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Hardware for System Virtualization

• Last lecture: system virtualization “without” hardware support
• e.g., x86-32: Use techniques such as DBT and paravirtualization

• CPU and memory hardware support much improved since the 00s!
• Instruction set and architectural extensions: Intel VT-x, AMD-v

• Extended page tables: Hardware support for multiple address translations

• IO support through SR-IOV and IOMMUs

• Paravirtualization is still useful for (further) efficiency but 
unnecessary for reasonably efficient basic VM functionality

• VMMs built for architectures with native hardware support: 
• KVM/qemu, integrated with Linux

• Xen was the basis of Amazon’s public cloud; KVM since ~2019
• Do we always need the heavyweight hammer of full virtualization?



Lightweight, OS-level virtualization

• First-party workloads:  e.g., within a single company
• Some degree of implicit trust
• Consolidation and efficient resource use is more important 

than full isolation

• Lightweight, operating-system-level virtualization: 
Containers

• Programs use the system call interface (ideally 
nothing else)

• No emulation, no need for special hardware support, 
or OS changes for e.g., paravirtualization

• Containers do need OS changes for finer-grained 
resource abstraction and control



Benefits of OS-level virtualization
• Application-centric view

• Run any app that is portable with the same system call interface

• No more management of machines & OSes; think of 
applications

• Decouple the management of OS & hardware from applications
• Roll out new hardware and OS without worrying about breaking apps

• Match development, testing, and deployment environments

• Convenient access points to communicate with the application
• E.g., expose health information, communicate resource allocations

• Relate machine telemetry to applications
• No need to tease out per-app metrics from machine-level metrics
• “The container is the application.”



Benefits of OS-level virtualization

• Resource sharing across virtualized units (containers)

• Shared OS kernel & utilities limit redundancy & improve 
consolidation

• Familiar kernel resource abstractions: process scheduling, 
memory allocation, etc.

• Container refers to two things at once:
• the run-time abstraction (process, access+resource isolation, FS)

• the stored software image (all software you need to run)



How are containers built?



What goes into a container?

• More like process virtualization than system virtualization
• No ISA virtualization; no native hardware support

• Memory and IO work the same way as processes

• What we call a container is a loose conglomeration of kernel-
level mechanisms

• Namespaces: Access isolation for global resources

• Cgroups: Resource/Performance isolation of global resources

• UnionFS: Improving efficiency through shared filesystem data

• Access control mechanisms: capabilities, filtering (eBPF, 
seccomp, appArmor)



Namespaces

• Access isolation

• Show an instance of a global resource as available to all 
processes inside a namespace (multiplexing)

• Changes visible to other processes within namespace, but 
invisible outside the namespace

• Show different “copies” of resources associated with the kind of 
namespace
• Network, IPC, mount, PID, …

• Every process starts in init namespace, change with setns

• Network: (software/hardware) network device; routing rules;  
port numbers. veth pair connects two network namespaces



Control groups
• Resource/Performance isolation

• Subsystem: a specific kind of resource
• CPU time, memory, network bandwidth, block device access, priority, 

CPU and memory (numa) node assignment
• Many configurable parameters per subsystem

• Control group or cgroup: a set of processes
• fork()-ed process inherits a bunch of parent attributes including cgroup

• Hierarchy: a tree where each node is a cgroup
• Many hierarchies can exist, unlike the process hierarchy

• Each subsystem “mounted” onto one hierarchy
• Possible to use a single hierarchy for multiple subsystems (resources)

• Every process has exactly one reservation per resource



UnionFS: “software images too big”
• Context: Data on storage typically “mounted” at some point in the 

virtual filesystem (/, /home/users/name, etc.)

• Containers want mostly the same files, with a small number of 
unique modifications per container (e.g., specific library versions)
• Think: common third-party packages, utilities, shared library images

• Union filesystem: maintain a stack of filesystems at each mount 
point. Only the highest one is writable; lower layers are read-only

• Inspired by similar use cases in the past: data on a read-only 
medium that needed a small number of updates before refreshing 
into a new medium (e.g., working on a CD filesystem in memory)

• Write fresh to the top; copy-on-write; copy up; deletion with 
“whiteout”. Cache heavily

• Virtual Filesystem (VFS) layer accomplishes this with minimal 
changes to underlying filesystem



Orchestrating Containers



Why Orchestration?

• When containers are so easy to use, users will create many

• Example: Instances of a microservice

• Example: Co-locating latency-sensitive jobs with batch jobs

• Kubernetes: an orchestrator created and evolved at Google 
• Today, a well-established project with a significant open-source 

ecosystem

• Pod: a group of related containers (app and allied processes)
• E.g., web service, along with logging, metrics

• Node: the machine (virtual or physical) on which pod scheduled



Evolution at Google: Borg

• Borg: a cluster manager

• Cells: units of machines managed by 
one controller

• Borgmaster: controller

• Borglet: program running locally on each 
machine to manage its resources

• Cluster state: the controller’s view of the 
mapping from tasks (containers) to 
nodes, health, resource allocation, etc.

• State is persisted in a highly-available 
distributed data store (e.g. Paxos)



Evolution at Google: Omega

• The controller needs to 
manage many different 
aspects of the cluster
• Mapping from container to 

node

• Resource allocation per 
container

• Number of instances per 
container

• Automatic scaling based on 
demand and usage

• Decouple cluster state from 
the (one) controller

• Use many controllers

Clients of the cluster state can 

read/write the state directly



Evolution at Google: Kubernetes

• Manage access to the cluster state through an API server

https://blog.devops.dev/the-kubernetes-architecture-e1ee01ccb76d

• Validation of policies, 

versioning, default 

objects, etc.

• Highly-available 

strongly consistent 

distributed data store: 

etcd

• Still use many 

decoupled controllers

• Kubelet: manage node



Kubernetes principles

• Consistent object representations
• Metadata (name, ID, version, labels)

• Specification (desired state)

• Status (observed state, read-only)

• Reconciliation controller loop: Make the observed state (status) 
match the desired state (specification)
• Example: number of replicas of a pod

• Many modular and interacting controllers
• Example: Auto-scaling and Replica controllers

• A failed-then-restarted controller has direct access to the observed 
state; no need to maintain complex internal state machines



More principles

• Each pod gets its own IP address
• Visible to other pods and apps in the same Kubernetes cluster
• Full access to all ports

• This IP address need not agree with physical IP address of the node
• Container Network Interface (CNI) to manage addressing & routing

• Labels to group containers
• Don’t just number the containers
• Key-value pairs that allow operator to define any attribute, 
• e.g., role=frontend

• Label selectors are sufficiently flexible to manage containers at 
time-varying granularity that is specified at operation time
• e.g., a controller that only manages role=frontend pods
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