Fixing Latent Unsound
Abstract Operators in the eBPF
Verifier of the Linux Kernel

Santosh Nagarakatte @ SAS 2024,
Rutgers University

Joint work with Harishankar Vishwanathan, Matan Shachnai, and Srinivas Narayana

'6 [Q_]TGERS RAPL - Rutgers Architecture and Programming Languages Lab

How to Extend the Functionality of the Linux Kernel?

Application Developer:

. . kernel
| want this new feature
to observe my app

L

1year later... But i need this in
my Linux distro

i'm done. The upstream

kernel now supports this.

RUTGERS

Hey kernel developer! Please add
this new feature to the Linux

OK! Just give me a year to convince
the entire community that this is
good for everyone.

5 years later...

OK but my requirements

Good news. Our Linux
have changed since...

distribution now ships a
kernel with your required
feature

*(cartoon by Vadim
Shchekoldin,
Isovalent)

RAPL - Rutgers Architecture and Programming Languages Lab

The Extended Berkeley Packet Filter (eBPF)

Use any
language of
[Process J Add user-code your choice
into the kernel at
i various points
| Syscall l)

X @ > NeBPF] B o ooram
> C v i a | g
E E [Scheduler]
—

—>i clang -target bpf

‘ &JTGERS RAPL - Rutgers Architecture and Programming Languages Lab

Industry is Excited by the eBPF Ecosystem

HOW NetﬂlX uses CBPF ﬂOW lOgS Using eBPF to build Kubernetes Network
at scale for network insight Policy Logging

Let's look at a concrete application of how eBPF is helping us solve a real customer

. Netflix Technology Blon [Eoio, ¥ pain point. Security-conscious customers use Kubernetes network policies to

Jun7,2021- 4 min reac

By Alok Tiagi, Hariha
Lakshminarayan

Netflix has developed
that uses eBPF tracep:
less than 1% of CPU a
sidecar provides flow

RUTGERS

Making eBPF WOI"k on Winc declare how pods can communicate with one another. However, there is no Facebook' Google’ Isovalent'

scalable way to troubleshoot and audit the behavior of these policies, which r

it a non-starter for enterprise customers. With the introduction of eBPF to GK M iC ro Soft f a n d N etfl iX a n n O u n C e
can now support real-time policy enforcement as well as correlate policy acti

(allow/deny) to pod, namespace, and policy names at line rate with minimal |e B P F Fo u n d a tl o n

on the node’s CPU and memory resources.

May 10, 2021 « 3 min read

< Back

action: allow action: deny
! 1

Principal Software Engineer Lead, Microsoft Logging Config

Dave Thall
D Kubernetes Node
Partner Software Engineer, Microsoft User
@ [Log collector } [app: frontend] [app: backel

cilium °
Poorna Gaddehosur L .
siesn . i oundation

Founding Members

HeBPF |
eBPF is a well-known but revolutionary technology—provid Kernel
ALENT"
extensibility, and agility. eBPF has been applied to use case: @ FACEBOOK GO gle G ISOVALENT
protection and observability. Over time, a significant ecosystem or wois, proaucts, ana =. Microsoft NETFLlX

experience has been built up around eBPF. Although support for eBPF was first
implemented in the Linux kernel, there has been increasing interest in allowing eBPF to
be used on other operating systems and also to extend user-mode services and
daemons in addition to just the kernel.

RAPL - Rutgers Architecture and Programming Languages Lab

eBPF Verifier Guarantees Safety with Abstract Interpretation

* Running arbitrary user code in the kernel. Security?
 Kernel’s solution: statically prove safety of the program
e Some props

s \\Vorld’s most widely used Abstract Interpreter!

* No illegal operations — = -
bpf() il sendmsg() grecvmsg()

Program
aYea

« Safe kernel memory acce

ycaII | Syscall I
> A eBPF

Abstraction Interpretation in a production system T

aprs
C eBPF 86_64
o o— Program X
eBPF
— Program

|&eBPF JIT Compiler |

Ker

[Network Device]

“]{UTGERS RAPL - Rutgers Architecture and Programming Languages Lab

The eBPF Verifier’s Goals: Be Sound, Precise, and Fast

&

« ~ Soundness : Unsafe programs should be rejected
ﬁ Precision : Safe programs shouldn't be rejected

 Speed: Minimal load times + Prompt feedback on rejection

Writing sound and precise static analysis is hard

Process

sendmsg() ?recvmsg() !
Can we formally verify soundness of the static analysis in the
eBPF verifier?

Kernel State | unsafe

Static Analyses in the eBPF Verifier and Our Work

4 XeBPF Verifier)
N
bitwise range
[tracking } [tracking }
_/
- _/

* Tnums [CGO '22]: Reasoning about the soundness of bitwise tracking -
Manually encoded correctness specification and semi-manual verification

 Agni [CAV '23]: Automated reasoning about the soundness and precision of the
range analysis + bitwise tracking + their combination

 Agni++[SAS’24]: [This Paper] Fixing the latent unsoundness in the abstract

oEperato rs _ _
RS RAPL - Rutgers Architecture and Programming Languages Lab

LinuX
Kernel

Develop Automated Verification
Tools for use in the Linux Kernel’s
Continuous Integration Testing
Infrastructure

W WTGERS RAPL - Rutgers Architecture and Programming Languages Lab

Agni Verifier’s Overview - Part of Linux Kernel’s CI

« ~5000 LOC
e . Only model
subset of C
Verifier's (Automated (W (Synthesize
C source » CtoSMT » Verification > eBPF
code . Generation J L J L Programs
e lc it LNIINA?
Verifier Custom trans- . il
in LLVM IR formation LLVMToSMT SMT file
0a55eS POC eBPF
program
« Inline function calls « Bitvector theory
 Eliminate dead code « Leverage MemorySSA
« Lower memcpys analysis

[{JTGERS RAPL - Rutgers Architecture and Programming Languages Lab

When is an Abstract Operator Sound?

) mem,; (v, Q)
T interval\Y, A
e:{(\u'v“ - - ~ N ~
s // 4
)) P Q abstract

I I input states
concrete x y l l

inputs l l e ~

abstract output
state

concrete abstract operator
f operator P —> R ~

concrete \) /|

output z -

§~~
i .
e e e e ===

meminterval(z ’ R)

&]TGERS RAPL - Rutgers Architecture and Programming Languages Lab

10

Soundness Specification in First Order Logic

\V/P, Q S Ainterval :
Va,y € Lgs :
meminterval(xa P) A meminterval(yv Q) A

2= flz,y) N
R — g(P~ Q) — meminterval('z; R)

RAPL - Rutgers Architecture and Programming Languages Lab

gl

Value Tracking Abstract Domains in the Linux Kernel

/At } bitwise domain \

Au64 unsigned 64 2
As64 signed 64

>)
AuBQ unsigned 32 interval domains
A332 signed 32)

\ Domain of all abstract domains: A/

A

l{JTGERS RAPL - Rutgers Architecture and Programming Languages Lab

12

Soundness Specification with Multiple Domains

VP, () € A

Va,y € Zeg :

mema(x, P) Amema(y,Q) A
<= f(il?, y) A

R=g(P,Q) = memyu(z, R)

E IQ]TGERS RAPL - Rutgers Architecture and Programming Languages Lab

13

Challenges of Verifying Real World Code

® Performed verification on all kernel Kernel Version Sound?
versions starting from v4.14 va.14 X
‘® Are all versions truly unsound? iT) | V5.5 X

What is the cause of verification failures?

v5.12

v5.13

v5.14

v5.15

X X X| X| X

[QJTGERS RAPL - Rutgers Architecture and Programming Languages Lab

14

\\""/%

Y

Implicit Refinement in the Kernel

abstract abstractALUOp(
concreteOP op, abstract P, abstract Q)
{

abstract R;
switch (op) {
case BPF_ADD:

R = abstractOpADD(P, Q);
case BPF_SUB:

R = abstractOpSUB(P, Q);

case BPF_MUL:
R = abstractOpMUL(P, Q);

. Shared ol -- sync(R);
ireﬁnernent ﬁ--"‘ return O;
| operator]

[Q]TGERS RAPL - Rutgers Architecture and Programming Languages Lab

15

Shared Refinement Operator Preconditions Abstract States

Re S ~a o abstract
/ , S ar T a @2 input states
concrete x; x | I
inputs

All inputs abstract values are preconditioned by a

shared refinement operator

concrete shared
output xo refinement sro

operator

\ v

AN ;ao abstract output
N o _ - state

5z | WTGERS RAPL - Rutgers Architecture and Programming Languages Lab 16

A Soundness Specification in the presence of SRO

“ VP, Q) € A :
VP A)
Va,y € Lea :
memy (z, P) A memy(y, Q) A Vo, Y € Les
CATOR | Ly - A\ Yy Y, TNETN A (Q?? R P) /\ mem A(g« RQ) /\
© — f(iE: y) A

z = f(z,y) A

R = g(P,. Q) —> memy(z, R) R = g(Rp, RQ) —> memy(z, R)

NN/

[Q_]TGERS RAPL - Rutgers Architecture and Programming Languages Lab

17

Success in Proving the Soundness of Some

® Proved that all abstract operators in
kernels starting from v5.13 are sound

® What can we do about unsound

versions? .- - ,<

We generate actual eBPF programs
using differential program synthesis!
[see our CAV 2023 paper]

Kernel Version

v4.14

vb5.5

vb.7

vb5.12

v5.13

v5.14

vb5.15

&]TGERS RAPL - Rutgers Architecture and Programming Languages Lab

Kernels

Sound?

8 8 X X| X| X| X

(<RI <

18

When Verification Tools are Continuously Used

author Alexei Starovoitov <ast@kernel.org> 2023-11-02 08:59:05 -0700
committer Alexei Starovoitov <ast@kernel.org> 2023-11-09 18:58:40 -0800
commit cd9c127069c040d6b022f1ff32fed4b52b9a4017 (patch)

tree 61c346febad979fc120c6802a38104F14f948551

parent bf4a64b9323f181df8aba32d66cb37b9fa5df959 (diff)

parent 4621202adc5bc0d1006af37fe8b9acal31387d3c (diff)

download bpf-next-cd9c127069c0.tar.gz

Merge branch 'bpf-register-bounds-logic-and-testing-improvements'

Andrii Nakryiko says:

BPF register bounds logic and testing improvements

This patch set adds a big set of manual and auto-generated test cases
validating BPF verifier's register bounds tracking and deduction logic. See
details in_the 12 patch

We start
verifier
needed a |
covered.
was incomp
implementation of register bounds logic that tests in this patch set
implement. So we need BPF verifier logic improvements to make all the tests
pass. This is what we do in patches #3 through #9.

The end goal of this work, though, is to extend BPF verifier range state
tracking such as to allow to derive new range bounds when comparing non-const
registers. There is some more investigative work required to investigate and
fix existing potential issues with range tracking as part of ALU/ALUG64
operations, so <range> x <range> part of v5 patch set ([0]) is dropped until
these issues are sorted out.

For now, we include preparatory refactorings and clean ups, that set up BPF
verifier code base to extend the logic to <range> vs <range> logic 1in
subsequent patch set. Patches #10-#16 perform preliminary refactorings without
functionally changing anything. But they do clean up check_cond_jmp_op() logic
and generalize a bunch of other pieces 1in 1dis_branch_taken() logic.

[0] https://patchwork.kernel.org/project/netdevbpf/list/?series=797178&state=x*

V5->v6:
- dropped <range> vs <range> patches (original patches #18 through #23) to

RUTGERS

Kernel Version

Solving Time

v4.1l4

2.5h

vH5.5

2.5N

v5.9

4h

v5.13

10h

v6.4

Can we significantly reduce the solving time?

several weeks

v6.5

timeout

v6.6

timeout

v6.7

timeout

v6.8

timeout

RAPL - Rutgers Architecture and Programming Languages Lab

19

Why is Solving Time Slow?

4 7
/ / P @ abstract
: : input states
concrete x y l l
inputs
l l g) abstract output
concrete abstract shared state
refinement
f operator] operator operator > R v\\
\
concrete opg Sro \
|
output z _ Y, |

\
N

-

RUTGERS

g g’
P d
-

Few ~700 lines of ~ ~5000 lines of SMT for
SMT for e.g. BPF_AND
e.g. BPF_AND

~3000 lines of SMT

RAPL - Rutgers Architecture and Programming Languages Lab

20

Divide and Conquer to Make Verification Feasible

Can we individually verify op, and sro ?

-

abstract
operator

Opg

-

Sro

J

8

[QJTGERS RAPL - Rutgers Architecture and Programming Languages Lab

21

Divide and Conquer to Make Verification Feasible

_———— .

/// /// R | |
K / p abstract
, .
' | input states
concrete x y l
inputs [\ intermediate
abstract
concrete abstract Et,p u;?s'tatve
f operator operator Y
concrete \ oPs
output z -
N ’—"

—
~~__ —’—
O e e e -

g RUTGERS

RAPL - Rutgers Architecture and Programming Languages Lab

’ |
/
! P’ abstract
,' input state
]
I
I
I
o N
I final abstract
! shared output state
concrete x' refinement —— R
input 1 operator A
1
\ S1ro /
\ /
\ \ /
\ /
\ /
N\ 7
\\ ///

~
~_——’

and R is a refinement of P’

22

Why Divide-and-Conquer Fails?

_———— .

/
P’ abstract
l input state

/7 -~ / -~ N b

’ ’ P Q abstract

/ / . /

I | input states :

concrete x y l "
inputs . . I
P \ intermediate | N\ _
abstract I final abstract
C . 4
c output state output state
f [sound?] —> R' v, conc sound?] — R
\)
h \\ o | b llA
concrete OPg ! ' sro Y
output 2 s N /
P \ 7/
A Y ~\ 4
S~ _ S o L’
‘---————-X sound] Seo_ -7
and R is a refinement of P’

23

RAPL - Rutgers Architecture and Programming Languages Lab

RUTGERS

Latent Unsoundness in the Abstract Operators

[g

case BPF_AND:
out.tnum = tnum_and(inl, in2);
out.s32, out.u32 = interval_and_32(inl, in2);

out.s64, out.ub4 interval_and_64(inl, in2);/

case BPF_OR:

out = sro(out);]

[QJTGERS RAPL - Rutgers Architecture and Programming Languages Lab

24

Latent Unsoundness: interval _and_64

AN

case BPF_AND:
out.tnum = tnum_and(inl, in2);
out.s32, out. u32 = 1nterval and 32(1n1, 1n2)

def interval_and_64(inl,
out.u64_min = inl.tnum_value;

1 in2):
2
3. out.u64_max = min(inl.u64_max, in2.u64_max);
4
5

if (inl.s64_min < @ || in2.s64_min < 0):

out.s64_min = INT64_MIN;
............................... 6. out.s64_max = INT64_MAX;
L
8 © out.s64_min = out.u64_min;
Unsafe Cast|ng - unS|gned to Slgned 9. .. OUtS64._maXZOUtUG4_maX

| &jTGERS RAPL - Rutgers Architecture and Programming Languages Lab

25

Avoiding Latent Unsoundness: When is such Casting Safe?

- 1. s64_min = u64_min;
Unsafe casting - unsigned to signed . 2. sB4_max = ubd_max;

[Unsigned] [Signed]

u64_min £ u64_max < 263-1 v : 0 £ s64_min £ s64_max
2%3-1 < u64_min < u64_max % s64 _min £s64 max <0

u64 _min < 2%3-1 < U64_max ;6 : s64_max < 0 £ s64_min

52 |ma] [Q_]TGERS RAPL - Rutgers Architecture and Programming Languages Lab

26

Fixing Latent Unsoundness

def interval_and_64(inl, in2): def FIXED_interval_and_64(inl, in2):
out.u64_min = inl.tnum_value; out.u64_min = inl.tnum_value;
out.uB64_max = min(inl.u64_max, in2.u64_max); out.u64_max = min(inl.u64_max, in2.u64_max);
if (inl.s64_min < @ || in2.s64_min < 0): if ((s64) out.u64_min <= (s64) out.u64_max):
out.s64_min = INT64_MIN; out.s6ff min = INT64_MIN;
ou-t.s mavy — TNTEA MAY - ou TAIT A A4 AAAN/
else: Sound?] else: Sound?]
out.s out .
out.s64_max = out.u64_max; " out.s64_max = out.u64_max; ‘
Unsafe casting Safe casting

52 |ma] &]TGERS RAPL - Rutgers Architecture and Programming Languages Lab

Divide-and-Conquer Makes Verification Super Fast!

Kernel Version

v4.
vb.
v5.
vb.
v5.
V6.
V6.
V6.
V6.
V6.
v6

RUTG

14

0 I | o o bW

ERS

Old Strategy New Strategy

Runtime
2.5h
2.5h

4h

10h

36h

36h

Runtime
<5 min
<5 min
<5 min
<5 min
<15 min

<15 min

several weeks <15 min

timeout
timeout
timeout

timeout

<15 min
<15 min
<15 min

<30 min

BPF Instruction
bpf_and
bpf_and_32

bpf_or
bpf_or_32

bpf_xor
bpf_xor_32

Sound before
patch?

X
X

X

RAPL - Rutgers Architecture and Programming Languages Lab

Sound after
patch?

SIS LK

28

Divide-and-Conquer Makes Verification Super Fast!

LINUX
PLUMBERS

I

\

1

\

1

\

v6.8

CONFERENCE

Vienna, Austria
September 18-20, 2024

nna timezone

Agni: Fast Formal Verification of the Verifier's Range Analysis

Sep 19, 2024, 12:00 PM

® 30m
Q "Hall N1" (Austria Center)

Speaker

2 Paul Chaignon (sovalent)

Description

Sound after
patch?

X ES s eBPF Track

SIS L

First presented to the community at Linux Plumbers 2023 [1], Agni is a tool designed to formally verify the correctness of the verifier's range analysis. Agni automatically converts the
verifier's source code into an SMT problem, which is then fed into the Z3 solver to check the soundness of the range analysis logic.

This talk will provide an update on Agni's recent developments. In particular, a year ago, Agni would need several hours to several weeks to verify the soundness of the range analysis for all

instructions. Thanks to a new, modular verification mode, Agni's runtime has been reduced to minutes in most cases.

This significant improvement allowed us to build a Cl where Agni is regularly run against various kernel versions (including bpf-next). Finally, we will discuss the remaining milestones
before we can consider a better integration of Agni with the BPF CI.

timeout

<30 min

RUTGERS

RAPL - Rutgers Architecture and Programming Languages Lab

29

Real World Impact: Our Fixes Part of the Linux Kernel

//;uthor Harishankar Vishwanathan <harishankar.vishwanathan@gmail.com> ‘\\

committer Daniel Borkmann <daniel@iogearbox.net> 2024-04-16 17:55:27 +0200
/ author commit 1f586614f3ffa80fdf2116b2albebcdb5969cef8 (patch)

committ| tree 7b5f4fa20fcbbdf316f4832c33d79dc8d4e8723d
Suthor| commit parent dac045fc9fab53e250f991ea8350b32cfec690d2 (diff)
. tree download bpf-next-1f586614f3ff.tar.gz
commit
commit| Parent L .
tree downloa&\Bsz Harden and/or/xor value tracking in verifier 4//
parent
downlog\fpf-next: Avoid goto in regs_refine_cond_op()
\\Epf, tnums: Provably sound, faster, and more precise algorithm for tnum_mul 4//

iklntegration of Agni into kernel CI - happening

52 |ma] &]TGERS RAPL - Rutgers Architecture and Programming Languages Lab

Conclusion

Kernel verification is hard but has real world value

First steps to integrate formal methods into kernel development

Some Linux Kernel developers are already using Agni

Our ultimate goal: Verify the whole eBPF static analyzer

52 |ma] &]TGERS RAPL - Rutgers Architecture and Programming Languages Lab

31

Open Source and Used by Linux Kernel Developers

Visit the Agni GitHub page for details: https://github.com/bpfverif/agni

O eheppF

FOUNDATION

-

&]TGERS RAPL - Rutgers Architecture and Programming Languages Lab

32

https://github.com/bpfverif/agni

