Distributed Systems: Consensus

Lecture 12b
Srinivas Narayana
http://www.cs.rutgers.edu/~sn624/553-S25

RUTGERS

NNNNNNNNNNNNNNNNNNNNNN

http://www.cs.rutgers.edu/~sn624/553-S25

Distributed Systems In Internet Services

Coordination services o
Distributed storage

Distributed consensus Load management

Distribution & its consequences 50 5.0 0

* Need replication to tackle machine failures and unavailability
* Q: How to make data consistent across replicas?

* One option: weak consistency models

« Example: eventually consistent
« Complex mental models: e.qg., read, write, read
« Some data is too critical to be out of sync, e.qg., Kubernetes cluster state

* Don’t sacrifice correctness at any point, e.g., financial systems

 Strong consistency: all reads (e.qg., clients) return the same value
« Operations ordered globally; each read returns the result of the latest
write

CAP TheO rem consistency %«l =& 8\ wygg,’*ﬂiﬁ availability

e (Strong) consistency: each read receives the most recent write
- Avalilablility: read to any non-failed node returns a response

* Partition tolerance: continue to operate despite arbitrary
message failure between nodes

« CAP theorem: Can't get all three: Pick 2

* You really can’t choose CA in a practical system
* Network partitions will happen; design systems to tolerate them

* Result: give up either strong consistency or availability

Agreement on (meta)data that is distributed: CONSENSUS
Primitives to build Distributed Systems

 Clients may contact any replica or a distinguished repllca

* Replicated state machines
* Replicated configuration and data stores (e.g., etcd)

e Leader election

» Distributed coordination & locking B = g
* e.g., barriers between different computation phases (workflow)

. Reliable distributed queueing and messaging

Xeoly

—
3 S
T — |

2§ 2§ g g

cilyeolxalxdo| |[xeslyerlyeolxialxlo ——

Simple solutions distributed consensus?

» Simple timeouts to determine a primani? 4,
» “Split brain” problem: data corruption ~p
« Data unavailable if conservative

* Problem amplified in clusters
« Disagreement in group membership
- Data corruption with separate leaders per group,

. el \USSS Y,
» Network unavailability is common =
\

)

» Slow network
« Some messages being dropped
* Messages throttled in one direction

Setup: Agree on one value forever

* Suppose we have N = 2f + 1 nodes

* Want to agree on one value across the distributed system
« Assume no clock synchronization (clocks can drift)

« Asynchronous: the network can delay or drop messages
* Crash recovery

* Nodes execute correctly (not Byzantine)

* Assume a majority of the nodes can reach each other (quorum)
« Agree on the same value even as nodes crash and recover

*N = 2f + 1
« With f failures (unavailable), the rest is consistent and available

Simple Agreement: Prepare and Accept

Proposer

* Single designated acceptor? . 4 =
» That acceptor node can fall o >
<1 g &
) A <
_ Q Q
» Multiple acceptors? 2)
o iori o
If a majority accept, agreement! Z,

* Problems?

Some problems

« Multiple proposers
« Each proposer may propose different values
« Each acceptor may hear multiple proposals

« Acceptors may disagree
» Acceptors don’t know if other acceptors agreeing to the same proposal

« Acceptor may hear a different proposal after it accepted one
« Should it keep its acceptance or change its mind?

X
N
N S
S S
3 | g
< >
S ‘ 3

N

\

Proposer Proposer Acceptor Acceptor

Properties we want. Safety

* If a majority of nodes have agreed on one value, that value
cannot change in the future

* €.g., using a different majority or the same majority

« We call this value the chosen value

Properties we want: Liveness

* Liveness: majority of nodes e N
mu St even tu al Iy C h 0o0ose a Process 1 sends Prepare Process 1 sends Accept Process 1 makes another
V al ue message with a new View for its proposal but Process attempt, with a higher
number and a transaction 2 and 3 cannot accept its transaction number. Process 2
y T number. Process 2 responds proposal because Process 3 promises, which means that
° F I_ P S IM pOSS | b | I | ty resu It with a Promise message. has Proposed in the interim Process 3’ proposal cannot

and Process 2 has promised.

Deterministic algorithms

be accepted. The cycle
can repeat indefinitely.

cannot guarantee liveness
under arbitrary network \/ W /
asynchrony (delay and freesesiihe xe

consensus group

losSs) LY
- ’ = |
- Good news: Realistc
networks are not that Process 3 sends a conflicting Prepare messge,
. . . to which Process 2 responds with a Promise
adversarial (p ractical Iy live message. Process 1 does not receive the
protocols can be designed!) message it delayed

Basic Paxos (1/3)

» Simple operation: a single proposer and (pure) acceptors

« P1: If only one value were proposed, it must be chosen
* An acceptor must accept the first proposal it receives
e If an acceptor fails, and two proposals were each accepted by
roughly half the acceptors, the cluster cannot determine the
chosen value

« Hence, want acceptors to be able to accept multiple proposals
* Proposals include transaction numbers (n); assume unigue & increasing

« P2: If a proposal with value v Is chosen, every other chosen

proposal must have the same value v
« “Agree on some value, not necessarily my value”. P2 guarantees safety

Basic Paxos (2/3)

« P2a: One way to satisfy P2 is for acceptors to only accept
proposals with the same value v once v Is chosen

« P2b: One way to satisfy P2a for proposers to only propose
proposals with the same value v that was chosen earlier

« P2c: One way to satisfy P2b Is for any proposer to ask a set of
acceptors (at least a majority responding) which proposal # and

values accepted so far
* These are called promises

Basic Paxos (3/3)

 Acceptor agrees not to accept any proposal < n

* Proposer must use the value from the highest-numbered
proposal accepted from the responses, or use its own value If
no existing proposals were accepted

« Acceptor can only accept if not promised any proposal > n

* [f a majority of acceptors promise, at least one acceptor must
have responded with the chosen value and chosen proposal #

(inductive argument)

« Subtle: Write information that must not be reneged into
persistent storage (disk) for use after crash recovery

o
(a8
<

_ Jasodougd _ _ VET]p) 7

YV

asuodsay

A\

7\

'

(N'1)p=1deddy

A\

N

v

(A'L)pa1dandy

A

A

Y

(A'L)pa1daddy

qz aseyd

N

(A'1)izdadoy

egZ Iaseyd

Y

(9A'1)as1wold

Y V. .V __

\'4

|

"

. (gA’L)esiwoud
|

. (eA'L)asiwoud
|

ql aseyd

7\

(1)21edaud

el aseyd

Jaljiuspl ayy se |
s109|9s Jasodoud

.
T

1sanbay

slvl [2]lsllv] | sesodoig] | awen]

siau.lean s103dadoy

Phase 1. (a) A proposer selects a proposal number n and sends a prepare
request with number n to a majority of acceptors.

(b) If an acceptor receives a prepare request with number n greater
than that of any prepare request to which it has already responded,
then it responds to the request with a promise not to accept any more
proposals numbered less than n and with the highest-numbered pro-
posal (if any) that it has accepted.

Phase 2. (a) If the proposer receives a response to its prepare requests
(numbered n) from a majority of acceptors, then it sends an accept
request to each of those acceptors for a proposal numbered n with a
value v, where v is the value of the highest-numbered proposal among
the responses, or is any value if the responses reported no proposals.

(b) If an acceptor receives an accept request for a proposal numbered
n, it accepts the proposal unless it has already responded to a prepare
request having a number greater than n.

Learning the chosen value

« Read-only consensus: A majority of nodes must respond with a
specific accepted value

* e.g., a client sends a message to all nodes
* Read from a replica guaranteed to be up to date, e.g., leader

* Quorum leases: a set of nodes hold a time-bound lease on a
value. Updates must be acknowledged by all of these machines
(reduced write performance)

Implementing primitives atop Paxos

* L eader election: The chosen value is the leader

* Replicated State Machines:

« Agree on each command through Paxos: one Paxos instance for each
"slot” in the ordered log of commands

« Once all slots up to slot | chosen, can compute state up to log slot |
 Locking, configuration store, etc. can be similarly implemented

Paxos does not guarantee liveness

* One solution: pre-determine or elect a distinguished leader

It’s easy to construct a scenario in which two proposers each keep issuing
a sequence of proposals with increasing numbers, none of which are ever
chosen. Proposer p completes phase 1 for a proposal number n;. Another
proposer g then completes phase 1 for a proposal number no > n;. Proposer
p’s phase 2 accept requests for a proposal numbered nq are ignored because
the acceptors have all promised not to accept any new proposal numbered
less than ny. So, proposer p then begins and completes phase 1 for a new

proposal number n3 > n2, causing the second phase 2 accept requests of

proposer ¢ to be ignored. And so on.

P mmmmm e -3
Process 1sends Prepare Process 1 sends Accept Process 1 makes another
message with a new View for its proposal but Process attempt, with a higher
number and a transaction 2and 3 cannot acceptits transaction number. Process 2
number. Process 2 responds ~ proposal because Process3 promises, which means that
with a Promise message. has Proposed in the interim Process 3's proposal cannot
and Process 2 has promised. be accepted. The cycle
can repeat indefinitely.
II \\ II
,I \\ \\ I,
Processes in the Y i AW
consensus group oN N\
ll \\ / \‘
,II ')\‘ \\’
-- T >

Process 3 sends a conflicting Prepare messge,
to which Process 2 responds with a Promise
message. Process 1 does not receive the
message (or it is delayed).

Improvements and Considerations

« Agreeing on multiple values and ordering
 e.g., multi-paxos: Elect a distinguished node (leader)
* only execute phase 2 afterwards until failure

Phase 1: Proposer sends Prepare
message: with a new View number

° Other protoco|s and a transaction number.

Phase 2: Proposer sends Accept
message with view and transaction
numbers as well as the value proposed.

A\

» Epaxos, Mencius, RAFT o v
Acceptors \/

Acceptors respond with a Promise
message: this means that the new
view is accepted and proposals will
not be accepted with a lower view
number or transaction number.

Acceptors respond by sending Accepted
messages to all other members of the
group (unless they have Promised a
higher transaction number in the interim).

Improvements and Considerations

* Disk latency vs. Network latency

* Uneven network latencies and choosing leaders

Distinguished

leader process /\/ f\ ; f\\

Nearby

4
processes ~ cme=mm=se o
Shorter perceived
latencies
Distant
processes

Larger perceived latencies

	Slide 1: Distributed Systems: Consensus
	Slide 2: Distributed Systems in Internet Services
	Slide 3: Distribution & its consequences
	Slide 4: CAP Theorem
	Slide 5: Primitives to build Distributed Systems
	Slide 6: Simple solutions distributed consensus?
	Slide 7: Setup: Agree on one value forever
	Slide 8: Simple Agreement: Prepare and Accept
	Slide 9: Some problems
	Slide 10: Properties we want: Safety
	Slide 11: Properties we want: Liveness
	Slide 12: Basic Paxos (1/3)
	Slide 13: Basic Paxos (2/3)
	Slide 14: Basic Paxos (3/3)
	Slide 15
	Slide 16
	Slide 17: Learning the chosen value
	Slide 18: Implementing primitives atop Paxos
	Slide 19: Paxos does not guarantee liveness
	Slide 20: Improvements and Considerations
	Slide 21: Improvements and Considerations

