Application Architecture

Lecture 6
Srinivas Narayana
http://www.cs.rutgers.edu/~sn624/553-S25

RUTGERS

NNNNNNNNNNNNNNNNNNNNNN

http://www.cs.rutgers.edu/~sn624/553-S25

Review: Offline and Online Components

. " Services, £ update
databases, Sl = = -

ML inference |
User 5

request: é @

5 Online, real-
time request
processmg

Offline processing:
Batch processing; stream
Y events; ML training

.
ll

Partition-Aggregate

Review: Google search architecture

:

Google Web server

Spell checker

e =
‘\\\ Ad server

\\ \\\\ \ |

X m

P /1 AN VAV AV e
/’{/ %
'(/1
[
Index servers

Document servers

Web search for a planet, MICRO’03

Review of the Web Search workload

_ : Characteristic Value
* Depending on the user’s query, decompress Cyeles perinstruction T
- Ratios (percentage)

a part of an index, then search for document ™. i y
IDS there Level 1 instruction miss* 04

] : Level 1 data miss* 0.7

* Depending on the user’s query, collect Lovel 2 miss* 03
snippets from within Web documents e o

* Cache and TLB ratios are per

« Data-dependent accesses
« High branch misprediction
 Blocks randomly accessed (OK within block)

* Fewer opportunities for instruction-level
parallelism; faster/better servers not better

instructions retired.

Assume: one thread == one core

How to use parallelism?

* Few fast cores with
high-speed
Interconnect, or more
slow cores?

* Cost per query
orocessed i1s dominated
Oy capital server costs

=2 * Power draw and
cooling: faster ==
denser

Discussion applies to both
hyperthreaded or multicore

SUPERMI(R

!
[
[
=i
ikl
i
!
i
i
!

'
A

Server rack

e BN BN EN— i BN &N kN ENT
4 L 2+ 3 ¥ 4 B 0§ 46 T 0w s 0

Fast core

Fast core Fast core

Slow Slow Slow
core core core

Slow o Slow
core . core

Slow Slow Slow
core core core

Two Kkinds of parallelism

 Data parallelism: independent compute
over shards of data
 Fast interconnects not as critical
 Stateless: little coordination within a request

* Request parallelism: independent
compute across requests
 More machines for more requests
« Shard itself can be replicated for throughput

* Need lower latency?

« Compensate slow cores with smaller
shard (add more shards) .
« Each shard becomes more available Y

 Turn throughput into latency advantage .e;% .. |

Index Doc
servers

Google search

user n DNS |

Relevanta
document: /

IDs.

SnippetE - .
results = / .

All-up SLO (300 ms)

Many apps can use partition-aggregate

* Need low latency, but single-threaded low latency is hard

« Data parallelism
e Little coordination across shards
* Inexpensive merges across partial results from shards

* Query parallelism
* More replicas/machines for more requests

« Use commodity (not fancy) hardware

 Turn high throughput into a latency advantage

* Focus on price per unit performance

« Significant problems: cooling for many compute servers

Tall performance becomes important

* With partition-aggregate, each
machine may serve many requests
within a single user-level request

* Asingle user sends multiple
requests over a session

 Many shards are gueried for a single user-level query

* Delays in any one of them can delay the entire response
 Leaving the shard out degrades the result

« Example: 1000 shards* 10 user requests per session

1 delay in 10,000 machine-level responses can be visible to a user
« 99,99 percentile delay matters

* Lots of delay on cutting the tail: hedging, duplication, ...

deadline=250ms

deadline=50ms

Map Reduce

Batch processing with simple abstractions

Example: Batch data processing

» Server access log: want to get top-5 URLSs visited

192.0.2.1 - - [07/Dec/2021:11:45:26 -0700] "GET
/index.html HTTP/1.1"™ 200 4310

* Analytics (not real time user guery). How would you go about it?

* One way: shell script
cat /var/log/nginx/access.log
| awk ‘{print $7}’
| sort
| unig -c
| sort —-r —n
| head —n 5

Example: Batch data processing

Another way: Python script
counts = {}

for line in open(“/var/log/access.log”):
url = line.split () [6]
counts|url] += 1
sorted counts = counts.items () .sort () [::-1]
print (sorted counts[0:5])

Which method would you use, and why?

What do we want from implementation?

* Process large log files, even when doesn't fit into memory

 Ability to experiment with different processing steps
« Without corrupting the original data

 Unix principles help!
« Programs/tools that do one thing well (e.g., sort)

« Separate logic from wiring
« Any tool can produce for, or consume from, any other tool (pipe |)
* Inputs come from standard input or a file. Immutable inputs
A choice to inspect data or write to disk anywhere (e.g., tee)

* [nspect output at any point (e.g., less)

Map-Reduce

* One way to think about it: a distributed implementation of Unix
processing pipelines for large batch processing
« Large data sets: data comes from a distributed filesystem (GFS, HDFS)
« Large computations: want to use multiple servers since data-intensive

« Examples:
* Distributed grep, term frequencies, distributed sort

* Output?
« A data structure, e.g., a search index
» A set of pre-computed values for faster reads, e.g., key-value cache
* Input to load into a traditional relational database (SQL) or view

Distributed system considerations

» Data resides on multiple machines
* How to bring data together? How to compute with parallel machines?
* Network bandwidth between servers is a significant consideration

MapReduce CrlhErbEp SpQﬁ(Y

« How to handle failures?
« Machine failures?

« What happens to partial computations?
« Should we replicate compute?
« What happens to intermediate results?
« Should you persist it? Replicate it?
-_-

Algorithm developers == Distributed system experts?

Abstraction borrowed from
functional programming
Many different (l)f"q{- (1) fork €1 fork
Implementations exist | '

Key advantage of
MapReduce: handle dist

: @2) - ' assign
- J . as'sign reduce .)
system Issues! e .
split 0
split 1

(5) remote read

split 2 M‘Q (4) local write
worker >
split 3

split 4
Input Map Intermediate files
files phase (on local disks)

reduce
Program
. @) '

(k1,v1) —>list(k2 v2)

wt (v2) Tist (

Different Same ke
(intermediate) Space y
key space P
(6) write
worker (Etsgt

file 1

Reduce Output
phase files

	Slide 1: Application Architecture
	Slide 2: Review: Offline and Online components
	Slide 3: Partition-Aggregate
	Slide 4: Review: Google search architecture
	Slide 5: Review of the Web Search workload
	Slide 6: How to use parallelism?
	Slide 7: Two kinds of parallelism
	Slide 8: Google search
	Slide 9: Many apps can use partition-aggregate
	Slide 10: Tail performance becomes important
	Slide 11: Map Reduce
	Slide 12: Example: Batch data processing
	Slide 13: Example: Batch data processing
	Slide 14: What do we want from implementation?
	Slide 15: Map-Reduce
	Slide 16: Distributed system considerations
	Slide 17

