
Application Architecture

Lecture 5

Srinivas Narayana

http://www.cs.rutgers.edu/~sn624/553-S25

1

http://www.cs.rutgers.edu/~sn624/553-S25

Components of an Internet Service

Endpoints

Routers

Data Center

Servers

Modularized applications

Storage Interconnect: Routers

App compute and

communication patterns

Offline and Online components

User

request

Online, real-

time request

processing

Offline processing:

Batch processing; stream

events; ML training

Services,

databases,

ML inference

update

update

update

Review: Web server design

• Process other requests while waiting for one to finish

bind(IPaddrB, portB)

listen()

accept()

recv()/send()/..

IPB + portB
process

socket

Review: Parallelism

• Process requests in parallel with other requests

• One design: multiprocessing/multithreading (MP/MT)

bind(IPaddrB, portB)

listen()

accept()

fork()

recv()/send()/..

IPB + portB
process

socket
accept()

listen()
listen()

send()

recv()

accept()

listen()
send()

recv()

send()

recv()

Great to avoid blocking (disk

I/O, fastCGI, …) Overhead grows with # connections
more

longer lived

Concurrency

• Process other requests while waiting for one to finish

• A different design: single process event driven (SPED)

bind(IPaddrB, portB)

listen()

accept()

recv()/send()/..

IPB + portB
process

socket

accept()

Lightweight

recv()

A queue of events

Can block if any of the requests block

(asynchronous IO support can be incomplete & complex)

State of the art designs combine

parallelism (multiprocess/thread)

with concurrency (event-driven)

epoll, select, kqueue, io_uring

Avoid overheads of multiple

processes and threads

Using parallelism + concurrency

• Asymmetric Multi-Process Event Driven (AMPED)

Blocking

operations

Event-driven

main process

https://aosabook.org/en/v2/nginx.html

Next: Application architecture

Partition-Aggregate
Microservices

Map-ReduceCommunication
Web servers

Microservice Architectural
Pattern

Monoliths

HTTP

server

App

CGI
Language

frameworks

Changes

coupled

Coordination

across dev

teams

Releases

Scaling

Transient functions

Troubleshooting

Challenges

Microservices

HTTP

server

Language

of choice

Independently

upgrade and

deploy

App

App

Independent/de-

centralized data

models & storage

Models must be

explicitly related

Distinct

from a

software

library:

Out of

process.

Loosely-coupled services

Explicit

communication

https://martinfowler.com/microservices/https://martinfowler.com/articles/microservices.html

How to split?

HTTP

server

App

AppBusiness Capabilities

Boundaries of change

Lifetime of the service?

Who should know (or not)?

Changing together vs separately?

Heterogeneity in resource use

Refactoring common functionality

Salient new concerns

HTTP

server

App

AppCommunication
No longer a function call

Design good module boundaries

Failures
Networks & components fail

No longer in the same process

Communication

App App
1 Synchronous blocking

(request-response)

Remote Procedure Call (RPC)

Serialization format (e.g., protobufs)

struct customer {

 string name;

 int customer_id;

 ..;

}

01101010101…

JSON

XML

struct customer {

 string name;

 int customer_id;

 ..;

}

…
Lots of waiting;

Increasing

likelihood of failure

Communication

App App
1 Synchronous blocking

(request-response)

Message

router

2 Asynchronous

request-response

Can do useful

work while

waiting (but still

need timeouts)

4 Shared data

(async)

callback()

3 Event streaming

(asynchronous)

“Building microservices”, Sam Newman

Not

expecting a

response

Cost of communication: Performance

Profiling a warehouse-scale computer (Google). ISCA’15.

Cost of comm: Hotspot spreading

Deathstarbench. ASPLOS’19.

Cost of comm: high level failure handling

App App

(Soft or hard)

Circuit

breaker

Connection

issue

TimeoutTimeout

Timeout
tr

ipTimeout

Fail immediately

Are microservices always ideal?

• Just an architectural style. Look at solving problems first

• How to evolve the splitting of components?
• Refactoring microservice interfaces later isn’t easy

• Interface changes need buy-in from multiple dev teams

• Components should compose cleanly in the first place

• How to design apps?
• Monolith first, or microservices from the beginning?

• Testing, Observability, Deploy automation

• How significant are dev coordination overheads?

• Complexity

Partition-Aggregate
Processing interactive search queries

Web search: some numbers (circa 2003)

• 10s of terabytes of web corpus data
• Read 100s of megabytes per query

• 10s of billions of CPU instructions per query

• Data accessed depends on the query; hard to predict

• All results to be returned to users within (say) 300 milliseconds

• Cannot process on a single machine within acceptable time

Example: Google search architecture

Web search for a planet, MICRO’03

Quick Review: Compute & Memory Org

Instruction pipeline

L1 I-cache I-TLB

L2 cache

Instruction pipeline

Instruction pipeline

Main memory

L3 cache

L1 D-cache

Compute

(single threaded core)

Memory

hierarchy

S
lo

w
e
r

b
u

t
la

rg
e

r

Fetch

(on hit)

Branch predictors

(out of order +

speculative)

Retire

Registers

Measurements from one (index) server

• Not too fast single-threaded
• Data dependencies

• Branches often mispredicted

• Small instruction memory
footprint

• Data locality within a block, but
not across blocks

• Numbers not much better on a
newer architecture

• Can’t drive high single-threaded
performance Web search for a planet, MICRO’03.Use parallelism

	Slide 1: Application Architecture
	Slide 2: Components of an Internet Service
	Slide 3: Offline and Online components
	Slide 4: Review: Web server design
	Slide 5: Review: Parallelism
	Slide 6: Concurrency
	Slide 7: Using parallelism + concurrency
	Slide 8: Next: Application architecture
	Slide 9: Microservice Architectural Pattern
	Slide 10: Monoliths
	Slide 11: Microservices
	Slide 12
	Slide 13: How to split?
	Slide 14: Salient new concerns
	Slide 15: Communication
	Slide 16: Communication
	Slide 17: Cost of communication: Performance
	Slide 18: Cost of comm: Hotspot spreading
	Slide 19: Cost of comm: high level failure handling
	Slide 20: Are microservices always ideal?
	Slide 21: Partition-Aggregate
	Slide 22: Web search: some numbers (circa 2003)
	Slide 23: Example: Google search architecture
	Slide 24: Quick Review: Compute & Memory Org
	Slide 25: Measurements from one (index) server

