
Distributed Systems: Consensus

Lecture 12b

Srinivas Narayana

http://www.cs.rutgers.edu/~sn624/553-S25

1

http://www.cs.rutgers.edu/~sn624/553-S25


Distributed Systems in Internet Services

Coordination services

Distributed consensus

Distributed storage

Load management



Distribution & its consequences

• Need replication to tackle machine failures and unavailability

• Q: How to make data consistent across replicas?

• One option: weak consistency models
• Example: eventually consistent

• Complex mental models: e.g., read, write, read

• Some data is too critical to be out of sync, e.g., Kubernetes cluster state

• Don’t sacrifice correctness at any point, e.g., financial systems

• Strong consistency: all reads (e.g., clients) return the same value
• Operations ordered globally; each read returns the result of the latest 

write

=



CAP Theorem

• (Strong) consistency: each read receives the most recent write

• Availability: read to any non-failed node returns a response

• Partition tolerance: continue to operate despite arbitrary 
message failure between nodes

• CAP theorem: Can’t get all three: Pick 2

• You really can’t choose CA in a practical system
• Network partitions will happen; design systems to tolerate them

• Result: give up either strong consistency or availability

consistency availability



Primitives to build Distributed Systems
• Clients may contact any replica or a distinguished replica

• Replicated state machines
• Replicated configuration and data stores (e.g., etcd)

• Leader election

• Distributed coordination & locking
• e.g., barriers between different computation phases (workflow)

• Reliable distributed queueing and messaging

b
a

rr
ie

r

b
a

rr
ie

r

Agreement on (meta)data that is distributed: Consensus



Simple solutions distributed consensus?

• Simple timeouts to determine a primary?
• “Split brain” problem: data corruption

• Data unavailable if conservative

• Problem amplified in clusters
• Disagreement in group membership

• Data corruption with separate leaders per group

• Network unavailability is common
• Slow network

• Some messages being dropped

• Messages throttled in one direction



Setup: Agree on one value forever
• Suppose we have N = 2f + 1 nodes

• Want to agree on one value across the distributed system

• Assume no clock synchronization (clocks can drift)

• Asynchronous: the network can delay or drop messages

• Crash recovery 

• Nodes execute correctly (not Byzantine)

• Assume a majority of the nodes can reach each other (quorum)
• Agree on the same value even as nodes crash and recover

• N = 2f + 1

• With f failures (unavailable), the rest is consistent and available



Simple Agreement: Prepare and Accept

• Single designated acceptor?
• That acceptor node can fail

• Multiple acceptors?
• If a majority accept, agreement!

• Problems?

Proposer

A
c
c
e

p
to

rs



Some problems

• Multiple proposers
• Each proposer may propose different values

• Each acceptor may hear multiple proposals

• Acceptors may disagree
• Acceptors don’t know if other acceptors agreeing to the same proposal

• Acceptor may hear a different proposal after it accepted one
• Should it keep its acceptance or change its mind?

Proposer Acceptor AcceptorProposer



Properties we want: Safety

• If a majority of nodes have agreed on one value, that value 
cannot change in the future

• e.g., using a different majority or the same majority

• We call this value the chosen value



Properties we want: Liveness
• Liveness: majority of nodes 

must eventually choose a 
value

• FLP’s impossibility result: 
Deterministic algorithms 
cannot guarantee liveness 
under arbitrary network 
asynchrony (delay and 
loss)

• Good news: Realistic 
networks are not that 
adversarial (practically live 
protocols can be designed!)



Basic Paxos (1/3)

• Simple operation: a single proposer and (pure) acceptors

• P1: If only one value were proposed, it must be chosen
• An acceptor must accept the first proposal it receives

• If an acceptor fails, and two proposals were each accepted by 
roughly half the acceptors, the cluster cannot determine the 
chosen value

• Hence, want acceptors to be able to accept multiple proposals
• Proposals include transaction numbers (n); assume unique & increasing

• P2: If a proposal with value v is chosen, every other chosen 
proposal must have the same value v
• “Agree on some value, not necessarily my value”. P2 guarantees safety



Basic Paxos (2/3)

• P2a: One way to satisfy P2 is for acceptors to only accept 
proposals with the same value v once v is chosen

• P2b: One way to satisfy P2a for proposers to only propose 
proposals with the same value v that was chosen earlier

• P2c: One way to satisfy P2b is for any proposer to ask a set of 
acceptors (at least a majority responding) which proposal # and 
values accepted so far
• These are called promises



Basic Paxos (3/3)

• Acceptor agrees not to accept any proposal < n

• Proposer must use the value from the highest-numbered 
proposal accepted from the responses, or use its own value if 
no existing proposals were accepted

• Acceptor can only accept if not promised any proposal > n

• If a majority of acceptors promise, at least one acceptor must 
have responded with the chosen value and chosen proposal # 
(inductive argument)

• Subtle: Write information that must not be reneged into 
persistent storage (disk) for use after crash recovery







Learning the chosen value

• Read-only consensus: A majority of nodes must respond with a 
specific accepted value
• e.g., a client sends a message to all nodes

• Read from a replica guaranteed to be up to date, e.g., leader

• Quorum leases: a set of nodes hold a time-bound lease on a 
value. Updates must be acknowledged by all of these machines 
(reduced write performance) 



Implementing primitives atop Paxos

• Leader election: The chosen value is the leader

• Replicated State Machines:
• Agree on each command through Paxos: one Paxos instance for each 

”slot” in the ordered log of commands

• Once all slots up to slot j chosen, can compute state up to log slot j

• Locking, configuration store, etc. can be similarly implemented



Paxos does not guarantee liveness
• One solution: pre-determine or elect a distinguished leader



Improvements and Considerations

• Agreeing on multiple values and ordering

• e.g., multi-paxos: Elect a distinguished node (leader)

• only execute phase 2 afterwards until failure

• Other protocols
• Epaxos, Mencius, RAFT



Improvements and Considerations

• Disk latency vs. Network latency

• Uneven network latencies and choosing leaders


	Slide 1: Distributed Systems: Consensus
	Slide 2: Distributed Systems in Internet Services
	Slide 3: Distribution & its consequences
	Slide 4: CAP Theorem
	Slide 5: Primitives to build Distributed Systems
	Slide 6: Simple solutions distributed consensus?
	Slide 7: Setup: Agree on one value forever
	Slide 8: Simple Agreement: Prepare and Accept
	Slide 9: Some problems
	Slide 10: Properties we want: Safety
	Slide 11: Properties we want: Liveness
	Slide 12: Basic Paxos (1/3)
	Slide 13: Basic Paxos (2/3)
	Slide 14: Basic Paxos (3/3)
	Slide 15
	Slide 16
	Slide 17: Learning the chosen value
	Slide 18: Implementing primitives atop Paxos
	Slide 19: Paxos does not guarantee liveness
	Slide 20: Improvements and Considerations
	Slide 21: Improvements and Considerations

