
Application Architecture

Lecture 7

Srinivas Narayana

http://www.cs.rutgers.edu/~sn624/553-S25

1

http://www.cs.rutgers.edu/~sn624/553-S25

Review: Offline and Online components

User

request

Online, real-

time request

processing

Offline processing:

Batch processing; stream

events; ML training

Services,

databases,

ML inference

update

update

update

Review: Map-Reduce

Different

(intermediate)

key space

Same key

space

Processing steps in MapReduce

• Input data consumed from a distributed filesystem

• Master ships code to the worker node closest to data, if possible
(CPU, memory constraints permitting)

• Each mapper partitions its input data by the reducer key
• Typically, through a hash function, e.g., hash (key) mod R == r

• Sort output data (per partition) by the key; run map function

• Reducers are informed of partial result at each mapper

• Reducer pulls files from mappers through RPC

• Output persisted to distributed filesystem (typically involves
replication)

• Result: R output files in the DFS (one per reducer partition)

Implementation Key Principles

• Data locality
• Reduce network bandwidth: ship code to data

• Locally persist (not DFS) intermediate results

• Handle failures by re-doing compute
• No fancy hardware fault tolerance (e.g., RAID)

• Mapper failure: restart map job
• Assume deterministic operations

• Reducer failure (after completion): no problem (DFS)

• Identify and skip shards with deterministic faults

• Mitigate stragglers through eager replication of compute close to job
completion

• Combiners at mapper: preliminary reduce for associative and
commutative functions

More examples of using map-reduce

• Database Joins
• Example: user activity (e.g. URLs) with user information (e.g. age)

• Grouping (GROUPBY) aggregations:
• Count, sum, etc

• Creating the sequence of events in a user session, determining
whether e.g. a new version of a web page resulted in better sales

• Large distributed sorting

• Output sorting after mapper: important!

Building on Map-Reduce: (1) Workflows

• One Map-Reduce job isn’t usually enough

• Google web search index: pipeline of 10 jobs; recommendation
systems: 50—100

• Workflows: Chains of map-reduce jobs
• E.g., one MR for counting requests by URL; another to sort count

• Explicit output files from each?
• Like writing to file at the end of each tool in Unix pipeline

• Materialization of the intermediate results needed?

• Stragglers make workflows slower

• Separate systems needed just to orchestrate the workflows correctly

Building on Map-Reduce: (2) Dataflow

• Dataflow engines: handle the entire workflow
• “Operators”: chain map-reduce functions

• Only persist intermediate outputs to DFS when necessary

• Chain reducers (no explicit mappers) when the key is the same

• Don’t wait for stragglers of the previous job

• Stream Processing
• Incremental execution of batch jobs when new data arrives

• Selectively materialize or recompute intermediate results
• Lineages (RDD/Spark) or checkpoint

Serverless

Managing app deployments

• Consider a simple model to build and run your Internet
application:

• Develop application in the language of choice

• Build & test

• Deploy over on-premise equipment (bare-metal servers) or
cloud (virtual machines, containers, etc)

• Manage these resources

“_____ as a service”

https://cloud.google.com/learn/paas-vs-iaas-vs-saas

Serverless computing

• Even those unfamiliar with such resource management can deliver
(scalable, high performance, high availability, etc.) services

• Often only provide source code for the framework/runtime (e.g.
python)

• Many commercial offerings available today (AWS, Azure, Google)
• Bindings in Javascript, Python, C#, etc

• What if you could write code that deploys

directly into a managed (cloud-like)

environment?

• Programming model/abstraction reminiscent

of functional programming

Serverless Abstractions

• Stateless functions
• No persistent memory across invocations

• Event-triggered:
• E.g. HTTP request

• E.g. notification from a message router

• Computation decoupled from where/how it is run
• Placement, scaling, and fault tolerance are managed by someone else

• Charged for execution time, not allocated resources
• “pay as you go”

• Scale down to zero cost when service is idle

Servers required

But someone else manages them

Example (1/3)

import json

def hello(event, context):

 body = {

 "message": "Go Serverless v4.0! Your function

executed successfully!",

 }

 response = {"statusCode": 200, "body":

json.dumps(body)}

 return response

https://github.com/serverless/examples/blob/v4/aws-python-http-api/handler.py

Example (2/3)
def lucky_number(event, context):

 upperLimit = 100

 number = random.randint(0, upperLimit)

 response = {

 'version': '1.0',

 'response': {

 'outputSpeech': {

 'type': 'PlainText',

 'text': 'Your lucky number is ' + str(number),

 }

 }

 }

 return response

https://github.com/serverless/examples/blob/v4/aws-python-alexa-skill/handler.py

https://github.com/serverless/examples

https://github.com/serverless/examples/blob/v4/aws-python-alexa-skill/handler.py
https://github.com/serverless/examples

More examples (3/3)
• Event processing

• Offloading computation from mobile
apps

• Coordination service

• Edge computation (CDNs, IoTs)

• Chatbots Bursty, compute-intensive,

short lived

Consequences of serverless abstraction

• Stateless: Database/storage integration becomes necessary
• Storage options: ephemeral? Long-term? High IOPS? Low latency?

• Ecosystem of other tools:
• Manage state, record logs, send alerts, perform authentication and

authorization, messaging queues, cloud-based storage

• Prone to vendor lock-in!

• Relinquish control of resource provisioning, monitoring,
maintenance, scalability, fault tolerance, placement, logging, …

• Cost-driven decision making
• Your billing tier depends on memory provisioned

• Packages and software libraries that inflate memory size
• Consequences of long polling, websockets?

Consequences of serverless abstraction

• Supporting stateful interactions (HTTP cookies, sessions)
• Retrieve session state from storage across several connections/requests

• Dedicated proxy to supply the session state

• How to compose multiple stateless functions?
• Coordination server (always on, itself not serverless)

• Use a messaging queue (message router/broker)

• May need frameworks and tools to turn existing high-level
language code (e.g. legacy applications) into serverless functions
• e.g. python decorator app.route(…) web-hook

• Unpredictable performance
• Functions may run on different kinds of machines

What should the hosting platform do?

• Take an event sent over HTTP or from an event source
• Determine which function(s) to which to dispatch the event

• Send event to a function instance

• Wait for a response, make it available to the user

• Gather execution logs

• Stop function when idle

• Isolate functions

• Orchestrate, scale

• Fault tolerance

• Locality: code, data, package

	Slide 1: Application Architecture
	Slide 2: Review: Offline and Online components
	Slide 3
	Slide 4: Processing steps in MapReduce
	Slide 5: Implementation Key Principles
	Slide 6: More examples of using map-reduce
	Slide 7: Building on Map-Reduce: (1) Workflows
	Slide 8: Building on Map-Reduce: (2) Dataflow
	Slide 9: Serverless
	Slide 10: Managing app deployments
	Slide 11: “_____ as a service”
	Slide 12: Serverless computing
	Slide 13: Serverless Abstractions
	Slide 14: Example (1/3)
	Slide 15: Example (2/3)
	Slide 16: More examples (3/3)
	Slide 17: Consequences of serverless abstraction
	Slide 18: Consequences of serverless abstraction
	Slide 19: What should the hosting platform do?

