
Load Management

Lecture 14

Srinivas Narayana

http://www.cs.rutgers.edu/~sn624/553-S25

1

http://www.cs.rutgers.edu/~sn624/553-S23


Distribution & its consequences

• Internet services use replication to tackle machine failures and 
unavailability
• So far: Data replication: consistency

• But compute also requires replication

• Compute replication is critical for performance
• Geo-replication (e.g., failover and balance across metro regions)

• Replication within a cluster (e.g., 100s of processes serving the same 
app within a cluster)

=



Load management

• Global: How to direct user load across clusters?
• Key performance considerations

• Query traffic: Low latency

• Data uploads: High throughput

• Local: Within a cluster, how to manage the load?
• Machines within a cluster are presumably similar to each other

• Key: Avoiding hotspots and reducing overprovisioning



Global load balancing
• Primary mechanism: DNS

• Use IP anycast to talk to “nearest” (acc to BGP) authoritative 
DNS servers. Auth servers redirect user to location/server 
closest to them through a single DNS response. 

• Problem: clients rarely talk directly to auth DNS server (go 
through recursive resolvers). Resolvers hide client count and 
geo-diversity. They also cache responses. 

• Mitigations: estimated users and geo-diversity behind resolvers. 
Issue low TTL responses (adds latency)

• DNS response sizes are bounded. Client will choose randomly 
from among responses; don’t know who is closest.



Virtual IP addresses per datacenter

• Use a virtual IP address (VIP) to cover many real IP addresses
• Hide growth, failures, maintenance in server pool from users

• Use DNS with large TTL. Save latency.

• Effectively decouple cluster-external from internal

• Alternative: can we use IP anycast directly to get to edge?
• But anycast need not be stable! BGP route flaps 

• Send to a different edge at any time, even in the middle of a connection



Frontend load balancing

• Layer-4 load balancers spray 
connections across HTTP reverse 
proxies

• Reverse proxy terminates TCP/TLS and 
re-encrypts to backends. Maintain 
persistent connections to backends

• Terminate TCP/TLS as close to the user 
as possible

• ECMP: easily add more L4 LBs to pool

• Stabilize anycast through consistent 
hashing. Cannot rely on connection 
state shared across L4 LBs



Maintaining even load

Uneven load == stranded resources

Solution == spray requests across processes?



Problem: Statefulness

• A user’s connection may have to reach the same machine (e.g., 
reverse proxy, or backend server)

• Choosing a different reverse proxy will break TCP connections. 

• Having to estasblish new connections will degrade the 
performance advantages of reverse proxying in the first place

• Backend process may have additional state: e.g., HTTP 
cookies, or other local execution state per connection



Connection tracking and consistent 
hashing at the L4 LB

• Remembering connections by putting them in a connection 
tracking table: 5-tuple → backend
• Not always possible

• Even the load balancer forwarding a packet may change mid-
connection

• SYN floods and crowds may overwhelm connection tracking table

• If a packet’s connection cannot be found in the connection, use 
a hash function h(packet) to determine the backend
• Naïve choices: break connection when proxy pool changes

• Need consistent hashing: even if the backends change, the backends 
for existing connections should be minimally disrupted



Maglev (L4 LB) forwarder

Multi-threaded 

(parallelism)

Don’t share state 

across threads. Each 

5-tuple steered to a 

core. 

Connection tracking 

table is local to the 

core



Hash table population

Each backend now uses a random (unique) permutation

Backends choose slots based on the permutation. 





Actual packet forwarding

• (1): NAT tables: map incoming connections to outgoing
• Stateful; large tables

• (2) Modify destination MAC address
• Direct Server Return

• But cannot have all machines in one L2 network

• (3) Encapsulation (e.g. GRE). If a route exists, it works. 
• Server will decapsulate the packet and use DSR 

• Inflate packet size and possibly cause fragmentation



Disruptions on lookup table change





Beyond the reverse proxy

• Problem 1: avoid unhealthy backends first

• One strategy: Pick backend server with least 
outstanding requests. If too many outstanding 
requests, avoid those backends altogether

• Problems?
• Only avoids extreme overload; backend can 

overload even before this limit is reached

• Processing time of a request may be large, doesn’t 
mean the server cannot take on more requests

• “Lame duck” state: a backend can proactively 
signal that it is unhealthy to avoid new 
connections, while finishing processing 
requests in flight



Beyond the reverse proxy
• Problem 2: choose among available 

healthy backends
• Don’t maintain a connection to every 

backend: memory and CPU per connection

• Establish a new (backend) connection 
per (user) connection? Long lived?

• Connect to a subset of backends
• How large? 
• Load variation from each reverse proxy

• # backends >> #RPs

• Which backends of that size? 
• Random subsets unevenly load-balanced

• Use deterministic subsets in time-based 
rounds



Strategies to choose backends

• Backend load and capacity agnostic: round robin. Insufficient
• Small subsets: some clients heavier than others
• Diversity in machine capacities (CPU architectures, speeds, cores)

• Variation in work for each request (1000x). Hard to predict
• Unpredictable performance changes (noisy neighbors, task restarts)

• Assign to least loaded backend? (currently active load)
• Good: move load away from loaded backends
• Bad: Typically considers load without regard to available capacity
• Bad: Long-lived requests

• Bad: per-RP view of load

• One approach: weighted (RR) splitting with load and error 
feedback from backends



Autoscaling

• Sometimes, you just don’t have enough capacity

• Vertical autoscaling

• Horizontal autoscaling

• Don’t just rely on server utilization metrics. For example, error 
codes returned very quickly have low CPU utilization

• Creating new instances is never instant

• Doesn’t always work:
• Failure to do useful work but consuming resources
• Overloading downstream dependencies by autoscaling upstream tier
• Shared quotas across tiers: reason with dependencies carefully



Load shedding

• Return errors upon high load; process what you can

• Combination of all techniques useful. But consider their 
interactions carefully



Internet Services



Internet Services

Data Center

Servers

Modular apps

Distributed systems
Infrastructure

Delivery



Operations

• Monitoring, security

• Release engineering, canarying

• Crafting and maintaining SLOs

• People and processes

• Incident response, postmortems

• Designing and managing cluster configurations

• And many others



What next?

• Live with a deeper appreciation of Internet services
• How is content delivered? How are apps designed and what architectures 

may I use for my own? What does my platform look like? How do I manage 
critical data and achieve high performance?

• Put your knowledge to good use
• This course: Programming homeworks; Project

• Significant tech work builds on concepts from this course
• Design your own Internet and data management services

• Principles to organize your application

• Go deeper
• Research projects, independent study, theses, …

Thanks, and all the best!


	Slide 1: Load Management
	Slide 2: Distribution & its consequences
	Slide 3: Load management
	Slide 4: Global load balancing
	Slide 5: Virtual IP addresses per datacenter
	Slide 6: Frontend load balancing
	Slide 7: Maintaining even load
	Slide 8: Problem: Statefulness
	Slide 9: Connection tracking and consistent hashing at the L4 LB
	Slide 10: Maglev (L4 LB) forwarder
	Slide 11: Hash table population
	Slide 12
	Slide 13: Actual packet forwarding
	Slide 14: Disruptions on lookup table change
	Slide 15
	Slide 16: Beyond the reverse proxy
	Slide 17: Beyond the reverse proxy
	Slide 18: Strategies to choose backends
	Slide 19: Autoscaling
	Slide 20: Load shedding
	Slide 21
	Slide 22: Internet Services
	Slide 23: Operations
	Slide 24: What next?

