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Abstract—Software defined networks (SDNs) are receiving
significant attention in the computer networking community, with
increasing adoption by the industry. The key feature of SDNs is
a centralized controller which programs the packet forwarding
behavior of a distributed underlying network. This centralized
view of control—which is absent in traditional networks—opens
up opportunities for full formal verification.

While there is recent research in formal verification of these
networks, model checking the controller behavior as it updates
the underlying network has only seen limited application. Ex-
isting approaches are limited to verifying the controller for a
small number of exchanged packets in the network. In this case
study, we extend the state of the art by presenting abstractions
for model checking controllers for an arbitrarily large number
of packets exchanged in the network. We validate the utility of
these abstractions through two applications: a learning switch
and a stateful firewall.

I. INTRODUCTION

Software defined networks (SDNs) (such as ones based
on Openflow [1]) have recently received significant atten-
tion in the computer networking community, with increasing
relevance to and adoption by industry, e.g., [2]. The key
feature of SDNs is a centralized controller (control plane)
which programs a distributed underlying network (data plane).
While providing a centralized view of control, any bugs in
the controller code can be an Achilles heel to the functioning
of the entire network [3]. In this case study, we explore
abstractions for proving the correctness of controllers using
model checking.

Fig. 1 shows an example topology of an SDN. The data
plane consists of three hosts HA, HB and HC which exchange
packets pkt1 and pkt2 with each other via the network
switches S1, S2 and S3

1. These switches consist of ports p0,
p1 and p2. Each location in the network (switch ports and
hosts) consists of an input and output buffer (referred to as
the data state). Each switch enqueues packets in its input port
buffers, and eventually forwards them to a set of output ports
(or drops them) based on the packet processing logic.

The packet processing logic is encoded into the switches in
the form of switch flow tables (also referred to as the network
state). Based on the flow table, the switch applies one of the
following 3 actions to an incoming packet: (1) it forwards the
packet to a set of output ports of that switch, (2) drops the
packet or (3) forwards it to the controller. The switch forwards
packets to the controller by reporting them as events. The
controller is a piece of software which updates switch flow
tables through a standard interface (e.g., Openflow [1]), either
in response to events forwarded by switches or spontaneously.

1Following the approach of Zhang et al. [4], all the network logic like
firewalls, routers etc. can be represented using switches.
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Fig. 1: An example topology.

In this paper, we prove the correctness of the network
controller program for a given network topology, and an
arbitrarily large number of packets. We focus on per-packet
properties, which assert the correctness of packet processing
in the presence of updates from the controller. Note that these
updates may themselves occur in response to events reported
due to other packets, i.e., due to interference from other
packets. Examples of such properties include no forwarding
loop (i.e., a packet does not loop back to a switch which it
has already visited) and no invalid drop (i.e., a packet is not
dropped due to an invalid controller update to some switch).

Challenges in Verification: The key challenge in model
checking SDNs is the state space explosion resulting from
the following factors. (1) There can be a large number of
packets alive in the network, resulting in a large buffer state—
commodity switches can have of the order of ten megabytes of
packet buffering per switch (e.g., [5]). Further, these packets
create interference for each other by sending events to the
controller which then trigger updates to the network state. (2)
These packets and the corresponding events can have arbitrary
interleavings. (3) The switch flow tables store a mapping
from the packet header and the input port to the output port,
resulting in a large network state—modern switches can have
tens of thousands of flow table entries [6].

Related Work: Existing work in the verification of SDNs
exploits the fact that the time between updates to the network
state by the controller is much larger than the lifetime of
a packet through the network. Thus, the state evolution of
the network can be viewed as updates from one network
configuration to another via intermediate (transient) states, as
per the commands from the controller.

Static verification verifies a fixed configuration of the net-
work by using either symbolic simulation [7], by reduction to
SAT [4], [8] or, by model checking [9].

Incremental verification approaches extend the static ver-
ification approach and incrementally verify the network for



all the network configurations [10], [11]. The property may
however be violated in the transient stage.

Safe update builds upon the incremental verification ap-
proach by guaranteeing that the property under check holds
during the transient stage by using specific update proto-
cols [12]. This work is specific to enforcing properties for
which the update protocols are designed—more complex prop-
erties may not be enforced with this approach.

Dynamic checking seeks to verify the properties on the net-
work in the presence of arbitrary updates from the controller,
even when no specific update protocol has been implemented
to ensure the property. This is the space of our work—the
other works we are aware of in this space are NICE [3] and
FlowLog [13]. They use a model checking based approach to
successfully find important bugs in controller code. However,
they check the controller for a bounded number of exchanged
packets. In this work we extend dynamic checking and scale
to an arbitrarily large number of packets.

Key Contribution: This work addresses the challenges
outlined above by first constructing a data state abstraction,
and then, a network state abstraction which builds upon the
data state abstraction to significantly reduce the model size.

The data state abstraction is based on the standard data type
reduction [14] and addresses challenges (1) and (2) by keeping
just one packet (concrete packet), (pktc), in the system and
replacing the effect of all the other packets on the network state
by non-deterministically injecting an arbitrarily large number
of environment packets (pkte). These packets have arbitrary
header values, unless constrained by user-added lemmas, and
can be injected at any port of any switch. When injected,
these environment packets may be forwarded as events to the
controller and trigger updates to the network state. Thus, these
packets simulate the updates to the network state triggered
by an arbitrarily large number of other packets. Further, the
environment packets need not traverse the links and occupy
data state as they are directly injected at arbitrary ports—this
enables abstracting away all the buffers.

Since there is only one alive packet (pktc) in the system
after the data state abstraction, the network state abstraction
exploits this to address challenge (3) by case splitting on the
source and destination hosts of this packet: the switch flow
table can then be abstracted to contain information specific to
only these hosts, which are fixed for a concrete packet2. This
significantly reduces the network state.

Mechanical Construction: The data state abstraction is
constructed by adding a special host for injecting environment
packets—this host is independent of the controller application
under verification. The network state abstraction adds a run-
time check to the flow table to only allow updates correspond-
ing to the selected source and destination hosts.

Experimental Setup: We model the controller code to closely
resemble the original (typically Python) code in the Murphi
language (CMurphi 5.4.6). To verify the controller for a spec-
ified topology and property, we use a Murphi model with (1)
the controller code, and (2) the switches and hosts connected
according to the specified topology with the property specified

2Packet rewrites are discussed at the end of §III.

on it. The abstractions are also implemented on this model.
We demonstrate the utility of the abstraction by verifying no

forwarding loop for a learning switch application (controller),
Pyswitch [15] and no invalid drop property for a stateful
firewall application. We were able to find bugs in the buggy
version of these applications and prove correctness for the
correct ones for an arbitrary number of packets.

Limitation: While our approach verifies topologies larger
than the state of the art for dynamic checking, it cannot scale to
realistically large sizes (e.g., data centers). However, in certain
cases it is possible to extend controllers proved on smaller
topologies to larger ones through topology abstractions [16].

II. MODELING NETWORK CONTROLLERS

The network consists of a controller, switches (switch Si

has an id i) with ports (port pi has an id i) and hosts (host
Hi has an id i). Packets traverse the network by hopping
from one location to another (unless they get dropped). Each
packet consists of a header and payload (data information).
The source and destination host id of a packet pkt are denoted
by pkt.src and pkt.dst, respectively.

When a packet arrives at a switch port, the switch processes
the packet in accordance with the flow table. For sake of
brevity, we assume that the flow table of a switch S (denoted
by S.ft) matches on the source, destination, and input port
(pi) of the incoming packet and applies a set of actions to
the packet—in general our approach extends to cases where
it matches other fields as well. Formally, a flow table is a
mapping S.ft : (pkt.src, pkt.dst, pi) → A, where A is a set
containing one or more actions from the following: (1) forward
the packet to a set of output ports Po of the switch (denoted
by Forward (Po)), (2) drop the packet (Drop), or (3) forward
it to the controller (SendToController). We denote the set
of the above three actions by A.

Controller-switch interaction: The controller switch inter-
action happens in accordance with the Openflow [1] spec-
ification: (1) switches report events to the controller which
are enqueued in a per-switch event buffer at the controller,
and (2) the controller sends commands to the switch which
are enqueued in a command buffer at the switch. Following
the approach of Foster et al. [17], the relevant events and
commands are described below.

Events: The event used in this paper is the
packet in(swID, portID, packet) event, which tells
the controller that packet has arrived at port with id portID
of switch with id swID.

Controller Commands: The controller can either react
to events reported by the switch through event handlers, or
spontaneously program the switch. The controller commands
can be one of the following: (1) install(swID, match,
actions): this command updates the flow table of switch
swID to apply actions (a subset of A) to all packets which
match the pattern specified by match. The string match is
of the form {src : H1, dst : H2, inport : pi}, i.e., match all
incoming packets with pkt.src = H1, pkt.dst = H2, and
ingress port pi at switch swID. (2) send(swID, packet,
action) sends the packet to switch swID where action is



packet in (swID, inport, pkt):
1: mactable = ctrlState[swID]
2: mactable[pkt.src] = inport
3: if (mactable[pkt.dst] != null)
4: outport = mactable[pkt.dst]
5: if (outport != inport)
6: match = {src:pkt.src, dst:pkt.dst, inport:inport}
7: action = {Forward (outport)}
8: install (swID, match, action)
9: send (swID, pkt, action)

10: return
11: send (swID, pkt, Flood)
12: return

Fig. 2: The Pyswitch controller algorithm.

applied to it at the switch. Here action is one of {Forward,
Drop, Flood}, where Flood instructs the switch to forward
the packet on all its ports except the packet’s ingress port.

Property: We verify invariants of the form ∀pkt : φ(Bpkt),
where φ is a propositional logic formula and Bpkt is some
per-packet book-keeping state. For example, this state can log
the packet history, i.e., switches which the packet has visited,
in order to detect loops.

Running example (MAC learning switch): We use a layer
2 MAC address learning switch application, Pyswitch [15]
with topology as shown in Fig. 1, as a running example to
describe key concepts. The controller algorithm is shown in
Fig. 2. At a high level, for each switch swID, the controller
learns a mapping (denoted by ctrlState[swID]) from host
MAC addresses to ports. This allows the switch to forward
packets destined to these hosts. As an example, suppose the
packet pkt1, with source HA and destination HB , arrives at
port p0 of switch S2. In case no match exists for the packet,
it is matched to a default flow table entry which forwards
a packet in event to the controller. The packet in event
handler learns that the host HA is reachable through port p0
on switch S2 (line 2). In case the port leading to the destination
HB is unknown, the if condition on line 3 evaluates to false,
and the packet is flooded on all ports, except the incoming port
(line 11). However, if the destination is found in ctrlState,
the flow table is updated to forward all subsequent packets
with the same src, dst and inport to p1 (line 8).

Property: We verify the no forwarding loop property for the
Pyswitch controller. Due to flooding on a topology (Fig. 1)
with a loop, the property is violated. However, if the controller
only sends packets along a spanning tree (e.g., no packets
between port p2 of S2 and p1 of S3), the property holds.

III. ABSTRACTION

Data state abstraction: As discussed in §I, the data state
abstraction exploits the fact that the property under check is
a per-packet property: it checks the property on one con-
crete packet pktc, and abstracts away all the other packets.
Continuing on the Pyswitch example from §II, suppose
pkte is injected at port p2 of switch S2 in Fig. 1, such that
pkte.src = HA. This leads the switch to send a packet in
to the controller which updates ctrlState[S2][HA] to p2.
Next, suppose the concrete packet pktc with source HB and
destination HA arrives at port p1 of S2. The switch sends this
packet to the controller, and since ctrlState[S2][HA] = p2, the
controller commands the switch to forward the packet out port

p2 (line 9 of Fig. 2) to S3. If there are no matching entries for
pktc at S3 and S1 both in flow tables and ctrlState, the packet
gets flooded at both switches (line 11). Thus, pktc loops back
to S2, which is a violation of the forwarding loop property.

Refinement: Since the header of pkte can take arbitrary
values, the updates triggered by pkte are highly unconstrained.
This leads to both scalability bottlenecks as well as functional
incorrectness due to over-abstraction, i.e., the model exhibiting
more behaviors than are realistically expected. We follow
the approach of the CMP (CoMPositional) method [18]: the
model is iteratively model checked and refined by the user
by adding non-interference lemmas in order to constrain pkte.
The non-interference lemmas we used typically constrain the
model according to reachability in the topology. For example
a packet with source HA cannot be injected at port p1 of
S2, i.e., ((port = p1)&(switch = S2)) → (pkt.src 6= HA).
(Since these lemmas are application-independent, they were
added pre-emptively to mechanically constrain the data state
abstraction.) As per the CMP method, these non-interference
lemmas do not over-constrain the environment packet pkte:
they are also model checked by validating them on pktc [18].

Network state abstraction: As discussed in §I, the network
state abstraction case splits on the source and destination of
pktc to abstract the flow tables. Suppose we assume that pktc

has source HA and destination HB . Then, for each switch
S, the flow table mapping S.ft can be abstracted to S.ftabs

where S.ftabs(pktc, p) = S.ft(pktc, p) for all ports p of the
switch, and S.ftabs(pkte, p) = {SendToController} for all
other packets (i.e., pkte). The Forward action is not applied
to pkte as it is non-deterministically injected at all ports.

Packet rewrites: In order to handle packet rewrites, the
network state abstraction can be refined by including flow rules
for rewritten header values as well. These rules are needed to
process the concrete packet when its header is rewritten.

IV. EXPERIMENTS

We verified two applications: Pyswitch and a stateful
firewall on a 2.40 GHz Intel Core 2 Quad processor, with
3.74 GB RAM. Murphi source code is available online [19].

MAC learning switch (Pyswitch): For the Pyswitch
application, we verified loop freedom for the star topology
shown in Fig. 1, with non-interference lemmas from §III
added pre-emptively for scalability. The loop was found in
0.1 sec with 159 states explored. Next, on constraining the
topology to forward packets only along the spanning tree, the
model checker proved correctness with an arbitrary number of
packets exchanged between HA and HB in 600s with 1.45M
states. We note that model checking did not finish in a day
without the abstractions. Finally, we ran a stress test with a
larger fat tree topology with 20 switches, 16 hosts and 48
links. While model checking did not finish for an arbitrarily
large number of packets, it finished in 68352s for the single
packet case with network state abstraction.

Stateful firewall: We consider a simple firewall policy
which may be used to prevent direct connections from the
Internet into an enterprise network, e.g., to implement Network
Address Translation (NAT). Fig. 3 shows an enterprise network
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Fig. 3: Two switches acting together as a stateful firewall.

1: packet in (swId, inport, pkt):
2: if swId = 1 and inport = 1:
3: match S1 = {src:pkt.src, dst:pkt.dst, inport:1}
4: action S1 = {Forward ({2})}
5: install (1,match S1,action S1)
6: match S2 = {src:pkt.dst, dst:pkt.src, inport:2}
7: action S2 = {Forward ({1})}
8: install (2,match S2,action S2)
9: else if swId = 2 and inport = 2:

10: match = {src:pkt.src, inport:2}
11: action = {Drop }
12: install (2,match,action)

Fig. 4: Firewall controller for the network shown in Fig. 3.

connected to the Internet via a firewall implemented on two
switches S1 and S2. The controller (not shown in Fig. 3
for brevity) initializes the default behavior of S1 and S2 as
follows: (1) S1 sends all incoming traffic at port p1 to the
controller, in addition to forwarding out of p2, (2) S1 forwards
incoming traffic at p2 directly to the enterprise host H1, (3) S2

sends all incoming traffic at p1 directly to the Internet, and (4)
S2 forwards incoming traffic at p2 to the controller. As packets
arrive, the controller dynamically updates the switch flow
tables to implement the following high-level policy (Fig. 4):
(a) All traffic originating from any enterprise host H1 and
destined to any Internet host H2 is allowed to pass freely.
In particular S1 forwards all traffic to port p2 bypassing the
controller after the first packet in (line 5). (b) Traffic from
an Internet host H2 destined to an enterprise host H1 is
only allowed if the communication was initiated by H1 first
(line 8). (c) If H2 attempts to communicate with H1 without
prior initiation by H1, then H2 is considered malicious and is
explicitly blacklisted (line 12).

Verification: We verify the no invalid drop property by
checking if traffic from Internet host H2 replying to a request
sent by enterprise host H1 does not get dropped. Due to a
race condition between the events reported by S1 and S2, the
controller erroneously blacklists host H2. This happens when
H1 sends a first request to H2. The request goes to S1 first
which forwards it via S2 to H2, and also forwards an event
e1 reporting the request to the controller. However, this event
gets delayed and in the meantime H2 replies, and S2 forwards
this to the controller as an event e2. Since e2 is processed by
the controller before e1, H2 is erroneously blacklisted. (Note
that events across switches can be processed out of order.) Our
approach found this race condition in 0.13 sec with 482 states,
without requiring any lemmas.

Fixing the violation: This bug can be fixed by requiring S1

to wait for the controller before forwarding requests from H1

to H2 via S2. Our approach was able to prove correctness for
an arbitrarily large number of packets in 0.19 sec with 613
states, without requiring any lemmas.

V. CONCLUSION AND ONGOING WORK

We have presented abstractions for model checking con-
trollers for software defined network applications. These ab-
stractions extend the state of the art by enabling correctness
proofs for SDN controllers for an arbitrarily large number of
packets and their ensuing controller state updates. As a next
step, we plan to explore abstractions to further scale model
checking for larger topologies. In particular, since properties
are typically violated along a particular path taken by packets
in the network, we plan to focus on validating properties
for packets taking fixed paths in the topology instead of all
possible paths.

Acknowledgment: We thank Jennifer Rexford and Muralid-
har Talupur for their helpful ideas and feedback. This work
was supported by NSF grant 1111520 and by C-FAR, one of
six centers of STARnet, a Semiconductor Research Corpora-
tion program sponsored by MARCO and DARPA.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., 2008.

[2] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat, “B4: Experience with a globally-deployed software
defined WAN,” in SIGCOMM, 2013.
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