip=A => fwd(l)

state=Q0 & switch=S1 & srcip=A = state<(Ql

dstip=B > fwd(2) |

state=Q1 & switch=54 & dstip=A => state<(Q2

>>

dstip=C => fwd(3)

state=Q0 & switch=S1 & srcip=A & dstip=B
= state<Q1, fwd(2)

38

Problem: Cross-Products

*p1: sw=S1
*p2: dstip=10.0.0.2

acceptp1
pl & ~p2 ‘ only
acceptp2
dstip 10.0.0.2 ~p1 & p2
accept p2
only
pl & pZ
sw—S% accept p1
accept p1 and p2
~pl & ~p2

dead

Complexity From Overlaps

Ingress Rules

450

400

350

300

250

200

150

100

50

8 9 10

E)ueril pre%licat7es

40

Complexity From Overlaps

14

olverlappingI i
nonoverlapping @

— —
o \}
I I

o]
I

Compile time (s)

8 9 10

E)ueril pre%licat7es

(1I1) Optimizations: Reduce Pkt Overlap

 Construct non-overlapping policies
« Use structure of generated Pyretic policies

* Remove overlapping actions on packets
* Use pipelined packet processing

« Speed up detection of overlapping actions
« Use better data structures & caching

42

(Il) Optimizations: Summary

Separate query & forwarding
actions into separate stages
Optimize conditional policy
compilation

Integrate tagging and capture
policies

Pre-partition predicates by flow
space

Cache predicate overlap
decisions

Decompose query predicates
into multiple stages

Detect predicate overlaps with
Forwarding Decision Diagrams

_
3
s
1
s

4-4-4-4-4-4-4-.

»

(Il) Optimizations: Summary

_
3
s
1
s

Separate query & forwarding
ctions into separate stages

Optimize conditional policy
compilation

Integrate tagging and capture
policies

Pre-partition predicates by flow
space

Cache predicate overlap
decigj

Decompose query predicates
into multiple stages

»

pPS with
Forwarding Decision Diagrams

4-4-4-4-4-4-4-.

(1I1) Separate Queries from Forwarding

(DFA-Transition >> Forwarding) + DFA-Accept

(DFA-Transition + DFA-Accept) >> Forwarding

dfa-transition

—_— + —p| forwarding |=——p

dfa-accept

45

(1I1) Separate Queries from Forwarding

(DFA-Ingress-Transitioning >> Forwarding >> DFA-Egress-Transitioning)
+

DFA-Ingress-Accepting)
+

DFA-Ingress-Transitioning >> Forwarding >> DFA-Egress-Accepting)

(DFA-Ingress-Transitioning + DFA-Ingress-Accepting)
>>

Forwarding
>>

(DFA-Egress-Transitioning + DFA-Egress-Accepting)

46

(1Il) Separating Queries

* Could we run queries in a pipelined fashion?

Set of Another set
- gqueries =—>| of queries

47

(1Il) Separating Queries

*p1: sw=S1; p2: dstip=10.0.0.2; P3: dstip=10.0.0.3

48

(1Il) Separating Queries

*p1: sw=S1; p2: dstip=10.0.0.2; P3: dstip=10.0.0.3
« Problem: Limited # table stages & rules per stage

49

(1Il) Separating Queries

*p1: sw=S1; p2: dstip=10.0.0.2; P3: dstip=10.0.0.3

* |dea: Group queries by their “similarity”
*p1 in one stage, p2 and p3 in another

sw=S1 => ...

dsti1p=10.0.0.2->...
dstip=10.0.0.3->...

50

(1l1) Cost Function for Query Similarity

* Input: a set of queries
 Qutput: estimate # rules if queries in same table stage

cost ((typel, countl), (type2, count2)) :=
case typel == @:
count2 + 1
case typel == type2:
countl + count2
case typel C type2:

Predicate-similarity-
countl + count?2

aware rule space
case typel N type2 == @: estimation
(countl + 1) * (count2 + 1) - 1

case default:
(countl + 1) * (count2 + 1) - 1

Concurrent NetCore: From policies to pipelines. Schlesinger et al., 2014 51
Compiling packet programs to reconfigurable swithces. Jose et al., 2015

(1I1) Cost-Aware Query Grouping

« Minimize total # stages S =);Yj

« Subject to:
* Rule space per stage cost({g;; : g;j = 1}) < rulelimit x y;
 Total number of stages $ < stagelimit
* One query = one stage vi: y.q;=1

* Variables (binary integers)

» Stage j assigned |
ii€40,1},y;, € {0,1
-Query i assigned to] {0,1},y; €{0,1}

52

Evaluation

* Prototype on Pyretic + NetKAT + OpenVSwitch
* Publicly available: http://frenetic-lang.org/pyretic/

 Queries: traffic matrix, DDoS detection, per-hop packet
loss, firewall evasion, slice isolation, congested link

* Run all queries together on Stanford backbone
* Compile time: > 2 hours = 5 seconds
« Switch rules: (estimated) 1M =>» (actual) ~1K
« Packet state: 10 bits =» 16 bits

53

Benefit of Optimizations (Stanford)

Cumulative Optimization

None

Separate query & forwarding
actions into separate stages
Optimize conditional policy
compilation

Integrate tagging and capture
policies

Pre-partition predicates by flow
space

Cache predicate overlap
decisions

Decompose query predicates into
multiple stages

Time (s)
> 7900

> 4920
> 4080
2991
56.19
35.13

5.467

Rules
DNF

DNF
DNF
2596
1846
1846

260

State Bits
DNF

DNF
DNF
10
10
10

16

54

Scalability Trends

* Five synthetic ISP (Waxman) topologies at various
network sizes

* At each network size, run mix of queries from before

* Averaged metrics across queries & topologies

55

Evaluation: Scaling

50

Compile time (s)
S & &

—
o

20 40 60 80 100 120 140 160
Number of nodes

Miller, “Response time in man-computer conversational transactions”

ll. Rule Count

800 - | ﬁ

Switch TCAM capacity: 2K-4K rules

#Ingress Rules
S o
o o
o o

N
o
o

30 40 60 80 100 120 140 160
Number of nodes

lll. Packet State Bits

50

#State Bits

20 40 60 80 100 120 140 160
Number of nodes

58

Conclusions

* We need good abstractions to measure networks
 Abstractions must be efficiently implementable

* Query-driven measurement: a useful principle
* Improves accuracy; and
* Reduces overheads

* Challenge: finding sufficiently general families of
questions with efficient solution techniques

 Path queries can simplify network management!

59

Thanks! ©

60

61

Demo: Where's the Packet Loss?

1000 pkts 850 pkts ®

62

Demo: Where's the Packet Loss?

https://youtu.be/Vx0aN91iGPWc

63

Discussion: Questions

 Control plane versus data plane checking

« Switch performance impact (throughput, delay...)
 Table stages
* Memory on the switch
* Memory on the packet

« Comparison to existing SDN approaches

« System evaluation

64

Discussion: Extensions

» Multi-packet queries?
 Performance, security, ...
« What language abstractions? What hardware?

 Post-facto queries

* Improving compiler performance

65

Approach 1: Join Traffic & Forwarding

Ambiguity between
identical packets
downstream

Dynamic

Timestamps not
aligned!

Traffic dataset Forwarding updates

X

e.g., NetFlow, SNMP e.g., OF/routing protocol updates

Packet traceback for software-defined networks. Zhang et al., 2015 66

Approach 1: Join Traffic & Forwarding

Ambiguity between
identical packets
downstream

Packet rewriting
compounds the
ambiguity!

— 7?7 —~

[

awnw

~\

Dynamic

Timestamps not
aligned!

Traffic dataset Forwarding updates

X

e.g., NetFlow, SNMP e.g., OF/routing protocol updates

Trajectory sampling for direct traffic observation. Duffield et al., 2001 67

Approach 2: Collect at Every Hop

Using packet histories to troubleshoot networks. Handigol et al., 2014
Hash-based IP traceback. Snoeren et al., 2001
Packet-level telemetry in large data-center networks. Zhu et al., 2015

68

Approach 2: Collect at Every Hop
=

Too expensive to
collect up front!

Li=d

~\

Using packet histories to troubleshoot networks. Handigol et al., 2014
Hash-based IP traceback. Snoeren et al., 2001 69
Packet-level telemetry in large data-center networks. Zhu et al., 2015

Approach 2: Collect at Every Hop

Too expensive to
collect up front!

Lie

~\

Sampling to reduce overhead may miss the packets you care about...

70
Trajectory sampling for direct traffic observation. Duffield et al., 2001

Approach 3: Write Path into Packet

Switches have
very accurate
info on prior
packet path ©

Match-action

HW can’t match
regexes :-(

Too much info
on packet! :~(

IP record route, RFC 791. Postel, 1981 71
Tracing packet trajectory in data-center networks. Tammana et al., 2015

Reachability Testing for Accepted Pkts

??

Static checking for networks, Kazemian et al. NSDI ‘12

72

Reachability Testing for Accepted Pkts

istate=accepted(q)

“Effective” policy after
downstream compilation of query g

Static checking for networks, Kazemian et al. NSDI ‘12 73

Complexity from Overlaps

DFA states

100

Q0 -

c>|verlappingI o
nonoverlapping @

buer; pre%licafes

| |
8 9 10

74

