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Typical network structure: Fat Trees

…

Rack

ToR switch

Agg switch

Spine switch Capacities must 

increase as you 

go up the tree 



Goals

• Terminology: 
• tenant/customer and provider
• Virtual NIC (vNIC): network interface exposed with SR-IOV or network 

namespaces

• (1) Place tenant workloads on any physical machine

• (2) Scale or migrate tenant workload across physical machines 
at any time

• (3) Simplify configuration for everyone involved
• Views of tenant addresses and interfaces
• Tenant apps using load balancing, DNS-based IP discovery, etc.

• Provider’s ability to plumb network connectivity for tenant workloads
• Migration from on-premise compute cluster to shared cloud



Design Choice: CA’s or PA’s?

• Do VMs/pods use their own “customer addresses” (CA’s) or use 
the infrastructure’s “provider addresses” (PA’s)?

• PA’s: supporting routing is “business as usual” 
• But one tenant’s ports affected by other tenants on same machine 

• Need static allocation of ports to tenants, or dynamic port discovery

• Reduced isolation, more complex configuration, app changes

• CA’s: dedicated IP per VM/pod, visible to applications
• Clean and backwards compatible. e.g. DNS

• If VM/pod A sees its own address to be X, any VM/pod B talking to A 
also thinks that A has address X.  A is reachable with CA address X.

• However, need to design networking to route between CA’s, 

• Example: migrate VMs/pods across PA’s with unchanging CA



Networking in a multi-tenant data center
• Address virtualization: VMs/pods use own addresses (CA’s)

• Physical network does not know how to route CA’s

• Additional software to translate CA’s between PA’s: Tunneling

• Tunneling endpoint (TEP): software tun/tap interface, NIC hardware, or 
software switch within a hypervisor.  Overlay.

• TEP encapsulates and decapsulates packet headers (VXLAN, GRE)

• Topology virtualization: Tenants should be able to bring own 
custom network topologies or assume “one big switch”
• Facilitate migration into public cloud, consistent view for tenant’s 

monitoring and maintenance tools, etc.

• Supporting service models for the network
• e.g., rate limits and isolation across tenants sharing a physical machine



Making old software use new machines 

usually means making new machines 

behave like old ones.

(Also applies when “machines” substituted by “networks”)



Ex: Network Virtualization in Kubernetes

• Example with L2+L3 overlay



Network control is typically distributed

• Traditional IP network: Management tied to distributed protocols

• Ex: Set OSPF link weights to force traffic through a desired path

• Ex: Non-deterministic network state after a link failure

• Data and control plane controlled by vendors: proprietary interfaces

?

X
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Software-defined network
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Software-Defined Networking



SDN (1/2): Centralized control plane
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… into a logically centralized controller

… running in a compute cluster



SDN (2/2): Open interface to data plane 
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Some immediate consequences



(1) Simpler switches
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Data plane primitive: Match-action rules

• Match arbitrary bits in the packet header

• Match on any header, or new header

• Match exact, a subset (ternary), or over a range

• Allows any flow granularity

• Actions
• Forward to port(s), drop, send to controller, count,

• Overwrite header with mask, push or pop, …

• Forward at specific bit-rate

• Prioritized list of rules

HeaderData Match: 1000x01xx01001x

Action: fwd(port 2)

Priority: 65500



(2) Network programming abstractions
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(3) Formal verification of network policy
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(4) Unified network operating system
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Separate distributed system concerns from expressing intent
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New technical challenges of SDN
• Availability: surviving failures of the controller

• Controller scalability: many routers, many events

• Response time: Delays between controller and routers

• Consistency: Ensuring multiple controllers behave consistently

• Designing flexible router mechanisms

• Compilation: translating intent to mechanisms

• Verification: ensuring controller policy is faithfully implemented

• Security: entire network owned if the controller is exploited

• Interoperability: legacy routers; neighboring domains; …



Legacy?

• Openflow is just a protocol. The details can change or become 
irrelevant, but the philosophy is longer-lasting

• Programming software switches: Match-action abstraction 
common; programmable hardware switches common

• OVS modules available for the Linux kernel

• P4: protocol independence and stateful behavior in switches
• In-network computing
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