
Application Architecture

Lecture 6

Srinivas Narayana

http://www.cs.rutgers.edu/~sn624/553-S25

1

http://www.cs.rutgers.edu/~sn624/553-S25

Review: Offline and Online components

User

request

Online, real-

time request

processing

Offline processing:

Batch processing; stream

events; ML training

Services,

databases,

ML inference

update

update

update

Partition-Aggregate
Processing interactive search queries

Review: Google search architecture

Web search for a planet, MICRO’03

Review of the Web Search workload

• Depending on the user’s query, decompress
a part of an index, then search for document
IDs there

• Depending on the user’s query, collect
snippets from within Web documents

• Data-dependent accesses

• High branch misprediction

• Blocks randomly accessed (OK within block)

• Fewer opportunities for instruction-level
parallelism; faster/better servers not better

How to use parallelism?

• Few fast cores with
high-speed
interconnect, or more
slow cores?

• Cost per query
processed is dominated
by capital server costs

• Power draw and
cooling: faster ==
denser

Fast core Fast core

Fast core Fast core

Slow

core

Slow

core

Slow

core

Slow

core

Slow

core

Slow

core

Slow

core

Slow

core

Slow

core

Server rack
Discussion applies to both

hyperthreaded or multicore

Assume: one thread == one core

Two kinds of parallelism
• Data parallelism: independent compute

over shards of data
• Fast interconnects not as critical
• Stateless: little coordination within a request

• Request parallelism: independent
compute across requests
• More machines for more requests
• Shard itself can be replicated for throughput

• Need lower latency?

• Compensate slow cores with smaller
shard (add more shards)
• Each shard becomes more available

• Turn throughput into latency advantage

1 2 3

4 5 6

4 4 4

a

b

a

b

Google search

DNS

GFE

LB
GWS

Index

servers
Doc

servers
A

ll-
u

p
 S

L
O

 (
3

0
0

 m
s
)

user

Pick

one

W
o
rd

 →
 D

o
c

(D
o

c
, w

o
rd

) →
 S

n
ip

p
e

t

Relevant

document

IDs

Snippet

results

1

2

1

2

Many apps can use partition-aggregate

• Need low latency, but single-threaded low latency is hard

• Data parallelism
• Little coordination across shards

• Inexpensive merges across partial results from shards

• Query parallelism
• More replicas/machines for more requests

• Use commodity (not fancy) hardware

• Turn high throughput into a latency advantage

• Focus on price per unit performance

• Significant problems: cooling for many compute servers

Tail performance becomes important

• Many shards are queried for a single user-level query

• Delays in any one of them can delay the entire response
• Leaving the shard out degrades the result

• Example: 1000 shards* 10 user requests per session
• 1 delay in 10,000 machine-level responses can be visible to a user

• 99.99th percentile delay matters

• Lots of delay on cutting the tail: hedging, duplication, …

• With partition-aggregate, each
machine may serve many requests
within a single user-level request

• A single user sends multiple
requests over a session

Map Reduce
Batch processing with simple abstractions

Example: Batch data processing

• Server access log: want to get top-5 URLs visited

192.0.2.1 - - [07/Dec/2021:11:45:26 -0700] "GET
/index.html HTTP/1.1" 200 4310

• Analytics (not real time user query). How would you go about it?

• One way: shell script

cat /var/log/nginx/access.log

| awk ‘{print $7}’

| sort

| uniq –c

| sort –r –n

| head –n 5

Example: Batch data processing

Another way: Python script

counts = {}

for line in open(“/var/log/access.log”):

 url = line.split()[6]

 counts[url] += 1

sorted_counts = counts.items().sort()[::-1]

print (sorted_counts[0:5])

Which method would you use, and why?

What do we want from implementation?

• Process large log files, even when doesn’t fit into memory

• Ability to experiment with different processing steps
• Without corrupting the original data

• Unix principles help!

• Programs/tools that do one thing well (e.g., sort)

• Separate logic from wiring
• Any tool can produce for, or consume from, any other tool (pipe |)

• Inputs come from standard input or a file. Immutable inputs

• A choice to inspect data or write to disk anywhere (e.g., tee)

• Inspect output at any point (e.g., less)

Map-Reduce

• One way to think about it: a distributed implementation of Unix
processing pipelines for large batch processing
• Large data sets: data comes from a distributed filesystem (GFS, HDFS)

• Large computations: want to use multiple servers since data-intensive

• Examples:
• Distributed grep, term frequencies, distributed sort

• Output?
• A data structure, e.g., a search index

• A set of pre-computed values for faster reads, e.g., key-value cache

• Input to load into a traditional relational database (SQL) or view

Distributed system considerations

• Data resides on multiple machines
• How to bring data together? How to compute with parallel machines?

• Network bandwidth between servers is a significant consideration

• How to handle failures?
• Machine failures?

• What happens to partial computations?
• Should we replicate compute?

• What happens to intermediate results?
• Should you persist it? Replicate it?

Algorithm developers == Distributed system experts?

MapReduce

Abstraction borrowed from

functional programming

Many different

implementations exist

Key advantage of

MapReduce: handle dist

system issues!

Different

(intermediate)

key space

Same key

space

	Slide 1: Application Architecture
	Slide 2: Review: Offline and Online components
	Slide 3: Partition-Aggregate
	Slide 4: Review: Google search architecture
	Slide 5: Review of the Web Search workload
	Slide 6: How to use parallelism?
	Slide 7: Two kinds of parallelism
	Slide 8: Google search
	Slide 9: Many apps can use partition-aggregate
	Slide 10: Tail performance becomes important
	Slide 11: Map Reduce
	Slide 12: Example: Batch data processing
	Slide 13: Example: Batch data processing
	Slide 14: What do we want from implementation?
	Slide 15: Map-Reduce
	Slide 16: Distributed system considerations
	Slide 17

