Application Architecture

Lecture 6
Srinivas Narayana
http://www.cs.rutgers.edu/~sn624/553-S25

RUTGERS

NNNNNNNNNNNNNNNNNNNNNN


http://www.cs.rutgers.edu/~sn624/553-S25

Review: Offline and Online Components
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Partition-Aggregate



Review: Google search architecture
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Review of the Web Search workload
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« Data-dependent accesses
« High branch misprediction
 Blocks randomly accessed (OK within block)

* Fewer opportunities for instruction-level
parallelism; faster/better servers not better

instructions retired.



Assume: one thread == one core

How to use parallelism?

* Few fast cores with
high-speed
Interconnect, or more
slow cores?

* Cost per query
orocessed i1s dominated
Oy capital server costs

=2 * Power draw and
cooling: faster ==
denser

Discussion applies to both
hyperthreaded or multicore
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Two Kkinds of parallelism

 Data parallelism: independent compute
over shards of data
 Fast interconnects not as critical
 Stateless: little coordination within a request

* Request parallelism: independent
compute across requests
 More machines for more requests
« Shard itself can be replicated for throughput

* Need lower latency?

« Compensate slow cores with smaller
shard (add more shards) .
« Each shard becomes more available Y

 Turn throughput into latency advantage .e;% .. |
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Many apps can use partition-aggregate

* Need low latency, but single-threaded low latency is hard

« Data parallelism
e Little coordination across shards
* Inexpensive merges across partial results from shards

* Query parallelism
* More replicas/machines for more requests

« Use commodity (not fancy) hardware

 Turn high throughput into a latency advantage

* Focus on price per unit performance

« Significant problems: cooling for many compute servers



Tall performance becomes important

* With partition-aggregate, each
machine may serve many requests
within a single user-level request

* Asingle user sends multiple
requests over a session

 Many shards are gueried for a single user-level query

* Delays in any one of them can delay the entire response
 Leaving the shard out degrades the result

« Example: 1000 shards* 10 user requests per session

1 delay in 10,000 machine-level responses can be visible to a user
« 99,99 percentile delay matters

* Lots of delay on cutting the tail: hedging, duplication, ...

deadline=250ms

deadline=50ms



Map Reduce

Batch processing with simple abstractions



Example: Batch data processing

» Server access log: want to get top-5 URLSs visited

192.0.2.1 - - [07/Dec/2021:11:45:26 -0700] "GET
/index.html HTTP/1.1"™ 200 4310

* Analytics (not real time user guery). How would you go about it?

* One way: shell script
cat /var/log/nginx/access.log
| awk ‘{print $7}’
| sort
| unig -c
| sort —-r —n
| head —n 5



Example: Batch data processing

Another way: Python script
counts = {}

for line in open(“/var/log/access.log”):
url = line.split () [6]
counts|url] += 1
sorted counts = counts.items () .sort () [::-1]
print (sorted counts[0:5])

Which method would you use, and why?



What do we want from implementation?

* Process large log files, even when doesn't fit into memory

 Ability to experiment with different processing steps
« Without corrupting the original data

 Unix principles help!
« Programs/tools that do one thing well (e.g., sort)

« Separate logic from wiring
« Any tool can produce for, or consume from, any other tool (pipe |)
* Inputs come from standard input or a file. Immutable inputs
A choice to inspect data or write to disk anywhere (e.g., tee)

* [nspect output at any point (e.g., less)




Map-Reduce

* One way to think about it: a distributed implementation of Unix
processing pipelines for large batch processing
« Large data sets: data comes from a distributed filesystem (GFS, HDFS)
« Large computations: want to use multiple servers since data-intensive

« Examples:
* Distributed grep, term frequencies, distributed sort

* Output?
« A data structure, e.g., a search index
» A set of pre-computed values for faster reads, e.g., key-value cache
* Input to load into a traditional relational database (SQL) or view



Distributed system considerations

» Data resides on multiple machines
* How to bring data together? How to compute with parallel machines?
* Network bandwidth between servers is a significant consideration

MapReduce CrlhErbEp SpQﬁ(Y

« How to handle failures?
« Machine failures?

« What happens to partial computations?
« Should we replicate compute?
« What happens to intermediate results?
« Should you persist it? Replicate it?
-_-

Algorithm developers == Distributed system experts?




Abstraction borrowed from
functional programming
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