
Network Virtualization

Lecture 12a

Srinivas Narayana

http://www.cs.rutgers.edu/~sn624/553-S25

1

http://www.cs.rutgers.edu/~sn624/553-S25

Typical network structure: Fat Trees

…

Rack

ToR switch

Agg switch

Spine switch Capacities must

increase as you

go up the tree

Goals

• Terminology:
• tenant/customer and provider
• Virtual NIC (vNIC): network interface exposed with SR-IOV or network

namespaces

• (1) Place tenant workloads on any physical machine

• (2) Scale or migrate tenant workload across physical machines
at any time

• (3) Simplify configuration for everyone involved
• Views of tenant addresses and interfaces
• Tenant apps using load balancing, DNS-based IP discovery, etc.

• Provider’s ability to plumb network connectivity for tenant workloads
• Migration from on-premise compute cluster to shared cloud

Design Choice: CA’s or PA’s?

• Do VMs/pods use their own “customer addresses” (CA’s) or use
the infrastructure’s “provider addresses” (PA’s)?

• PA’s: supporting routing is “business as usual”
• But one tenant’s ports affected by other tenants on same machine

• Need static allocation of ports to tenants, or dynamic port discovery

• Reduced isolation, more complex configuration, app changes

• CA’s: dedicated IP per VM/pod, visible to applications
• Clean and backwards compatible. e.g. DNS

• If VM/pod A sees its own address to be X, any VM/pod B talking to A
also thinks that A has address X. A is reachable with CA address X.

• However, need to design networking to route between CA’s,

• Example: migrate VMs/pods across PA’s with unchanging CA

Networking in a multi-tenant data center
• Address virtualization: VMs/pods use own addresses (CA’s)

• Physical network does not know how to route CA’s

• Additional software to translate CA’s between PA’s: Tunneling

• Tunneling endpoint (TEP): software tun/tap interface, NIC hardware, or
software switch within a hypervisor. Overlay.

• TEP encapsulates and decapsulates packet headers (VXLAN, GRE)

• Topology virtualization: Tenants should be able to bring own
custom network topologies or assume “one big switch”
• Facilitate migration into public cloud, consistent view for tenant’s

monitoring and maintenance tools, etc.

• Supporting service models for the network
• e.g., rate limits and isolation across tenants sharing a physical machine

Making old software use new machines

usually means making new machines

behave like old ones.

(Also applies when “machines” substituted by “networks”)

Ex: Network Virtualization in Kubernetes

• Example with L2+L3 overlay

Network control is typically distributed

• Traditional IP network: Management tied to distributed protocols

• Ex: Set OSPF link weights to force traffic through a desired path

• Ex: Non-deterministic network state after a link failure

• Data and control plane controlled by vendors: proprietary interfaces

?

X

Traditional IP network

Data plane

Data plane

Data plane

Data plane

Control plane

Control plane

Control plane

Control plane

Software-defined network

Data plane

Data plane

Data plane

Data plane

Logically-centralized control plane

Software-Defined Networking

SDN (1/2): Centralized control plane

Data plane

Data plane

Data plane

SDN controller

Data plane

Control planes lifted from switches

… into a logically centralized controller

… running in a compute cluster

SDN (2/2): Open interface to data plane

Data plane

Data plane

Data plane

SDN controller

Data plane

Some immediate consequences

(1) Simpler switches

Data plane

Data plane

Data plane

Small set of hardware

instructions.

SDN controller

Data plane

Data plane primitive: Match-action rules

• Match arbitrary bits in the packet header

• Match on any header, or new header

• Match exact, a subset (ternary), or over a range

• Allows any flow granularity

• Actions
• Forward to port(s), drop, send to controller, count,

• Overwrite header with mask, push or pop, …

• Forward at specific bit-rate

• Prioritized list of rules

HeaderData Match: 1000x01xx01001x

Action: fwd(port 2)

Priority: 65500

(2) Network programming abstractions

Data plane

Data plane

Data plane

Application

SDN Controller: Compiler + Run-Time

Application Application

Write modular apps and compose them

Data plane

(3) Formal verification of network policy

Data plane

Data plane

Data plane

Application (specified as code)

SDN Controller: Compiler + Run-Time

Data plane

Static checking

Dynamic

checking

(4) Unified network operating system

Data plane

Data plane

Data plane

Application

Network Operating System

Application Application

Separate distributed system concerns from expressing intent

Data plane
Persist app state

Graceful failover

Replication for perf

Consistent view

New technical challenges of SDN
• Availability: surviving failures of the controller

• Controller scalability: many routers, many events

• Response time: Delays between controller and routers

• Consistency: Ensuring multiple controllers behave consistently

• Designing flexible router mechanisms

• Compilation: translating intent to mechanisms

• Verification: ensuring controller policy is faithfully implemented

• Security: entire network owned if the controller is exploited

• Interoperability: legacy routers; neighboring domains; …

Legacy?

• Openflow is just a protocol. The details can change or become
irrelevant, but the philosophy is longer-lasting

• Programming software switches: Match-action abstraction
common; programmable hardware switches common

• OVS modules available for the Linux kernel

• P4: protocol independence and stateful behavior in switches
• In-network computing

	Slide 1: Network Virtualization
	Slide 2: Typical network structure: Fat Trees
	Slide 3: Goals
	Slide 4: Design Choice: CA’s or PA’s?
	Slide 5: Networking in a multi-tenant data center
	Slide 6
	Slide 7: Ex: Network Virtualization in Kubernetes
	Slide 8: Network control is typically distributed
	Slide 9: Traditional IP network
	Slide 10: Software-defined network
	Slide 11: Software-Defined Networking
	Slide 12: SDN (1/2): Centralized control plane
	Slide 13: SDN (2/2): Open interface to data plane
	Slide 14: Some immediate consequences
	Slide 15: (1) Simpler switches
	Slide 16: Data plane primitive: Match-action rules
	Slide 17: (2) Network programming abstractions
	Slide 18: (3) Formal verification of network policy
	Slide 19: (4) Unified network operating system
	Slide 20: New technical challenges of SDN
	Slide 21: Legacy?

