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ABSTRACT

Financial exchanges are migrating to the public cloud, but the best-
effort nature of the cloud fabric is at odds with the stringent net-
working requirements of the exchanges. We present Onyx, a system
for meeting such requirements which uses many well-studied tech-
niques in a new context as well as introduces new techniques that
enable a scalable cloud financial exchange. An overlay multicast
tree is used to disseminate data to 1000 participants with < 1ps
difference in data reception time between any two participants,
crucial for maintaining fair competition. Several techniques for
mitigating latency variance are introduced. Onyx also presents a
scheduling policy for trade orders that enhances an exchange’s
performance and gracefully services bursty traffic. Onyx achieves
~50% lower latency than the AWS multicast service [1]. Onyx out-
performs an existing system, CloudEx [2] in terms of supported
number of participants, exchange’s throughput and multicast la-
tency. Onyx’s techniques can be applied to other existing systems
(e.g., DBO) to enhance their performance.
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1 INTRODUCTION

Financial exchanges are migrating to the public cloud for reasons
such as improved scalability and reduced capital expenditure. De-
spite its benefits, the public cloud poses unique challenges. Ex-
changes have traditionally operated in on-premise or colocation
facilities, engineered for deterministic and low latency. For fair mar-
ket access, exchanges equalize cables, while employing low-jitter
switches [3], between the exchange and participant servers. This
approach ensures that (i) all participants receive market data from
the exchange simultaneously (outbound fairness) and (ii) an order
generated earlier by one participant reaches the exchange before
orders generated later by other participants (inbound fairness).

However, the public cloud lacks these enhancements. It is a best-
effort environment characterized by nondeterminism (e.g. latency
variance in Figure 1). In response, several projects have developed
techniques for cloud-based exchanges. These include using syn-
chronized clocks to compensate for nondeterminism [2], using
SmartNICs to hold data until all receivers have received it [4], and
new fairness definitions [5, 6]. These projects have demonstrated
promising results for tens of participants but exhibit significant
performance degradation as the number of participants increases.
This limitation arises because scalability was not a primary design
objective. Instead, the initial focus was on establishing a functional
proof of concept for a fair exchange on the cloud. Having made sig-
nificant progress in that regard, the next logical step is to consider
scalability. Consequently, our paper develops techniques for scale:
How do we design a network to support communication between the
exchange and ~1000 participants in the cloud while ensuring fair-
ness in the exchange?" Further, we explore the answer to the above
question from the perspective of a cloud tenant, i.e., whether the
customers of public cloud can build a scalable financial exchange
atop the cloud without requiring special help or hardware access
from the cloud provider. In practice, a scalable exchange would also
need scale-out compute techniques for the exchange server which
we place out of scope for this paper.

Our system, Onyx, tackles two major challenges to provide net-
work support for scalable exchanges. First, how do we support
outbound communication of market data (information about the
state of market) from an exchange to 1000 market participants,
while ensuring (a) low spatial variance, i.e., all participants receive
market data nearly simultaneously, (b) low latency from the ex-
change server to the participant, and (c) low temporal variance,
i.e., latency doesn’t fluctuate over time? Second, how do we sup-
port inbound communication of participant orders to the exchange

'We target 1000 as a number that is sufficiently larger than the typical number of
participants (= 100) supported by on-premises exchanges [7, 8].
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while (a) providing chances of trades to all the traders fairly and,
(b) achieving high throughput for the exchange, especially dur-
ing intense market activity when bursts of orders arrive, causing
incast-style [9] drops? Onyx integrates well-established mecha-
nisms within a new use case as well as introduces novel techniques
to design scalable exchanges.

First, to scale outbound communication from the exchange to
a large number of participants, we employ an overlay multicast
tree composed of a root exchange VM, proxy VMs as intermediate
nodes, and participant VMs as leaf nodes. We develop a simple and
effective heuristic to tune the tree’s fan-out and depth, navigating
a trade-off between increased serialization delay due to greater
fan-out and increased propagation delay because of greater depth.
Higher fan-out leads to higher serialization/transmission delay as
outgoing messages gets serialized by the NIC so earlier messages
have noticeable lower latency than the later ones. Higher depth
of the tree introduces more VMs in the path of messages which
increases the overall latency. To lower latency and counter the
cloud’s variability, we pervasively employ hedging: routing redun-
dant copies of the market data through multiple proxy and receiver
VMs and rotating parent-to-child associations at each tree level on
each multicasted packet.

Second, to provide scalable and fair inbound communication
from participants to the exchange, we propose a sequencer that
relies on recent advancement in clock synchronization [10] that is
robust to latency fluctuations and works for VMs without hardware
support. The sequencer ensures that an exchange server sees the
messages generated by participants in their generation order so
that inbound fairness is achieved regardless of the arbitrary message
delays from participants to the exchange. We also propose a sched-
uling policy, Limit Order Queue (LOQ), that helps achieve fairness
and high order matching rate of the exchange during bursty market
activity. Finally, we reuse the overlay multicast tree in the reverse
direction to relay participants messages to the exchange which
helps against incast-style packet drops by reducing the fan-in at
the exchange when supporting a large number of participants. This
leads to high throughput for the exchange server and low latency
for trade orders.

Onyx can support a maximum throughput of 175K multicast mes-
sages per second, at which point it is limited by a proxy VM’s egress
bandwidth. It also scales to 1000 receivers/VMs, achieving a median
multicast latency of < 250 ps while maintaining a latency difference
of < 1ps across these receivers. Onyx supports more participants
(1K as opposed to 0.1K) and achieves 50% lower latency compared
to AWS’ Transit Gateway-based multicast. On the inbound side,
Onyx efficiently handles large bursts of orders maintaining low
latencies. Onyx outperforms a prior system, CloudEx [2] in terms
of scalability, order matching rate and multicast latency. More im-
portantly, the techniques described in Onyx are meant to provide a
networking layer for the exchanges and are thus composable with
the existing systems [2, 6] to enhance their performance.

To contextualize Onyx’s absolute performance, it falls short of
heavily engineered on-premises financial exchanges, which achieve
latency differences of tens of nanoseconds across receivers using
low-jitter switches and equalized cables connecting colocated par-
ticipants. However, participant-to-exchange interfaces exist along
a performance-usability tradeoff curve: colocated participants lie at
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Fig. 1: Latency between a pair of VMs varies over time

one end, paying high premiums for direct exchange connectivity
and limited in number, while web market data APIs [11] lie at the
other end, offering low cost and ease of access at the expense of
performance with no fairness guarantees. Onyx offers a compelling
point on this curve: it delivers low and predictable latencies, with
< 1ps latency differences across receivers, while scaling to 1K
participants and offering many additional benefits of the public
cloud. Appendix L further discusses Onyx’s position relative to
on-premises systems. Onyx will be open-sourced.

2 BACKGROUND

Financial Exchange Setup. An exchange typically has an exchange
server and multiple market participant (MP) servers. The exchange
server runs a matching engine (ME) to process trading orders from
the MPs and multicast market data to them. Market data reveals
market state e.g., asset prices and processed orders. Orders can be
bid orders, which aim to purchase an asset at a specific price, and
ask orders, which aim to sell an asset at a specific price.

The ME maintains a limit order book (LOB) (Fig. 4), which lists
all bid and ask orders from MPs. When a bid order’s price exceeds
or matches an ask order’s price, the two orders are executed (and
matched together) using some matching algorithm. Unexecuted
orders remain in the LOB, waiting for a match. In the price-time-
priority matching algorithm [12],2 orders are arranged in price
levels, with those at the same level sorted by their arrival time at the
exchange (which is equivalent to sorting them by their generation
time if all cables connecting MPs to exchange are equal). An LOB
snapshot (Fig. 4) shows a separation between bid and ask price
levels, with the mid-price indicating an asset’s true value. Orders
closer to the mid-price have higher chances of getting matched
early. Any scheduling policy (e.g., LOQ) on orders should ensure
that the semantics of matching algorithm are not impacted i.e., the
sequence of matched orders should remain unchanged.
Challenges of Cloud Migration. While the public cloud offers many
advantages, it does not offer low-level control, e.g., allowing tenants
to control wire lengths or employing low jitter switches. The public
cloud also exhibits high latency variance [14]. The latency between
one pair of VMs can be significantly different from another pair [15].
Latency also fluctuates over time: figure 1 plots the 90p latency
between a pair of VMs in an AWS region for a tumbling window
of 1s. The figure also shows infrequent but unpredictable latency
spikes that substantially increase latency [6, 14]. Such phenomena

21t is a widespread matching algorithm, so we use it. Alternatives exist [13].
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make it challenging to achieve low and deterministic latency in the
cloud.

Given the above challenges, it is reasonable to ask whether finan-
cial exchanges should ever be migrated to the cloud - and if so, how.
This is an ongoing debate with reasonable arguments on both sides.
Beyond the research projects [2, 4, 6], some cloud providers are
exploring close partnerships to build private clouds for exchanges’
bespoke requirements [16, 17]. Onyx contributes to this debate by
studying what performance guarantees can be achieved if a cloud
tenant designs the exchange architecture on the public cloud with
publicly available cloud APIs. With Onyx’s DIY approach, a tenant
does not need to wait for a cloud provider to build private clusters.

Is cloud migration still relevant? Debates surrounding cloud mi-
gration have also emerged, particularly regarding its effectiveness
as a panacea for cost reduction. This discourse has contributed to
the rise of cloud repatriation —the practice of moving workloads
back from the cloud to on-premises [18]. Cloud repatriation, unlike
cloud migration, is highly relevant to large SaaS companies like
Snowflake or Dropbox, which operate at a scale where they can
benefit from economies of scale by owning infrastructure and have
consistent workloads that justify such investments. However, this
narrative doesn’t extend as well to smaller entities like financial
institutions, which lack the consistent, cloud-scale workloads to
make private infrastructure cost-effective and often benefit more
from the flexibility and cost savings of not managing their own
hardware.

Prior Work and Onyx’s Motivation. CloudEx [2] is among the ear-
liest systems designed for cloud-based exchanges and capitalizes
on accurate clock synchronization. To maintain outbound fairness,
MPs wait until a set timeout before processing any order to ensure
every MP has received the market data. For inbound fairness, the
ME waits until a set timeout before processing any order to ensure
that all the earlier generated orders have been received and ordered
by their generation timestamps. The timeouts if too big, lead to low
performance and if too small, run the risk of violating fairness. As
the number of participants increase, tuning the timeouts become
difficult as avenues for latency variance and straggler behavior
increases.

DBO [6] leverages mechanisms to always guarantee fairness
among participants by decoupling fairness from latency fluctua-
tions, although it is only applicable to a subset of trades that depend
on the last received market data batch. As the number of partici-
pants increase, DBO also suffer from degraded performance because
of (i) incast on the inbound side and, (ii) large latency of market
data because of increased transmission delay. Both CloudEx and
DBO can benefit from our techniques to achieve high performance
at scale.

Onyx’s main contribution is architecting for scale while main-
taining fairness and achieving high performance. Onyx adopts the
idea of synchronized clocks from CloudEx, but scales the system
much further by using a communication tree in both the inbound
and outbound directions to achieve high performance with a large
number of participants. Onyx augments the tree with (i) a message
sequencing mechanism to ensure inbound fairness under latency
fluctuations (ii) a scheduling algorithm to achieve high performance
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under bursts of orders and, (iii) several variance mitigation tech-
niques to achieve fairness.

3 ONYX OVERVIEW

Setup and goals. Each MP VM (V M; in fig. 2) hosts an order gateway
and a trading algorithm.? Clocks of all MP VMs and the exchange
server are synchronized using Huygens algorithm [10], enabling
nanoseconds level synchronization for VMs without hardware sup-
port. A trading algorithm generates the orders and submits it to
the colocated gateway (in the same VM). A gateway attaches its
current timestamp to an order and forwards it to the exchange (via
TCP [19]), which hosts the matching engine (ME) to process orders.
MP VMs are controlled by the exchange which loads the trading
algorithms in them. Market data from the exchange (via UDP [19])
first arrives at a gateway which then forwards it to the trading
algorithm. Such a model has been proposed previously [8, 20].4
Onyx aims to provide fairness during the competition among MPs
for both the outbound (exchange to MPs) and inbound (MPs to
exchange) directions.

Definition 3.1 (Outbound Fairness). Every market data message
sent from the exchange server to the market participants (MPs)
should be seen by all the MPs simultaneously.

Definition 3.2 (Inbound Fairness). An order generated earlier than
other orders should be processed by the matching engine earlier
than the other orders, irrespective of which MP generated which
order.

Given the above definitions, what existing systems and Onyx
achieve is an approximation: (i) for outbound fairness, the difference
between multicast latency between any two participants is reduced
as much as possible and (ii) for inbound fairness, orders should be
executed in the order of their generation-timestamps (while having
synchronized clocks). Onyx further aims to achieve high perfor-
mance i.e., supporting a larger number of MPs and achieving a
higher exchange throughput than the previous works while achiev-
ing fairness. Figure 2 presents Onyx’s architecture. Onyx employs a
bidirectional overlay tree: the exchange server is the root and MPs
are the leaves, with intermediate proxy nodes. It is well known that
trees help scale communication to many receivers [21, 22]. We build
on such a tree to provide an overlay multicast service for market
data and handle order submissions from a large number of MPs,
but adapt the tree to the high-variance environment of the public
cloud.

Outbound: ME to Participants (market data multicast). On the
outbound side of an exchange, we augment the base tree with 3
techniques to lower multicast latency and minimize the latency
variance: (i) round-robin packet spraying, (ii) proxy hedging and
(iii) receiver hedging. All 3 hedge the risk of some part of the sys-
tem exhibiting performance variance so that the overall multicast
latency as well as latency difference across receivers is sufficiently
reduced.

Round-robin packet spraying helps with reducing impact of la-
tency spikes on the links as paths of messages are continuously
*trading algorithm” and “MP” are interchangeably used

A brief discussion of several deployment/trust models and their performance is
presented in Appendix G.
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changed. Proxy hedging mitigates the impact of straggler proxy
nodes as each child node receives duplicate messages from aunt
nodes. Lastly, receiver hedging hedges against the risk of a receiver
VM becoming slow to process incoming messages by assigning two
VMs to each trader/participant running the same trading algorithm.

Inbound: Participants to ME (orders submission). We develop a
sequencer that sits at the ingress of the exchange. All the incoming
orders from MPs are fed to the sequencer while the output (the
sequenced orders) is processed by the matching engine (ME) hosted
by the exchange server. The sequencer ensures the exchange sees
orders in the order of their generation timestamps.

During bursty market activity, MPs generate large number of
orders overwhelming the exchange. As we employ TCP on the
inbound, the overwhelming of the exchange leads to queue build
ups at the MP VMs as packet drops increases. A special priority
queue, Limit Order Queue (LOQ), runs at the egress of each MP
VM for servicing the queues so that latency of orders remains low
and high order matching rate at ME is achieved, while ensuring
inbound fairness. LOQ schedules the queued orders in a way that
if an order is going to be executed after some other orders by the
exchange, then it can afford to wait longer in the queue without
affecting inbound fairness while giving a chance to other, more
critical, orders to be serviced.

Further, as the number of MPs increases, the ingress of the ex-
change server becomes a bottleneck because of the large number of
MPs submitting orders. Even if the cumulative load of all the MPs is
below the ingress capacity of the exchange, the instantaneous over-
load leads to incast-style packet drops. We reuse the multicast tree
but in the reverse direction (for MP-to-exchange communication):
MPs submit their orders to their parent proxies where it travels up
the tree and reaches the ME at the root. It reduces the fan-in factor
of ME: the ME has to receive and process streams of orders from
a small number of proxies instead of all MPs. This reduces packet
losses (and resulting TCP retransmissions), and increases the ex-
change’s throughput. As queues may form in the tree nodes, LOQ is
used in these nodes as well. TCP connections are terminated at each
proxy, allowing orders’ reordering by LOQ. For audience’s ease, all
the system’s assumptions, mentioned appropriately in respective
sections, are also summarized in Appendix O.
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4 MARKET DATA MULTICAST

Due to the lack of switch support, the multicast in the cloud is
typically implemented by using multiple direct unicasts. Since the
back-to-back unicasts are serialized over the sender’s egress, the
latter receivers (among a large number of receivers) will receive the
message much later than the others due to the cumulative serializa-
tion delay at the sender. To reduce this effect, we use an overlay tree,
helping us to scale number of receivers. As illustrated in Figure 2,
the sender sits at the root of the tree and only sends its messages to
a limited number of proxies. Each proxy then relays the message
down the tree to the lower-layer proxies, and recursively down to
receiver VMs. Since each node’s fanout is limited, the serialization
delay is constrained at each layer, reducing the variance of message
delays among receivers and reducing the multicast latency, i.e., the
worst one-way delay (OWD) to any receiver as shown in Fig. 3.

Tuning the tree’s fanout (F) and depth (D) is crucial for mini-
mizing multicast latency for a given number of receivers (N) as
extra hops in the path of messages increase latency. We conduct
experiments with various <D, F> for N = 10,100, and 1000 and
observe that F ~ 10 and D = [log;, N| yield sufficiently low la-
tency, and more sophisticated strategies bring little gains beyond
that (Appendix A) because of the cloud’s inherent variability.

For ensuring outbound fairness, we follow CloudEx’s “hold-and-
release” technique [2] that achieves simultaneous delivery (i.e.,
negligible multicast latency difference across any two receivers).
Here we summarize the technique:
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Hold-and-release: Exchange attaches a deadline to all outgoing
market data messages. Each order gateway (inside receiver VMs)
holds the received messages and releases them to the MP’s trading
algorithms at the deadline (or after it, if a message does not arrive at
the gateway before the deadline). The exchange calculates the dead-
line for a message by adding a headroom to the sending time. The
headroom is decided by the maximum latency from the exchange to
every receiver. The exchange and the gateways use periodic probes
to estimate latency from the exchange to every receiver VM. Hold-
and-release ensures, for most data as shown by evaluation, that
each multicast message is processed by all MPs at the same time.
A scalable implementation is discussed in Appendix B which uses
the multicast tree in reverse to send back estimated latencies from
a large number of gateways to the exchange for aiding calculation
of deadlines.

Since Onyx targets a much larger number (~1000) of receivers
than CloudEx (~10), simply applying the “hold-and-release” is not
sufficient. As the number of receivers increases and the latency
exhibits high variance, the required holding duration by a gateway
increases which inflates the multicast latency. To improve scala-
bility, we use a tree and incorporate three optimizations into our
tree to reduce both the end-to-end latency and the latency variance,
leading to low holding durations. As the temporal latency variance
decreases, the deadline of hold-and-release become more effective.

4.1 Round-Robin Packet Spraying

In order to reduce latency spikes and alleviate the impact of bursts
of market data, we develop round-robin packet spraying (RRPS).
In RRPS, parent-child links in the tree are flexible, i.e., proxies
change their children after each multicast message. Specifically, for
a given proxy, on every new multicast message, the set of children
is circularly shifted by 1. For example, the first proxy in a layer will
have the first F proxies of the next layer as its children for message
0, the next F proxies as children for message 1, etc. This ensures that
each proxy has a parent for each message, while the set of children
for a parent proxy continuously changes. With RRPS, a single leaf
node in a proxy tree has a total of Hg:_ll F4 different paths starting
from the root node. Successive messages traverse this abundance
of paths in a round-robin fashion. By contrast, without RRPS, there
is only one path from the root to each leaf node and all messages
traverse that path. The increased path diversity provides two major
benefits for latency reduction as discussed in the following.

First, if a spike occurs on any VM-to-VM link, only a subset of
messages is impacted: Since messages are round-robined across all
available paths, many messages will take alternative paths that may
avoid the affected link.

Second, RRPS uncovers and utilizes new paths that were unused
earlier. For example, consider two adjacent proxy layers: a parent
layer with P proxies and a children layer with P X F proxies where
each parent proxy has F children. Without RRPS, the number of
paths utilized by messages going from parents to children is P X F.
With RRPS, there are P X P X F paths. This allows us to distribute
bursts among many more paths, which reduces queue build-up and
latency.

RRPS works because there is an abundance of paths within an
overlay proxy tree. This is because every VM in a cloud region
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can communicate with every other VM —effectively the network
topology is a clique. This is unlike the links in physical networks’
multicast [23] where the network topology is not a clique and is
limited by physical constraints like geographic distance and cables.

In Appendix K, we present a Monte-Carlo analysis exhibiting la-
tency reduction because of RRPS when some links undergo latency
fluctuations. We assume non-IID links’ latencies as it may closely
reflect the conditions where only a subset of links may go through
spikes at a time.

4.2 Proxy Hedging

A VM’s performance in the cloud can degrade due to factors like
noisy neighbors or live VM migration, causing latency fluctuations
for all messages passing through the VM [24]. To mitigate this,
we develop proxy hedging, where each node in the tree receives
multiple copies of a message from proxies in the higher layer. A
node processes only the first copy and discards duplicates, thus
reducing the impact of any straggler proxy VMs. It decreases both
temporal and spatial latency variance, leading to more stable latency
and reducing the delivery window size (i.e., the difference between
the earliest and latest receiver’s latency).

Each proxy sends messages to the children of H of its siblings
along with sending messages to children of its own where H is the
hedging factor. For example, in Figure 2 (left), when hedging is not
enabled (i.e., H = 0), proxy P; (34 proxy in 1% layer) only receives
messages from P?. As aresult, P31 may suffer from high latency if
P? or the path from P? to P; encounters latency fluctuations. By
using hedging, P31 not only receives messages from P, but also
receives the same messages from one (if H = 1) other node, Pg LA
proxy processes the earliest copy among H + 1 copies of a message
and discards the rest, achieving significant latency reduction.

Unlike the previous technique, proxy hedging leads to redundant
work which decreases the goodput of a proxy. The goodput of a
proxy node can be defined as: ﬁ X throughput because each proxy
sends redundant messages to the children of H siblings. One way to
recover the lost throughput is to employ several parallel trees that
share the root and the leaves (assuming the leaves have enough
ingress bandwidth). The increased number of proxies also raises
concerns of dollar cost, which could potentially be a drawback here.
Appendix H includes an estimation of monetary cost. Nevertheless,
latency and latency variance minimization is the primary objective
in financial exchanges as it affects fairness while the throughput
(on the outbound side), a less scarce resource for exchanges, can be
enhanced by various orthogonal approaches.

Choosing H: Increasing H brings benefits i.e., latency and latency
variance reduction but it also reduces the multicast message rate
that can be supported because of the redundant work performed by
proxies. So it is beneficial to choose a low H that provides sufficient
performance benefits.

We empirically chose H=2. We tested H = 1 to 3 and noted
that most of the benefits are achieved by H = 2, while H = 3 did
not bring noticeable improvement. We also found empirically that
changing the set of VMs does not change the above observation.
We further find out via a Monte Carlo simulation that a small
H is sufficient for reaping most benefits of proxy hedging.
It is presented in Appendix C that corroborates: (i) latency and
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its variance reduces as H increases, and (ii) increasing H shows
diminishing returns.

4.3 Receiver Hedging

If a VM belonging to an MP becomes a straggler, that MP would
be at the losing end of many trades, as the market data it receives
may lag behind other MPs. As a remedy, we assign each MP two
receiver VMs, where both may execute the same trading program,
a deterministic state machine. Since anomalies are less likely to
affect both VMs simultaneously, performance of a trader improves
significantly at the tail.

As duplicate orders will be generated by the two VMs, they can
be de-duplicated by the exchange using a hash carried by each order
which is computed to be the same on identical orders across the two
VMs (Appendix E). Furthermore, a simple mechanism where each
VM processes the packets in order of their sequence numbers (while
requesting retransmission for lost packets from a rewinder [25], a
common practice in the exchanges) is sufficient for ensuring that
the states of two VMs never diverge under packet losses. We
explain this further in Appendix E and provide a proof showing how
packet losses can only only make the state of one VM lag behind
the other VM but will never diverge and non-identical orders will
never be issued.

While Appendix E outlines a mechanism for maintaining syn-
chronized VM states, the synchronization is offered as an optional
feature. For some trading strategies, the benefits of prompt respon-
siveness may outweigh the costs of state divergence. Therefore,
some MPs may opt out in favor of responding quickly to out-of-
order received market data.

4.4 Remarks on Multicast Packet Losses

Packet losses adversely impact fairness. They lead to different view
of the market for different MPs. On-premises’ exchange infrastruc-
ture is engineered to provide negligible packet losses and the MPs
only have to request a retransmission rarely. Onyx multicast service
needs to similarly provide low losses. Our redundancy techniques
help lower the packet losses, but fortunately even without our
techniques, the packet losses in the cloud are very low.

GCP’s Global Performance Dashboard reports 0.00262% packet-
loss in the us-east4-c region for all VM-to-VM communication over
a 7-day period, from April 25, 2025, 2:33 PM to May 2, 2025, 2:00
PM.® During this period, the peak loss rate (per minute) stayed
at < 0.0174%. We attribute such small packet losses to the fact
that cloud VMs come with assigned egress and ingress capacity
and as long as VMs stay within their capacity budget, they do not
experience substantial packet losses. We design Onyx accordingly.

We also perform an experiment to study the losses. During our
1-hour benchmark with 100 participant VMs on GCP, the overall
packet losses stayed below 0.005%, while the peak packet losses
(i.e., losses observed in any one minute duration) never exceeded
0.045%, which implies that the losses are also small at tail. Utilizing
receiver hedging further decreases the losses to negligible rates
(more details in Appendix F).

SGCP measures this by sending and receiving probe packets between VMs, not utilizing
the actual clients’ traffic.
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5 ORDERS SUBMISSION SERVICE

We aim to provide an order submission service that can achieve both
inbound fairness and high throughput. We introduce a sequencer at
the exchange server to enable fair processing of orders. We install a
novel scheduling policy, Limit Order Queue (LOQ) policy, on each
gateway and proxy, which significantly improves the matching
rate of the exchange. For simplicity, we first describe the sequencer
and LOQ in a setting where gateways are directly connected to
the exchange server (without a tree). Then, we explain how the
multicast tree is integrated to improve the performance of the order
submission service where the sequencer and LOQ are employed at
each tree node to help maintain inbound fairness while handling
bursts of orders.

5.1 Sequencer

The exchange has to provide a fair chance of trading to all the
MPs, which requires the exchange to process MPs’ orders following
their generation timestamps (attached by trusted gateways). On-
prem exchanges equalize the latency between MP servers and the
exchange server by connecting them with the cables of the same
length. Such an approach is not feasible in the public cloud where
the tenants have no access to the underlying infrastructure. We
seek an alternative approach by using synchronized clocks, widely
available nowadays.

We synchronize the clocks on both MPs and the exchange VMs
with an accuracy of 10s of nanoseconds using Huygens [10].% a
clock synchronization algorithm robust to latency variance. We
place a sequencer at the exchange server, which holds the incoming
orders and releases them according to the global FIFO order i.e.,
the sequencer ensures that an exchange sees the orders with times-
tamps in the non-decreasing order. The sequencer only releases
an order of an MP to the ME when (i) it sees higher timestamped
orders from every other MP and the (ii) the current order has the
lowest timestamp among the orders present at the sequencer. 7 For
liveness (i.e., sequencer does not block processing of some orders
for long periods), gateways periodically generate dummy orders
on behalf of inactive MPs. Given ordered delivery per MP (e.g., via
TCP), the sequencer ensures safety, i.e., inbound fairness. This is
different from the prior works (§7): (i) CloudEx violates safety even
with accurate clock synchronization because it waits for orders only
until a set timeout and, (ii) DBO holds safety, although always, for
only one class of orders that depend on last received market data.
Onyx’s safety comes at the cost of liveness as a failure of a gateway
will block the sequencer. As is common practice in distributed sys-
tems [26-29], the failure detection of gateways is conducted by a
standalone configuration manager (e.g., Zookeeper), and is beyond
the scope of this work.

5.1.1 Sequencer Mechanism. MPs generate order messages
that are sent to the exchange server via a reliable channel that
provides in-order delivery (e.g., TCP). The exchange maintains a
limit order book (LOB) and runs continuous <price, time> priority
matching algorithm [12] on all the incoming trade orders. We use
m} to represent an order message from p; (i.e., ith MP) with an
®As we deal with latencies on the order of microseconds, such a clock synchronization

accuracy is sufficient.
"Ties can be broken by any mechanism made public to MPs (e.g., MP ID).
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order generation timestamp ¢. At the exchange server, messages
are fed to the sequencer. Sequencer works in a streaming fashion,
takes the messages as input, sequences them and releases them to
the ME.

The sequencer maintains q : {mi} where g is a priority queue
with lexicographic ordering on <t, i> of messages. The sequencer
supports ENQUEUE and DEQUEUE operations. Pseudocode is pre-
sented in Appendix M.

ENQUEUE: For each new message, (i) it is added to g and, (ii) de-
queue is invoked repeatedly as long as g contains non-zero number
of messages from each p;.

DEQUEUE: One message m; is dequeued from q. mi is considered
sequenced at this point and presented to the ME.

5.2 Limit Order Queue

During periods of bursty activity in the market, incast at the ex-
change’s ingress occurs, leading to excessive TCP retransmissions
and queue build-ups at the gateways. To tackle the queuing de-
lays incurred at the gateways, we develop a scheduling scheme
—Limit Order Queue (LOQ) scheduling—to schedule the orders at
each gateway, which can effectively reduce order matching latency
and improve the order matching rate at ME during periods of bursts.
LOQ is an application-level priority queue which is serviced in a
work-conserving manner. It attempts to schedule orders in a way
to enhance ME’s performance while preserving inbound fairness.

5.21 LOQ Mechanism. LOQ running at each gateway (and
at proxy VMs as described later) takes the orders as input and
schedules them to keep the matching engine (ME) busy; ME idles if
it receives orders that cannot be matched and they just need to wait
in the limit order book. LOQ categorizes the orders into two classes:
orders with prices closer to the mid-price, referred to as critical
orders, are matched by the engine before other non-critical orders,
which remain in the limit order book (LOB) awaiting favorable
mid-price movement. LOQ leverages this domain knowledge to
identify and prioritize critical orders over non-critical orders so
that the exchange does not waste time in receiving orders that are
not going to get matched soon and only needs to be put in the
limit order book while the critical orders remain to be processed.
In the following we explain, how LOQ works and how mid-price
movement is accounted for.

LOQ scheduling, for preserving fairness, requires two parame-
ters: (i) mid-price m and, (ii) action window w. As gateways receive
all the market data, they have enough information to infer m (with
a lag proportional to the multicast latency). By design of our out-
bound communication, gateways receive each market datum at the
same time (with high probability) so they infer m almost simul-
taneously. Simultaneous inference is an assumption for LOQ to
preserve inbound fairness, and as sometimes this assumption can
be violated, we later study its impact on fairness. The action win-
dow w indicates irrationality tolerance: (i) if an asset is available for
purchase for a price m then a buyer can bid on it with a maximum
price of m + w and, (ii) if an asset has a highest bid of price m then
a seller can ask for a minimum price of m — w. w is configured by
the exchange operator.

An incoming order is categorized as critical if it has a price in
the range [m — w, m + w], otherwise it is non-critical i.e., if a bid
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has a price in the range (—co, m — w) or an ask has a price in the
range (m + w, o), then it is non-critical.

AnLOQ is a priority queue that sorts the orders lexicographically
by tuple <I,;,, ¢, t> where I, starts from 0 and is incremented
every time m changes, c is 0 if an order is critical otherwise it
is 1 and ¢ denotes the generation timestamp of an order. LOQ
maintains a global variable I, while c is calculated per order while
enqueuing it. I, at different gateways may sometimes differ because
of non-perfect simultaneous delivery and packet losses which has
an adverse impact on inbound fairness discussed later. LOQ design
is motivated by the need to preserve inbound fairness most of
the time i.e., as long as assumptions of clock synchronization and
simultaneous delivery hold.

5.2.2 Inbound fairness under LOQ. For safety, the sequencer
assumes that messages of a single MP arrive at the sequencer in
their generation order. As LOQ at a gateway reorders the messages,
this assumption is violated. However, we claim that fairness is still
achieved as we have designed the LOQ policy to do so. Here we
provide the intuition of our claim while Appendix I further expands
on it.

Assume there is a static mid-price. Instead of looking at the order
in which orders are seen by the ME, let’s look at the order in which
the orders are executed by the ME. Executable/critical orders are
those with price in [m —w, m+w] i.e., the they get executed strictly
before the other orders. LOQ ensures that if an order is selected for
execution by ME, then all the older executable orders must have
been executed already as LOQ ensures that executable orders are
sorted by their timestamps (and a sequencer consults such LOQ
instances and sequences them in order of timestamps). So, ME never
executes an executable order if it has not executed all the older
executable orders which preserves fairness. When the mid-price
moves, LOQ ensures that the orders generated after the movement
have lower priority than the prior orders (due to I;;, being the first
element of the tuple used by LOQ’s priority function), leading to
fairness.

5.2.3 Impact of multicast losses on LOQ. If a multicast
packet carrying information that could update an MP’s mid-price
view is lost, the mid-price ID of that MP will lag behind those
of other MPs. In such cases, unfairness will persist until the lost
packet is recovered (or the mid-price ID is refreshed by any future
received message). This underscores the importance of maintaining
low packet losses, an objective met by today’s public cloud infras-
tructure (§4.4). We later evaluate the impact of losses on LOQ via a
simulation.

5.3 Reusing Multicast Tree In Reverse

As the number of MPs grows, the exchange’s performance degrades
as it cannot keep up with offered load. We find that even if the
average offered load to an exchange stays constant, the growing
number of MPs leads to performance degradation as instantaneous
load may exceed the exchange’s capacity due to increased fan-in
factor.

In such scenarios, we observe a significant losses of MPs’ orders
that leads to decrease in the exchange’s throughput and increased
latency for orders. We employ a simple strategy: reuse the multicast



SIGCOMM 25, September 8-11, 2025, Coimbra, Portugal

tree in the reverse direction for relaying the orders to the exchange.
The reduced fan-in at the exchange reduces the losses while packet
queues form at the tree nodes. We run LOQ at each tree node to
service the queues, leading to a significantly higher throughput.

Furthermore, running LOQ at proxy nodes leads to better sched-
uling compared to running it at just the gateways. A proxy has
messages from several MPs in its queue and can prioritize messages
of one MP over the messages of another MP —as long as it does
not affect fairness— whereas an LOQ at a gateway only has the
opportunity of prioritizing messages of an MP over the messages
of the same MP.

Fairness when using a tree. Achieving fairness requires that an
LOQ instance at each tree node is accompanied by a sequencer
instance so that LOQ can operate on the messages of all children
nodes fairly. Without a sequencer, a delayed message of an MP may
not get assigned its proper priority by LOQ, which would eventually
result into safety (fairness) violation at the exchange server. When a
sequencer is used at every tree node, it only accounts for messages
from its children nodes and not all MPs.

Other methods for dealing with incast: Several methods
(Homa [30], Protego [31], Breakwater [32], DCTCP [33]) for incast
mitigation and overload control have been proposed in the literature.
The methods are largely orthogonal to our technique of utilizing
the tree in reverse which we can do solely because we have the
control of an application that lends us a tree of VMs. Credit-based
overload control schemes [31, 32] are composable to Onyx, enhanc-
ing Onyx’s performance by reducing packet losses/retransmissions.
However, a tree further gives us the opportunity to do better sched-
uling (LOQ) on multiple clients (MPs) data which is not possible
without a tree/intermediate nodes and forming the queues only
at the order gateways; as would be the case if we use existing
techniques.
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Fig. 5: Onyx has lower OML than DU, AWS TGW

6 EVALUATION

We focus on comparison against a prior system, CloudEx [2]. As
Onyx can be viewed as CloudEx augmented with techniques to
enhance performance under large number of participants, the com-
parison with CloudEx shows how far CloudEx can be scaled. We
also present an ablation study as Onyx.
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For most of the experiments, we use 100 MPs and a 5K multicast
messages per second (MPS) rate. For scale, some experiments utilize
1000 MPs and this is mentioned in the respective sections. In our
experiments, no two MPs share a VM. In practice, multiple MPs
could be hosted in one VM to further enhance scalability. As receiver
hedging improves performance at the cost of one extra VM per MP,
we do not include it in most experiments to better exhibit the impact
of other techniques. It is mentioned wherever it is used.

Overall multicast latency (OML) refers to the latency experi-
enced by the last receiver that receives a multicast message. The
delivery window size (DWS) is the maximum difference in the
latency of any two receivers. One DWS sample is computed for
each multicast message, so any mentioned percentiles (50p DWS)
correspond to the aggregated statistic over the messages. We use
Huygens algorithm [10] that synchronizes clocks of all the VMs
with a 90p offset of < 100 ns.

6.1 Multicast Latency Comparison

We consider the following baselines and compare their multicast
performance with Onyx.

e Direct Unicast (DU): Sender directly sends a copy of a multicast
message to each receiver. io-uring is utilized to minimize the
overhead of syscalls and we observe it has better performance than
socket based DU, so we utilize io-uring based DU for comparing
against Onyx.

e AWS Transit Gateway: AWS provides TGW-based multi-
cast [1]. It requires the sender to send message to a gateway which
then replicates and sends one copy to each receiver. It can support
at most 100 receivers [34] per multicast group.

Figure 5 shows that Onyx outperforms DU and AWS-TG. The
median latency for Onyx is 129 us which is 43% lower than the
latency of AWS TG (228 ps) and 49% lower than the latency by DU
(254 ps). At 90p, Onyx shows ~ 75% lower latency than both DU
and AWS TG. Moreover, Onyx shows predictable latency as higher
percentiles are very close to the median in contrast to the other
techniques.

6.2 Outbound Fairness Comparison

We measure the DWS of Onyx and CloudEx to compare their out-
bound fairness. A smaller DWS indicates a higher level of outbound
fairness (i.e., simultaneous delivery).

Figure 6a shows that Onyx achieves a DWS of < 1 ps at very high
percentiles (up to 92p). Without proxy hedging, the DWS becomes
larger than < 1ps at earlier percentile (87/). CloudEx achieves
fairness but at the cost of high OML. Later, we show that using
receiver hedging achieves a DWS of < 1 ps at 99.9p for Onyx.

Figure 6b shows that OML increases significantly for CloudEx
and Onyx without proxy hedging. In these systems, the deadlines
calculated by the hold-and-release are far into the future to cover
the high latency variance. This leads to high holding duration at
the receivers as shown in figure 6c, increasing OML.

6.3 Scaling Onyx Multicast

Scaling N to 1000. In contrast to the previous fair multicast so-
lutions that only work with a few 10s of receivers (e.g., [1, 4, 6]),
Onyx aims to implement a more scalable multicast service which
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can support 1000 receivers and potentially even more. Figure 7
plots Onyx’s multicast latency for 100 receivers and 1000 receivers.
Our overlay techniques for reducing latency enable Onyx to keep a
graceful latency growth as the number of receivers increase.
Fairness. When employing hold-and-release, a median DWS of
< 1ps is achieved for N = 1000. However, the highest percentile at
which DWS stays < 1us decreases as N increases. We define the
probability of fairness (P(F)) as the highest percentile where DWS
is < 1ps. We achieve P(F) = 92 for 100 receivers and P(F) = 89 for
1K receivers. We will show later that receiver hedging increases
P(F) to 99.9 at the cost of one extra VM per receiver.

Throughput. With 466B packets, we achieve a multicast message
rate of 350K MPS, without proxy hedging (and 175 MPS with proxy
heding, H=1). Onyx utilizes #80% of the egress bandwidth of a
c2d-highcpu-8 VM on GCP while maintaining negligible multicast
packet losses. The specified VM has an egress bandwidth of 16Gbps.
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Fig. 7: Onyx scales well with median OML <250us

6.4 Orders Submission Performance

Figure 8 shows the order matching rate of the exchange server.
Onyx outperforms CloudEx by an order of magnitude. 100 MPs

cumulatively generate 100K orders per second each where periodic
bursts occur (shown as shaded regions) increasing the order gener-
ation rate 20X. MPs stop generating the orders after 20s. Onyx is
able to keep up with the offered load and finishes processing the
orders right after the MPs stop. CloudEx achieves significantly low
order matching rate and builds up queues that are processed long
after the MPs stop. Onyx achieves higher order matching rate when
bursts occurs due to LOQ. The median latency of orders with Onyx
is & 97% lower compared to CloudEx.
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Fig. 8: Onyx achieves high order matching rate.

Limit Order Queue (LOQ) Performance We compare LOQ to a
FIFO queue, which we refer to as SimplePQ. SimplePQ does not
differentiate between critical and non-critical orders, but sorts any
queued orders by timestamps while LOQ sorts by criticality as well
as by timestamps. As sorting by timestamp helps the ME which
needs to sort the order similarly, we isolate the effect of LOQ’s sort-
ing by criticality by having SimplePQ sort the orders by timestamp
as well.

In this experiment, we have 10 market participants (MPs), each
submitting 10k orders per second. Two intermediate proxies, run-
ning LOQ or SimplePQ, relay orders from the MPs to the ME. Only
queue type (LOQ/SimplePQ) changes for performing a comparative
experiment. Order bursts occur, with each MP increasing their order
submission rate by 20X every 3 s. Bursts lead to queue build-ups at
the proxies, where LOQ/SimplePQ operate. As shown in Figure 9,
unlike SimplqPQ, LOQ gracefully handles bursts: it achieves higher
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order matching and lower latency during bursts and leads to low
latency overall. Order matching rate of LOQ goes below that of
SimplePQ in-between the bursts. This behavior is expected because
LOQ is able to process a burst as it occurs while SimplePQ queues
up orders and continues processing them after the burst vanishes,
increasing latencies.

The advantages of LOQ stem from the presence of non-critical

orders, which are kept in the gateways and proxies’ queues longer,
allowing the available resources (network bandwidth and ME’s
capacity) to be used for critical orders. We examine the benefits of
LOQ under different ratios of critical to non-critical orders. In this
experiment, MPs uniformly sample bid/ask prices from a predefined
range to generate orders. We vary the portion of the bid price range
that overlaps with the ask price range. These overlapping segments
result in orders that get matched at ME, while other orders remain
in the LOB. Figure 10 shows that, as the ratio of overlapping price
levels to the total number of levels decreases, the benefit of LOQ
increases. A ratio of x/y indicates that there are y total price levels
from which MPs sample prices to generate orders, but only x price
levels lead to immediate matches at ME. As y increases while x
remains constant, the number of critical orders decreases. We also
plot the metrics for the bursts durations. These are calculated from
the orders matched during the bursts. LOQ identifies critical orders
and prioritizes them for processing by the ME over non-criticals.
Consequently, LOQ demonstrates a 137% increase in ME throughput
during bursts and a 70% reduction in latency for matched orders
when y = 11. We repeat one experiment and increase MPs from
10 to 1000 with x = 1,y = 7 and observe that LOQ outperforms
SimplePQ: 90% decrease in the overall latency and 85% increase in
matching rate during bursts.
Using Proxy Tree for Orders Submission: To conduct an ablation
study of the proxy tree’s benefit in the order submission, we run
an experiment without LOQ and sequencer, and measure the num-
ber of packets received per second by the exchange server with
and without a tree. Figure 11 plots the throughput achieved with
100 MPs. 100 MPs send at the cumulative base rate of 100K pack-
ets/second, but create periodic bursts that reach 20x higher than the
base rate. By using the proxy tree, Onyx can improves the overall
throughput by ~ 22% on average and by ~ 75% during the bursty
periods.
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Sequencing Overhead: We perform an experiment with 100 MPs
(without LOQ) to study the throughput with and without our se-
quencer. We use the same load generator as above and notice an
overall 25% decrease in the throughput of the exchange when using
the sequencer. The throughput is essentially traded-off for improv-
ing inbound fairness by a sequencer. The overhead comes from the
fact that for releasing any single message of a downstream node,
the sequencer has to wait for at-least one higher timestamped mes-
sage from every other downstream node. The speed of the entire
system becomes dependent on the speed of the slowest messages, a
pattern common in many fairness preserving systems [6]. Appen-
dix J further discusses the overhead and presents potential ways to
alleviate it e.g., by using several instances of a sequencer so that
a path to at least one instance has high chances of being free of
latency fluctuations.

Impact of Packet Losses On LOQ: When an order gateway has
a stale mid-price due to packet losses, two cases may happen: (i)
corresponding market participant (MP) does not generate orders
until losses are recovered or (ii) orders are generated based on the
stale information. In the first case, there is no impact of losses on
LOQ or on inbound fairness. However, a type of unfairness exists
in the systems as some MPs are not able to generate orders. This
unfairness is irrespective of LOQ and exists in Onyx as well as all
prior systems including on-premises exchanges.

In the second case, the generated orders by the MPs who have
stale mid-price (and hence, a lower mid-price ID in the correspond-
ing order gateway) will get prioritized over the orders of other MPs
who have the latest mid-price (because the LOQ prioritization tuple
has the mid-price ID as the first element). We study this impact
quantitatively via a simulator.

A simulator allows us to keep all the conditions (loss rate and
message generation timestamps) identical while performing com-
parative experiments i.e., comparing the behavior when employing
LOQ vs. a FIFO. With losses, the output sequence of matched orders
may change while employing LOQ as compared to employing a
FIFO. We measure how much change may appear. Output sequence
when using FIFO is called fifo-seq, while the one with LOQ is called
log-seq. We define lateness: an order appearing at index i in fifo-seq
and at index j in the log-seq has the lateness of |i — j|. We measure
lateness for each order via our simulator. Lateness of 0 is ideal.
Higher lateness represents lower fairness.

The simulation utilizes 100 participants (MPs), each submitting
5K orders per second. The exchange adds mid-price ID to the outgo-
ing messages so an MP with lost packets and hence, stale mid-price
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Fig. 11: A tree enhances an exchange’s throughput.
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ID will recover the ID once it receives any future message. Figure 13
shows that lateness is proportional to the packet loss rates. For the
usually observed losses (< 0.005%), the median lateness is 0, while
90p stays < 3. More details are in Appendix N showing: (i) higher
loss rates lead to higher lateness and, (ii) fewer the clients experi-
encing the losses, lower the lateness. The results convey that small
losses (which are typical of the public cloud) do not introduce un-
fairness to a vast majority of the orders. The impact on the eventual
trading outcomes is specific to the trading strategies employed by
the MPs, we only exhibit here that lateness, although small, may
exist under packet losses.

Remarks on inbound fairness: By design, our sequencer (w/o
LOQ) ensures inbound fairness. One of the assumptions for LOQ to
preserve fairness is that all MPs/gateways infer the mid-price move-
ment simultaneously which is provided with a high probability. Al-
though losses impact inbound fairness, non-simultaneous delivery
has a bigger impact. The probability of achieving inbound fairness
while employing LOQ can only be as high as that of outbound
fairness (simultaneous delivery) which is optimized to 99.9%(§6.5.3).
With receiver hedging, ~ 0.1% packets lead to non-simultaneous
delivery (§6.5.3) i.e, these packets are delayed enough that hold-and-
release protocol does not meet its deadlines. However, figure 13
shows that even assuming 0.1% losses (i.e., considering all delayed
packets as lost), the impact is small.

6.5 Outbound Communication Techniques

6.5.1 Proxy Hedging.
Reduced overall multicast latency. Figure 14a compares the OML
CDFs under different hedging factors (H = 0, 1, 2). H = 0 represents
the case without proxy hedging. H = 1 yields latency reduction
as the CDF curve is shifted to the left. The latency reduction is
marginal as H increases from 1 to 2, as increasing H has diminishing
returns.

Reduced temporal and spatial latency variance. We calculate the
median OML over a tumbling window of 5K messages to study the
temporal latency variance. Figure 14b shows Onyx exhibits lower
temporal latency variance compared with the non-hedging scheme
(H = 0). Enhancing temporal predictability, even for short time-
steps, is beneficial for hold-and-release to calculate lower deadlines.

Figure 14c compares the DWS for Onyx with different hedging
factors. Hedging reduces the spatial latency variance (i.e., it shrinks
the DWS of multicast messages). The 99th percentile delivery win-
dow size is ~350 pus with H = 0 but ~150 ps with H = 1, and slightly
better with H = 2.
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Appendix H demonstrates (i) temporal latency experienced by
a receiver decreases because of proxy hedging and, (ii) the dollar
cost of proxy hedging is negligible compared to the costs borne by
on-premises exchanges.

6.5.2 Round Robin Packet Spraying. We evaluate the impact
of RRPS on OML. We utilize a multicast message rate of 10K MPS,
125 receivers and a burst of 1s occur every 2 s, increasing the MPS
15%. Table 1 shows multicast latency decreases when RRPS is used.
On GCP, we see an OML reduction of ~ 10%, however, on AWS
the reduction can approach ~ 70%. With low message rates, the
reduction is not significant: < 5% with message rates < 100K MPS.
This happens because the inter-packet duration is large enough
that any transient latency spike is not able to impact consecutive
messages so RRPS does not help much by re-routing messages.

RRPS show improvements in OML when message bursts are
introduced as it can distribute the bursts among several network
paths. Without bursts, the OML reduction still happens but is less
than 10% on both AWS and GCP.

6.5.3 Receiver Hedging. Receiver hedging improves OML
(Table 2) and achieves outbound fairness/simultaneous delivery
(i.e., DWS < 1ps at 99.9p,). This technique improves performance
at the cost of one extra VM per MP. Doubling the amount of receiver
VMs may also increase the number of proxies in the tree as < D, F >
is appropriately tuned.

Setup On AWS On GCP
50p | 90p | 50p | 90p
Imlz;;’ve' ‘ 15.12 | 69.35 ‘ 9.83 | 9.18

Tbl. 1: %-age improvement in OML due to RRPS

N RH OML (us)

50p  99p
100 No 139 248

200 No 141 243
100 Yes 99 146

Thl. 2: Latency impact due to Receiver Hedging (GCP)

6.6 Onyx and DBO

DBO is a recent cloud exchange that achieves fairness regardless
of latency fluctuations and without clock synchronization. It does
so by proposing a new fairness metric that prioritizes orders based
on the response time of traders (i.e., the time to make a trade in
response to a piece of market data), rather than the time at which
orders were submitted. Onyx can be viewed as a network layer that
is complementary to DBO’s new semantics at the application layer.
In particular, Onyx can help DBO scale out to a large number of
participants in the following three ways. One, Onyx’s low-latency
and scalable multicast tree (and hedging) can help with disseminat-
ing market data in DBO. Two, Onyx’s use of a tree in reverse for
inbound order submission can also help DBO deal with incast-type
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conditions during order submissions from a large number of partic-
ipants. Three, because DBO does not enforce simultaneous delivery
of data, DBO has an extra constraint that no MPs should directly
or indirectly talk to each other so that an MP with earlier received
data may not leak it to any other MP as it can violate DBO’s fairness
guarantees. By leveraging Onyx’s simultaneous multicast in DBO,
this constraint can be lifted. Appendix P details its order submission
service’s performance which is lower than Onyx and CloudEx.

7 RELATED WORK

We have already discussed the recent exchanges (CloudEx [2],
DBO [6]) and overload control schemes [30-32].

Mullticast: Prior works on application level multicast [21, 22, 35—
37] mainly focus on finding optimal paths in a network (or overlay
mesh) using cost models for network links that capture heteroge-
neous link bandwidth or latency characteristics. Onyx focuses on
achieving a small latency difference across receivers while balanc-
ing transmission and propagation delays via a tree. Switch-based
multicast [38, 39] is not available to cloud tenants due to scalability
issues [40]. Some clouds provide special offerings for multicast [1]
that is implemented using multiple unicasts and lack performance.
Collective Communication: Collective communication [41-43]
uses overlay trees for broadcast and all-reduce [44], but typically
supports fewer than 100 receivers. For example, Hoplite [41] op-
timizes bandwidth for 10s of nodes using a tree. Onyx focuses
on minimizing latency and variance, handling bursts, and achiev-
ing fairness at scale while not having an aggregation mechanism
for trade orders that could enhance performance via an all-reduce
mechanism.

8 LIMITATIONS & FUTURE WORK

Coarse Fairness Guarantees: If all MPs receive a message within
1 ps of each other, we consider it fairly disseminated. However, in
on-premises exchanges, fairness guarantees are more precise, down
to the level of nanoseconds. Achieving such fairness with Onyx
requires synchronizing the clocks of all receiver VMs with accuracy
better than nanoseconds —a level of precision that current public
cloud technology does not yet provide.

High Order Latencies: AsLOQ enables graceful handling of bursts
of orders by keeping the latencies lower than the alternative of using
FIFO queues at proxies, it still has much room for improvement. The

OML (us) over a tumbling window of 1s

Fig.
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latencies of trade orders, due to bursts, can reach 10s of milliseconds
which is significantly higher than the latencies on the outbound
side (= 100 ps). To keep the order latencies bounded, there could
be admission control applied at the order gateways.

LOQ: All orders generated before a mid-price movement gets pro-
cessed before all the orders generated after the mid-price movement
as LOQ has the mid-price ID as the first element in the prioritization
tuple. This is designed to retain inbound fairness, but it trades-off
some potential performance gains. The direction of mid-price move-
ment (left or right) can be taken into account to decide whether
some older orders (with lower mid-price ID) can be de-prioritized
over some newer orders (with high mid-price ID). We have not
explored it and leave it as a future work.

Opportunity to utilize Cloud FPGAs: In on-premises exchanges,
some MPs implement their trading algorithms on FPGA to achieve
low-latency processing. An interesting question is whether FPGA
instances in the cloud [45] can serve the same purpose. In AWS,
FPGAs do not have direct network access; instead, an associated
VM receives the packets and then forwards them to the FPGA. This
raises uncertainty about whether FPGA-based low-latency process-
ing of orders is feasible in such an environment. Similarly, whether
the Onyx proxies can be offloaded to FPGAs is an interesting direc-
tion for enhancing performance.

9 CONCLUSION

This paper introduces Onyx, which provides networking support
for scalable cloud financial exchanges. Onyx systematically opti-
mizes both outbound (market data delivery) and inbound (order
submission) workflows of an exchange system. Our evaluation
shows that Onyx outperforms a prior system CloudEx, in terms
of fairness, throughput, and latency as well as outperforms AWS
TGW-based multicast. This work does not raise any ethical issues.
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A DECIDING D AND F FOR MULTICAST TREE

To understand how the end-to-end latency varies as D and F grow,
we conduct a series of (almost 40) experiments with various num-
bers of receivers (N = 10, 100, 1000). Table 3 displays the latencies
for different configurations of <D, F> for a given number (N) of
receivers. We see that the latency yields the minimum at differ-
ent depths D for different values of N. At a small scale (N = 10),
increasing D does not bring latency benefits. As the scale grows
from N = 10 to N = 100, 1000, the benefits of increasing D while
reducing F grow because the reduced message replication delay and
transmission delay outweigh the added overhead of new hops in the
path of messages. However, as D goes beyond a certain threshold
(e.g., D grows larger than 3 when N = 1000), the latency no longer
decreases but rises up. Based on our experiments, we find fixing
F = 10 usually leads to a desirable D to generate a multicast tree
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with low latency. As a result, we establish our heuristic rule to con-
struct the multicast tree as follows: Given N receivers, we fix F = 10
and then derive D = [log19N] (round to the nearest integer). We
also tested a more sophisticated alternative mechanism described
in [46], and observe no significant performance boost compared to
our heuristic.

In our testing, the variance in cloud-host VM performance [24]
imposes the great challenge to differentiate the “optimal” D and
F from the values generated by the aforementioned heuristic. We
observe through repeated experimentation that minor changes in
D and F do not show a significant performance difference with
high statistical confidence. So it is sufficient to select D and F in
the neighborhood of the optimal value, which is why our heuristic
is effective. We further find that a unit increment in D comes at the
added latency of 30 + 10ps and a unit increment in F adds 2.7 +0.9us
per layer® A tree constructed using linear models based on these
unit increments performs comparably to the tree constructed using
our heuristic of maintaining F close to 10 and D = [log19N]. Here
we use two examples to illustrate how our approach decides the tree
structure: For N = 100, F = 10, D would be 2. For N = 200, F = 10,
D would still be 2 and F would need to be adjusted accordingly to
support all 200 receivers. So F would come around to be be 14 as
142 ~ 200.

B SCALABLE SIMULTANEOUS DELIVERY

Financial trading needs to ensure the fairness of the competition.
Fairness in data delivery [2, 4] means that the market data from the
exchange server should be delivered to every MP at the same time
so that an MP may not gain an advantage over the others during
the competition. While there are also some recent works trying to
alter the definition of fairness [6, 47], these variant definitions still
need more research before they can be confidently adopted by the
exchanges. Therefore, Onyx uses the original definition of fairness
employed by on-premise financial exchanges: the fair delivery of
data means simultaneous delivery of market data to all the multicast
receivers.

Realizing perfect simultaneous data delivery to multiple receivers
is theoretically unattainable [48]. Nevertheless, Onyx tries to em-
pirically minimize the spatial (i.e., across receivers) variance of the
latency of messages. Our hedging design (§4.2) has created favor-
able conditions to minimize the spatial variance. By using hedging,
Onyx can achieve consistently low variance for each receiver over
time, and the spatial latency variance across receivers is kept low.
Beyond this, we employ a hold-and-release mechanism (by using
synchronized clocks) to eliminate the residual spatial variance at
the end hosts and enforce simultaneous delivery across receivers.
The hold-and-release mechanism was introduced by CloudEx [2]
but it does not scale well and leads to high end-to-end latency (§6.2).
We describe a modified hold-and-release mechanism that helps us
scale further, while maintaining a low end-to-end multicast latency.
Hold & Release mechanism. To implement the hold-and-release
mechanism, Onyx leverages the accurate clock synchronization
algorithm, Huygens [10], to synchronize the clocks among the
sender and receivers. Receivers keep track of the one-way delay

8Using our high-performance implementation on a c¢5.2xlarge VM in AWS. Message
size is 460B.
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(a) N=10 (b) N=100 (c) N=1000
D F OML D F OML D F OML
1 10 7766 1 100 351 2 32 282
2 4 88 2 10 [7139 3 10 [1217
3 5 141 4 6 226

Tbl. 3: Median values of overall multicast latency (OML), in ps, for different depth (D), fanout (F), and receivers (N).

(OWD) of the messages received from the sender. Each receiver
takes the 95th percentile of its OWD records at regular intervals
and sends the results back to the sender using an all-reduce mecha-
nism explained later. The sender calculates the maximum of these
OWDs called Global OWD for messages using the gathered statis-
tics: OWDg = max;(OWDj) where OWD; is the OWD estimate
reported by the i-th multicast receiver.

Once an OWDg has been calculated by the multicast sender, it
attaches deadlines to all outgoing messages. A deadline is calculated
by adding OWDg to the current timestamp when sending a mes-
sage. Upon receiving a message, a receiver does not process it until
the current time is equal to (or exceeds) the message’s deadline.
This mechanism leads to almost simultaneous delivery, modulo
clock sync error. In §G, we discussed possible security mechanisms
to ensure that a receiver (an MP) waits until its deadline to process
a message, while it’s in the MP’s self interest to act immediately
without waiting.

Deadlines all-reduce. In the design of Onyx’s hold-and-release
mechanism, all the receivers need to send back the estimates of
OWDs they experience to the sender so that the sender can estimate
the deadlines for the subsequent messages to multicast. However, if
all the receivers send their estimated OWDs directly to the sender,
incast congestion occurs at the sender, leading to increased mes-
sage drops. To avoid the high volume of incast traffic, we reuse
the multicast tree to aggregate the OWD estimates in an all-reduce
manner [44]. Specifically, each receiver periodically sends its OWD
estimate to its parent proxy. Since each proxy has a limited number
of children, we do not risk in-cast congestion here. Each proxy (i)
continuously receives estimates from its children; (ii) periodically
takes the maximum of all the received estimates, ignoring some
children OWDs if they have not yet sent in an estimate; and (iii)
sends the max value to its parent proxy. In this way, the sender at
the root calculates deadlines for messages only according to the
aggregated estimates from the first proxy layer rather than all the
receivers.

C PROXY HEDGING ANALYSIS VIA MONTE
CARLO

When proxy hedging is enabled, we model the latency experienced
by a receiver as follows.

We use function L(a, b) to represent the latency from node a to
node b. We use S to represent the root node (i.e., the sender) in
Figure 2, and Pl.] to represent the node i (i.e, a proxy or a receiver)
in Layer j. Then, given a node P}, the end-to-end latency from the
root sender to this node can be recursively defined as the following
random variable (U denotes uniform random distribution):

o (Li/F1-))

Vi, j:L(S,P)) ~Uand L(P}~\,P}) ~ U

Each L(Pl.”_l, Pj") is assumed to be independent and identically
distributed (IID). However, the latency is impacted by the order in
which a parent proxy sends out the messages. This happens because
of the replication and the transmission delay of sending messages.
If the number of downstream nodes for a proxy is small, we can
ignore this order in the model. Let’s assume L(Pi"_l, Pj'.‘) to be IID.
Later, we discuss the effect of non-IID latencies.

Achieving alow variance of L(S, P') would mean that the latency
over time does not deviate much from the expected value, which
helps to achieve consistent latency over time. It also indicates that
different VMs (at the same level of the tree) in Onyx do not experi-
ence latency significantly different from each other, which narrows
the gap between the maximum and minimum latency experienced
among all the receivers for a multicast message.

We run a Monte Carlo simulation of L(S, P') random variable
with different values of H and D to understand its behavior. The
simulation is run for 100k iterations. Based on the simulation results
(Figure 15), we have three main takeaways.

No Hedging ~ High Latency Variance: With no hedging, the
depth of a tree and latency variance are directly correlated. Figure
15a plots the CDF for L (S, P") and shows mean value y and standard
deviation o for different configurations of the multicast tree. As D
grows larger, we see both y and o increase distinctly, indicating
that just a proxy tree (i.e., no hedging) suffers from more latency
variance when the tree scales up.

Hedging ~ Low Latency Variance: Our hedging makes the
correlation between D and o become less significant. In Figure 15b,
we can see the latency distribution becomes narrow (i.e., reduced
o) as H grows from 0 to higher values.

Low Overall Latency & Diminishing Returns on H: In Fig-
ure 15¢, we fix D and keep increasing H. Figure 15c shows that
hedging not only reduces the latency variance (i.e., the distribution
becomes narrower), but it also helps to reduce the overall latency
(i.e., the distribution moves leftwards). However, as H grows larger,
the incremented performance gains diminish, and most perfor-
mance improvement is obtained when H grows from 0 to 1. It
shows that a small value of H (>0) is enough to reap the benefits of
VM hedging. This is useful because a small H saves bandwidth.

Non-IID Latencies: When the latencies of different links depend
on one another, proxy hedging still reduces latency effectively.
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Fig. 15: Analyzing VM Hedging. A Monte Carlo simulation with 100k iterations was used.

However, the reduction effect is inversely proportional to how
much links’ latencies depend on each other.

We define direct links as links that go from parents to their own
children and hedging links as links that go from aunts to their nieces.
For a given node, we have outgoing hedging links’ latencies depend
on a single outgoing direct link’s latency. Assuming C is the set of
a proxy p’s children, E is the set of p’s nieces, formally, we have:

L(P%,P™1) ~ U, iidforceC
e(PH, PPy ~ U, iidforecE
L(Pp PE*Y) = g (L(Pp, P, e(Pp P2

where e(P?, PP*1) is the base latency of link from p to e and g is
a deterministic transformation function. For simplicity, we model g
as a linear function. Thus, we have:

L(PR, Py = aL (PR, PP*Y) 4 ¢(PP, PP

where a represents the dependency factor: how correlated the
hedging links are with the direct link.

We first analyzed (by running a Monte-Carlo simulation with
the random variables above) how dependency affects the overall
performance with a similar setup as the IID case. In Figure 16, as the
correlation among links («) increases, the hedging links get more
affected by the direct link, we can see that the overall performance
decreases. However, the benefit of hedging still exists even with
highly correlated links (¢ = 800%). As &« — oo, the overall latency
approaches that of H = 0 i.e., the latency benefit vanishes.

Next we experimented with how different H performs under
a fixed dependency factor of 100%. In Figure 17, increasing H de-
creases latency. Overall, the trend is consistent with the IID case,
but the absolute benefits diminish.

D OPTIMIZATIONS FOR HIGH THROUGHPUT

Decoupling DPDK Tx/Rx processing: In the outbound direction
of Onyx, we leverage DPDK to bypass the kernel and multicast
market data in low latency. We adopt the high-performance lockless
queue [49] provided by DPDK to decouple the Tx/Rx processing
logic. On each 8-core proxy VM in Onyx, we allocate one core (i.e.,
one polling thread) for Rx and 6 cores for Tx (while 1 core is reserved
for logging/monitoring processes). The Rx thread keeps polling
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the virtual NIC to fetch the incoming messages and dispatch each
message to one Tx thread via the lockless queue, which continues
to replicate and forward the messages.

Minimizing packet replication overheads: When a Tx thread is
replicating the message, instead of creating F packets with each
containing one complete copy of the message, we use a zero-copy
message replication technique. For each packet, we remove the
first few bytes that contain Ethernet and IP header and then in-
voke rte_pktmbuf _clone() API to make several shallow copies of
the packet, equal to the number of downstream nodes of a proxy.
We allocate small buffers for new Ethernet and IP headers (from
pre-allocated memory pools) and attach each pair of these buffers
to one shallow copy created previously. Then we configure the
headers (i.e., writing the appropriate destination addresses) and use
rte_eth_tx_burst() API to send the packets out.

Parallelizing multiple multicast trees: To further improve the
throughput, we inherit the sharding idea used by CloudEx [2].
Since each piece of market data is associated with one trading sym-
bol (e.g., $MSFT, $AAPL, $AMD), we can employ multiple trees
in parallel to multicast the market data associated with different
symbols. In this way, Onyx’s throughput scales horizontally by
adding more multicast trees.
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E RECEIVER HEDGING STATE
SYNCHRONIZATION

E.1 Design

In receiver hedging, we employ multiple VMs to run the same
logic for one MP, so these VMs generate and submit the same
orders to the exchanges. Exchanges employ an order de-duplication
mechanism where every order carries a unique identifier (e.g., Order
Token in Ouchv4.2, UserRefNum in Ouchv5.0 order submission
protocols [50]), used by the exchange to discard duplicate orders.
Thus, the identical orders generated from both receiver VMs will
not be executed twice by the exchanges.

One natural concern is: what if one VM experiences multicast
packet drops? This could cause the two VMs of an MP to diverge
in state, potentially issuing inconsistent orders. To address this
issue, we incorporate a state synchronization protocol to detect and
resolve such inconsistency.

State Synchronization: Each order gateway, residing in receiver
VMs, ensures that multicast packets are seen by the trading pro-
grams in the order of their sequence numbers attached by the
exchange. Any lost packet can be identified by a missing sequence
number and a retransmission (termed as rewinding in market data
protocols [25, 51]) can be requested from a packet rewinder service.
This ensures that each order generated by a VM maps to a complete
prefix of multicast market data packets.

As prefixes will be identical at both receiver VMs, identical orders
will be issued by the VMs of an MP as long as the trading algorithms
are employed in an identical order by both VMs. As each MP may
want to use multiple algorithms to process market data and generate
multiple orders, we require the algorithms to be executed in an
ordered sequence, identically at both VMs.

With the above mechanism, one VM’s multicast prefix may lag
behind the other VM in the event of packet losses, but a VM will
never issue an order that the other VM wouldn’t or already has not is-
sued. A proof'is presented in Appendix §E.2. Each VM calculates the
unique order identifier based on the used multicast prefix, trading
algorithm and the identifier of MP, and the unique order identifier
will be used by exchanges to conduct order deduplication.

E.2 Proof

For completeness, we provide a proof here.

LeEmMA E.1. Let two receiver VMs, Ry and Rz, belong to the same
market participant (MP). Suppose the following conditions hold:

(1) Market data messages are delivered over an unreliable channel
(e.g., UDP) and are annotated with sequence numbers.

(2) Each VM generates orders only upon receiving a complete
prefix of market data messages up to some sequence number i
(i.e., no gaps in [My, Ma, ..., M;]).

(3) Each VM executes a fixed, ordered list of deterministic trading
algorithms Ay, Ay, ..., Ay over each complete prefix, and
may emit exactly one order per algorithm per prefix. Orders
are allowed to be empty.

(4) Each emitted order is tagged with a unique token computed
as a hash of the market data prefix, the trading algorithm
identity, and the MP ID.
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Then, the sequence of order tokens generated by Ry and Ry is identical.
One VM may lag behind the other in emitting orders, but the sequences
will never diverge.

Proor. We prove that the sequences of emitted order tokens by
R; and R; are identical by induction on the sequence of complete
prefixes and the fixed order of trading algorithms applied to them.

Let P; = [Mj, My, ..., M;] denote the i-th complete prefix of
market data messages, and let A; be the j-th trading algorithm in
the fixed ordered list. We define a deterministic order generation
slot as the pair (P;, Aj).

Let O(l) and O(z) denote the orders generated by R; and Ry,
respectlvely, for the pair (P;, Aj). We aim to show:

vij, o) =0

or, if only one of the VMs has seen P; at a given time, the other will
produce the same order once it catches up i.e., the other VM also
sees P;.

We proceed by induction on (i, j) in lexicographic order:

Base case: For (i = 1,j = 1), suppose Ry receives P; first. It
applies A; and emits O( ) with a token computed as a hash of
(P1, Ay, MP ID). Once Rz receives Pi, it performs the same com-

putation deterministically and emits 01(,21) = O{’ll) with the same
token. The sequences are aligned.

Inductive step: Assume for all (i/, j’) < (i, j), the order tokens
emitted by Ry and Ry are identical. Consider (i, j):

(i) If both VMs have received P;, then both apply A; to the same
input using the same deterministic logic. Therefore:

1) _ (@)
o; i = O; i
(ii) If only one VM (say R;) has received P;, then only R; is

allowed to emit O.(}); Ry emits nothing yet. But once Ry receives

P;, it computes the same O(z) Ol.(i.). Hence, the sequence at Ry
extends to match Ry’s. ’

Therefore, the emitted sequences are either equal at each point,
or one is a strict prefix of the other. They will eventually converge
to the same full sequence.

Conclusion: The two VMs produce the same sequence of orders,

possibly at different times, but never diverging. O

F MULTICAST PACKET LOSSES

We employ c2d-highcpu-8 instances to run a 60-minute bench-
mark test (with 100 receivers) on GCP. We observe very small packet
losses while multicasting at the rate of 175K messages per second
(MPS). With 175K MPS, the exchange and each proxy VM sends
out 175K*10=1.75 Million packets per second). Figure 18 shows that
total packet losses over the entire duration of the experiment do
not increase beyond 0.005% while the maximum losses observed
over any 1-minute duration (peak loss rate) are around 0.045% even
without any hedging technique. Both total losses and peak loss rate
decrease significantly if receiver hedging is utilized. Our results
align with the statistics reported by GCP’s Global Performance
Dashboard [52]. The dashboard reports 0.00262% packet-loss in the
us-east4-c region for all VM-to-VM communication over a 7-day
period while the peak loss rate (per minute) stayed at < 0.0174%.
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Fig. 18: Packet Losses are low in the public cloud. Left (without any of our redundancy techniques) and right (with receiver

hedging) plots show the peak loss rate as well as total losses.

On AWS, using c5.2xlarge instances, we observe slightly
higher packet losses: 0.008% lost packets with a multicast rate of
10K MPS and 1.7% lost packets with a rate of 100K MPS. For AWS,
we suspect that the increased losses are due to the packet per second
quotas implemented by AWS [53].

G ONYX TRUST MODELS

In an ideal trust model, an exchange wouldn’t need to rely on MPs
to adhere to protocols like accurately time-stamping trade orders or
withholding market data processing until a set deadline to ensure
fairness. Likewise, MPs wouldn’t have to disclose their trading
algorithms to the exchange. These guarantees should be achieved
without incurring any performance overhead, such as increased
latency or reduced throughput.

An ideal model should not introduce any jitter for packets going
from the hold-and-release (the exchange’s program to delay release
of market data) to MPs’ trading algorithms. Fairness is achieved
at the level of the hold-and-release program using CloudEx’s time
synchronization mechanisms, which Onyx also leverages. To ensure
fairness at the level of trading algorithms, there should be a constant
latency between the exchange program and the trading algorithm.
Achieving this ideal model is impractical due to the tension between
security and performance that we present. We propose three trust
models (Fig. 19), discuss their respective trade-offs, and offer our
recommendation.

Model 1: MPs give their programs to the exchange. Exchange con-
trols the VMs where the MPs’ trading programs run. The exchange
runs hold-and-release mechanism in these VMs and then forwards
the multicast messages to the MPs’ programs. No significant la-
tency or throughput overhead is incurred. The jitter between the
exchange’s program and the MP’s program can be minimized to
be negligible (<1 ps) as forwarding messages between the two pro-
grams can be mere function calls. However, MPs have to reveal
their proprietary trading programs to the exchange in this model.
Model 2: Separate gateways for hold-and-release. Model 2 deploys
gateways between the exchange’s infrastructure (ME and proxy
tree) and the VMs where MPs’ algorithms run. The exchange con-
trols the gateways hosting the hold-and-release programs, while

Multicast Msg

Hold-n-release

Gateway VM

Multicast Msg Multicast Msg

Parent

Hold-n-release

[Hold-n-release]

network

func. call | {<1, <1} ilo ;{50, 10+} vsock {50, <10}
MP's program .
MP's program prog MP's program
Receiver VM Enclavel
Receiver VM Receiver VM
Model 1 Model 2 Model 3

Fig. 19: Architectures corresponding to each trust model. Dot-
ted arrows represent messages going from an exchange’s
programs to an MP’s program where the type of message is
represented on the left side and {a, b} denotes a ps of latency
and b ps of jitter for messages.

MPs control the VMs running their algorithms. It avoids the need
for MPs to reveal their programs or for the exchange to trust MPs
with hold-and-release. However, it introduces latency between the
hold-and-release program and MPs’ programs, as they run in sepa-
rate VMs. Throughput is unaffected, depending on VM bandwidth,
but OWD between VMs is around 50 ps, with high jitter due to
cloud latency fluctuations and spikes. In the absence of the spikes,
jitter may be in the tens of microseconds. Even with simultaneous
delivery at the gateway level, fairness at the receiver VM level is
not guaranteed due to this jitter.

Model 3: Trading programs run in secure enclaves Model 3 lever-
ages the confidential computing capabilities of VMs equipped with
secure enclaves such as AWS Nitro Enclave. An enclave can only
talk to its associated (parent) VM (and AWS Nitro Hypervisor). The
exchange owns the VMs subjecting incoming messages to hold-and-
release before forwarding them to the respective enclaves within
the VMs. The MPs’ program executes within the enclave.” MPs do
not have to reveal their trading programs to the exchange and the
exchange does not have to rely on the MPs to run hold-and-release.

Loaded via remote attestation mediated by AWS Nitro Hypervisor
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Fig. 20: RTT between a VM and its enclave stabilizes

Despite of the strong security boundaries, this model incurs expen-
sive performance overhead: high latency, extremely low throughput,
and non-negligible jitter. This model has been referenced in [20].
The latency between a VM and an enclave is similar to the latency
between two VMs, making it comparable to Model 2. However,
Model 3 benefits from reduced jitter between a VM and its enclave,
likely because communication between them does not traverse the
network. Optimizations described next further reduce the jitter.
Nonetheless, throughput between a parent VM and its enclave is
significantly lower (about 70% lower) compared to the parent VM’s
ingress, as noted in [54].
Reducing jitter between a VM and an enclave We reduce the la-
tency variance between a VM and its associated enclave with some
optimizations: isolating CPUs, reducing scheduling-clock ticks, and
pinning threads to cores. Figure 20 shows the 90th percentile la-
tency between a parent VM and its associated enclave for each
tumbling window of 1s. After the optimizations, the latency be-
comes much more predictable. We observe a jitter (the difference
between 90p and 50p latency) of < 10 ps.
Recommended Model. Optimal performance is attained with Model
1, though MPs need to reveal their programs to the exchange. If an
exchange is obliged to not reveal its clients information to third
parties (potentially binding due to Section 6801 of 15 U.S. Code
in some territories [55]), this model should be adopted in practice.
Therefore, we use Model 1 in our deployment.

H MORE ON PROXY HEDGING

Reduced OWDs for each receiver. Proxy hedging improves OML
as the OWD to each receiver is reduced. Figure 21 shows OWD for
each receiver with (H = 2) and without hedging.
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Fig. 21: OWD per receiver improves with hedging
Associated Cost Proxy hedging lowers multicast throughput in

proxy VMs due to redundant tasks like sending messages to nieces.

Reclaiming this lost throughput requires H parallel proxy trees with
a shared root (sender) and leaves (receivers), assuming receivers
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can handle the traffic. Table 4 details the cost of proxies on AWS,
based on the ¢5.2x1arge instance at $0.34/hour for 100 and 1000
multicast receivers which is minuscule compared to on-premises
exchange’s infrastructure cost and colocation fees [6, 56].

N #of proxy VMs ~ # of proxy VMs  Cost/hour

(H=0) (H=2) (H=2)
100 10 30 $10.2
1000 110 330 $112.2

Tbl. 4: Cost of proxy hedging

I DETAILED INTUITION OF LOQ
CORRECTNESS

For any continuous sequence S of orders with the same mid-price
(and thereby same value of I;,), only the critical orders will actually
be executed (i.e. matched with another order) by the ME, in the
order of their timestamps. Consider a non-critical bid with value b <
m — w. Since the lowest existing asking price before the sequence
is executed is, by definition, greater than m, this bid cannot match
with any existing ask. Then, since all asks in the sequence have
value a > m — w, the non-critical bid cannot match with any other
asks in its sequence. Non-critical orders in S will only be matched
with orders that have strictly greater I;, while all orders with higher
I have lower priority than all orders with lower Ip,.

Within S, as long as the critical orders are processed in the
sorted timestamp order, the resulting executions will be the same
as executing all orders sorted by timestamp. Furthermore, if the
non-critical orders are also processed in the sorted timestamp order,
the state of the order book will be the same as processing each
order in S sorted by timestamp. The limit order book is first sorted
by value (descending for bids and ascending for asks) and then by
timestamp; all the critical orders will be sorted first and then the
non-critical orders will be sorted after.

The LOQ construction holds the property that the critical and
non-critical orders are sorted by timestamp separately when de-
queued. Then, the sequencer at each node ensures that this property
is maintained when combining multiple streams consisting of LOQ
outputs. Finally, since I, is always increasing with timestamp, the
sequence of orders that the ME can be partitioned into contiguous
sequences of orders with the same value of I,,. Therefore, since
the executions within and the state of the order book between
each partition equal the executions and state if the orders were
processed sorted by timestamp, the order of executions across the
entire sequence or requests will be the same.

J SEQUENCING OVERHEAD AND POTENTIAL
IMPROVEMENTS

There are two types of overheads in the sequencer: (i) waiting
for messages, and (ii) the overhead of packet processing within
the sequencer. The computation within our sequencer is fairly
straightforward for our packet rates; hence we focus on item (i).
The process of waiting for all downstreams’ messages before
releasing any message from the sequencer significantly lowers
the number of messages processed per second by the exchange,
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making it a bottleneck. Any single trader’s packet taking longer
to arrive at the sequencer holds up the sequencer from processing
packets of all other traders. We empirically see that the number of
packets processed by the exchange decreases sharply when using a
sequencer as shown by evaluation.

Below, we discuss potential ways of improving the sequencer.
The first two suggestions below pertain to the overhead of waiting
for messages and the third pertains to the computation overhead.

1) Running 2 (or more) instances of a sequencer where each
trader submits one copy of order to each instance may improve
performance. Each sequencer is one separate VM. All sequencers
forward their output to the exchange VM. It is different from our
current setup in the submitted paper where sequencer and the
exchange may run in one VM.

More instances of a sequencer improve the chances of any one
instance receiving all traders’ packets early enough. However, it
needs to be empirically studied whether the benefits will outweigh
the new overheads i.e., (i) the exchange needs to process multiple
copies of data, check them for duplication, and discard them if
needed, (ii) throughput of the exchange may suffer as one extra
hop is introduced in the path of packets.

2) Another improvement could be to change the protocol to not
wait for messages from all clients and move on after a fixed amount
of waiting period. This may improve the throughput but incur some
unfairness as some participants’ messages are not accounted for.

3) A sequencer also has to identify whether at least one packet
has been received from each downstream VM. This check can be
made faster by a better algorithm or implementing in hardware
(such as within a SmartNIC if this is being eventually implemented
by the cloud provider). However, this may only bring benefits when
the packet rates are sufficiently high.

1200| —— 90th Percentile /| 1200] —— 90th Percentile /

50th Percentile 50th Percentile

1000 1000 ’—//
o o

0 10 50 100 No RRPS 0 10 5 100 No RRPS

0
a B (a = 50%)

Fig. 22: IID case: benefits in- Fig. 23: Non-IID: Benefits in-
versely proportional to the versely proportional to how
size of the spiky links’ set. correlated the links are.

K RRPS MONTE CARLO ANALYSIS

To evaluate the effectiveness of RRPS under latency
spikes/fluctuations, we perform a Monte Carlo analysis. The
analysis shows that when a subset of links go through latency
spikes (due to heterogeneity of links), packet spraying leads to
latency reduction, because messages get a chance to avoid the
worse-off links.

As multiple virtual links may map to the same underlying physi-
cal links, the effectiveness of RRPS depends on how independent
links are from each other. In the case where each virtual link is
independent, we see the most latency reduction when the overall
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network performance is good, while the reduction effect dimin-
ishes as links become more and more correlated (i.e., non-IID). To
capture this effect, we model the latencies as dependent as well as
independent random variables.

We define OML (overall multicast latency) for a multicast mes-
sage as:

OML = max (L(S, i))
ieR

where:

e R is the set of all receivers,
e L(S, i) represents latency of a multicast packet sent from the
root S and received by receiver i.

Independent Link Latencies: In this scenario, we have all links
divided into two mutually exclusive sets, each with a different
link latency distribution: 1. Spiky set (A) and 2. Non-spiky set
(B). The link latencies within each set are independent and iden-
tically distributed (i.i.d). The mean of the latency distribution of
the non-spiky set is 50, while that of the spiky set is 500. Each
time a message goes through a link between two nodes, it uses the
latency sampled from the distribution of its assigned set. Formally,
let A= {{’A, e t’;‘,‘l} and B = {(B, .. .,t’,lf} be the two sets of links,
let D4 and Dg be the two distributions with a mean of 500 and 50
each. Then, for a given time ¢:

Lj‘t ~ Dy, iid.forj=1,...,m 04 =500
Lth ~ Pg, iid.fori=1,...,n 0 =50

In order to simulate the real network better, we have a latency
to "stick” to that link for a few later messages as well.

Additionally, we state « as the probability of a round of RRPS
causing at least one proxy to send through spiky links to its re-
ceivers. For instance, « = 0% means proxies never send through
spiky links, which is effectively equivalent to there are no spiky
links, and a = 100% means RRPS will always make a proxy to send
through spiky links. We assume that there are no spiky links from
proxy to proxy. & can be seen as a metric of how the overall network
performs as well.

In the spike experiments, we assume that there is at least one
link in-use that is spiky when the system does not use RRPS. For
simplicity, we also assume that there are no spiky links from proxy
to proxy. Based on Figure 22, as a increases, the overall latency
increases, because a message is more likely to go through a spiky
link. Yet, as long as « is not 100%, it outperforms not using RRPS,
which constantly suffers from the spikes. The large difference in the
90th percentile further backs how RRPS leads to latency reduction
by avoiding the worse-off links.

Dependent Link Latencies: In this scenario, we built depen-
dencies/correlations between the two aforementioned link sets, set
A with a size of n and set B with a size of m. We simulate each
link’s latency distribution in set B depending on that of one link in
set A. The latencies of links within each set are independent and
identically distributed. Formally, for a given time ¢, we have:

LA ~ Dy, iidfori=1,...,n 04 =500
et ~Dp, iidforj=1,...,m =50

B A :
Lj,[ :g(Lf(j)’t,Ej’[), forj=1,....,m,
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where f : {1,...,m} — {L,1,...,n} maps each link in B to
either a spiky link in A or L which represents no dependency (Lf
is always 0), and g is a deterministic transformation function. For
simplicity, we model g as a linear function. Thus we have:

Lyt = PLE e+ it

where f represents how dependent A is toward B. With a similar
setup as the previous scenario, we have the distribution of latencies
in set A to be an exponential distribution with a mean of 500 and
that of set B to be 50. For simplicity, we assume all proxy-to-proxy
links are in set A (i.e., not spiky).

To produce the simulated result in Figure 23, we fix a = 50%,
i.e., 50% of the time RRPS causes a proxy send through spiky links,
and 50% of the time send through links that depend on spiky links.
We observe that as f increases, e.g., as non-spiky links depend
more and more on spiky links, the overall latency increases. When
p = 100%, the latencies suffered by the dependent links exceed
those of the base links, as the former also samples from a non-
spiky latency distribution. The correlation between OML and "how
dependent links are" again demonstrates our claim that RRPS helps
the system to avoid slow paths, and thus minimize the overall
latencies.

L COMPARISON WITH ON-PREMISES
SYSTEMS

Onyx offers a different trade-off from on-premises exchanges: by
relaxing some of the strict performance guarantees, it can lever-
age the cloud’s benefits in terms of much higher scale (number
of participants) and cost-effectiveness (i.e., without specialized in-
frastructure and carefully measured cable lengths). This in turn
lowers the barrier to entry for new participants. Figure 24 shows
the trade-offs curve and Onyx’s position.

Additionally, for certain financial instruments (e.g., cryptocur-
rency), their dominant exchanges (e.g., Coinbase [57], Binance [58]
etc.,) have been built on the cloud since the beginning, where such
latencies are acceptable. For such instruments, Onyx is very com-
petitive in its latency, enabling an on-prem style high frequency
trading on the public cloud. We also intend to use Onyx to em-
pirically show how far (in scale and performance) we can take a
cloud-tenant centered approach to cloud-hosted exchanges. This
is in contrast to recent efforts by cloud providers themselves to
provide in-house support for such exchanges, often in partnership
with the exchanges (e.g., [59]). While Onyx’s performance will be
lower than that of a system designed by a cloud provider with
more intimate access to the infrastructure (e.g., the use of Smart-
NICs [4]), Onyx’s techniques are still valuable as it shows what can
be achieved immediately by cloud tenants with no help from the
cloud provider.

M PSEUDOSCODE FOR SEQUENCER

Algorithm 1 presents an efficient implementation of the sequencer’s
enqueue and dequeue routines. Enqueue is made lightweight so
that incoming messages can be processed as quickly as possible
and a queue formation at the ingress of the exchange’s VM can be
avoided. Enqueue is invoked at each new message while Dequeue
runs in a separate thread indefinitely.
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Algorithm 1: Sequencer Enqueue and Dequeue

Input: n: Number of total downstreams (MPs)

v: Vector of n lockless FIFO queues

result: A FIFO queue for sequenced messages
Enqueue(mf;) v[i].enqueue(mi);

-

2 Dequeue()

3 while True do

4 ts «— oo;

5 ind «— —1;

6 fori — 0ton—-1do

7 if o[i].empty() = True then

8 ts «— o0,

9 break;

10 end

11 mi — oli].top();

12 if (t = ts andi < ind) or (t < ts) then
13 ts «— t;

14 ind « i;

15 end

16 end

17 if ts # co then

18 mg‘d «— vlind].dequeue();

19 if m;';d is a dummy message then
20 ‘ continue; > A message contains a field showing

whether it is a dummy.

21 end

22 result.enqueue(m?sld);

23 end
24 end
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N PACKET LOSSES IMPACT ON LOQ

As the exchange server multicasts market data, it can also add the
mid-price ID to outgoing data. If a receiver loses a market data
packet, it has stale information of mid-price until (i) it recovers
the lost packet or (ii) it receives the next packet (which is not lost).
During the period of stale mid-price, the receiver’s/MP’s orders will
carry stale mid-price ID introducing non-zero lateness for orders
in the exchange. We quantify this lateness as follows.

Figure 25 shows the lateness in the output sequence increases as
the packet losses increase, but is sufficiently small for the typically
observed losses (< 0.005%). This experiment involves 10 MPs, each
sending 10K messages per second for a duration of 10 seconds. We
repeat the experiment with 100 MPs, the results (Figure 26) show a
similar trend.

In the above experiments, all MPs experience the specified packet
loss rate. We perform experiments with 10 MPs, 1K orders per
second rate per MP, with varying number of MPs experiencing
the losses. Figures 27-30 indicate that lower the number of clients
experiencing losses, lower the lateness.

O ASSUMPTIONS SUMMARY

(1) Clocks of participant VMs and the exchange are synchro-
nized with negligible error (i.e., multiple orders of magnitude
better than the time resolution of interest). We achieve this
using Huygen’s algorithm.
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(2) Clocks are monotonic.

(3) Packet losses are rare. It is true for today’s public cloud
infrastructure. Losses lead to brief periods of unfairness as
explained in evaluation.

(4) Order gateways running at the receiver VMs are under the
control of the exchange. It holds as receiver VMs are run
by the exchange, and MP’s trading programs are loaded in
them.

(5) LOQ’s fairness guarantees require simultaneous inference
of mid-price at all gateways. Multicast service provides si-
multaneous delivery of data, hence simultaneous inference
of mid-point, for vast majority of messages. Unfairness ap-
pears during rare periods of this assumption’s violation as
explained in evaluation.

(6) Gateways ensure that any generated orders by the MPs re-
spect action window w (§5.2.1); non-compliant orders are
dropped by the gateways.

P DBO ORDER SUBMISSION RATE

Figure 31 shows Onyx achieves higher order matching rate than
both CloudEx and DBO.

Comparing DBO to Onyx is not an apple-to-apple comparison.
DBO ties each order submission to a received multicast message.
It’s fairness guarantees fall apart if an order submission uses infor-
mation from any other sources e.g., second last received multicast
message. While Onyx adopts fairness definitions that are used in
on-premises exchanges and an order may depend on various data
sources. DBO is not a generic financial exchange system as Onyx.
Reason for DBO’s low order matching rate: 1t utilizes a sequencer
similar to ours but does not employ a tree or any special scheduling
policy. The sequencing overhead makes it worse than both CloudEx
and Onyx. Onyx compensates the overhead of sequencing via a
tree and LOQ. On the other hand, CloudEx’s sequencer does not
provide guarantees of inbound fairness as it only waits for a set
timeout for any orders and consequently has a lower sequencing
overhead (but may break fairness guarantees).
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Fig. 31: Onyx achieves higher order matching rate than both
DBO and CloudEx
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