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Review: Offline and Online components
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Partition-Aggregate
Processing interactive search queries



Review: Google search architecture

Web search for a planet, MICRO’03



Review of the Web Search workload

• Depending on the user’s query, decompress 
a part of an index, then search for document 
IDs there

• Depending on the user’s query,  collect 
snippets from within Web documents

• Data-dependent accesses

• High branch misprediction

• Blocks randomly accessed (OK within block)

• Fewer opportunities for instruction-level 
parallelism; faster/better servers not better



How to use parallelism?

• Few fast cores with 
high-speed 
interconnect, or more 
slow cores?

• Cost per query 
processed is dominated 
by capital server costs

• Power draw and 
cooling: faster == 
denser
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Discussion applies to both 

hyperthreaded or multicore

Assume: one thread == one core



Two kinds of parallelism
• Data parallelism: independent compute 

over shards of data
• Fast interconnects not as critical
• Stateless: little coordination within a request

• Request parallelism: independent 
compute across requests
• More machines for more requests
• Shard itself can be replicated for throughput

• Need lower latency?  

• Compensate slow cores with smaller 
shard (add more shards)
• Each shard becomes more available

• Turn throughput into latency advantage
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Many apps can use partition-aggregate

• Need low latency, but single-threaded low latency is hard

• Data parallelism
• Little coordination across shards

• Inexpensive merges across partial results from shards

• Query parallelism
• More replicas/machines for more requests

• Use commodity (not fancy) hardware

• Turn high throughput into a latency advantage

• Focus on price per unit performance

• Significant problems: cooling for many compute servers



Tail performance becomes important

• Many shards are queried for a single user-level query

• Delays in any one of them can delay the entire response
• Leaving the shard out degrades the result

• Example: 1000 shards* 10 user requests per session
• 1 delay in 10,000 machine-level responses can be visible to a user

• 99.99th percentile delay matters

• Lots of delay on cutting the tail: hedging, duplication, …

• With partition-aggregate, each 
machine may serve many requests 
within a single user-level request

• A single user sends multiple 
requests over a session



Map Reduce
Batch processing with simple abstractions



Example: Batch data processing

• Server access log: want to get top-5 URLs visited

192.0.2.1 - - [07/Dec/2021:11:45:26 -0700] "GET 
/index.html HTTP/1.1" 200 4310

• Analytics (not real time user query). How would you go about it?

• One way: shell script

cat /var/log/nginx/access.log

| awk ‘{print $7}’

| sort

| uniq –c

| sort –r –n

| head –n 5



Example: Batch data processing

Another way: Python script

counts = {}

for line in open(“/var/log/access.log”):

    url = line.split()[6]

    counts[url] += 1

sorted_counts = counts.items().sort()[::-1]

print (sorted_counts[0:5])

Which method would you use, and why?



What do we want from implementation?

• Process large log files, even when doesn’t fit into memory

• Ability to experiment with different processing steps
• Without corrupting the original data

• Unix principles help! 

• Programs/tools that do one thing well (e.g., sort)

• Separate logic from wiring
• Any tool can produce for, or consume from, any other tool (pipe |)

• Inputs come from standard input or a file. Immutable inputs

• A choice to inspect data or write to disk anywhere (e.g., tee)

• Inspect output at any point (e.g., less)



Map-Reduce

• One way to think about it: a distributed implementation of Unix 
processing pipelines for large batch processing
• Large data sets: data comes from a distributed filesystem (GFS, HDFS)

• Large computations: want to use multiple servers since data-intensive

• Examples:
• Distributed grep, term frequencies, distributed sort

• Output?
• A data structure, e.g., a search index

• A set of pre-computed values for faster reads, e.g., key-value cache

• Input to load into a traditional relational database (SQL) or view



Distributed system considerations

• Data resides on multiple machines
• How to bring data together? How to compute with parallel machines?

• Network bandwidth between servers is a significant consideration

• How to handle failures?
• Machine failures? 

• What happens to partial computations? 
• Should we replicate compute? 

• What happens to intermediate results? 
• Should you persist it? Replicate it?

Algorithm developers == Distributed system experts?

MapReduce



Abstraction borrowed from 

functional programming

Many different 

implementations exist

Key advantage of 

MapReduce: handle dist 

system issues!
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