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Review: Web server design

* Process other requests while waiting for one to finish

@ |Pg + portg
socket

bind (IPaddry, portg)

listen ()
A

accept ()

recv () /send () /..




Review: Parallelism

* Process requests in parallel with other requests
* One design: multiprocessing/multithreading (MP/MT)

@ |Pg + portg
socket

bind (IPaddry, portg)

listen () send ()
listen() S recv () listen ()
— § %
accept () % accept ()
fork ()
listen () send () send () recv () /send () /..
) i i recv () recv ()
Great to avoid blocking (disk more

/0, fastCGl, ...) Overhead grows with # connections ——_ longer lived



State of the art designs combine

CO ncurren Cy parallelism (multiprocess/thread)

with concurrency (event-driven)

* Process other requests while waiting for one to finish
A different design: single process event driven (SPED)

A queue of events
= |Pg + portg
e o = socket

bind (IPaddry, portg)

listen ()
epoll, select, kqueue, 10 uring accept ()
L|ghtwe|ght recv () /send() /..
Can block if any of the requests block Avoid overheads of multiple

(asynchronous 10 support can be incomplete & complex) processes and threads



https://aosabook.org/en/v2/nginx.html

Using parallelism + concurrency

« Asymmetric Multi-Process Event Driven (AMPED)

Accept I Read | Find
Qm_n_ | Request TN () File L)_

Event-driven

Event Dispatcher
I__<; 2 C__Q ______ C __2__1 main process
| Helper 1 | Helper 2 ° e | Helperk Blocking
b e e R b o o — operations

Flash: An efficient and portable Web server



Partition-Aggregate
Map-Reduce

Web servers Microservices
Communication



Microservice Architectural
Pattern



Monoliths

n = | HTTP
— | server

Language
frameworks

Changes

coupled Challenges

Coordination Releases Transient functions

across dev

teams Scaling Troubleshooting



Microservices

n = | HTTP Explicit

— | server communication
Language
of choice
Independently Distinct
from a
upgrade and
deploy sc_)ftware
library:

Models must be

Independent/de-  Out of explicitly related

centralized data  process.
models & storage Loosely-coupled services



In short, the microservice architectural style is an approach to
developing a single application as a suite of small services, each
running in its own process and communicating with lightweight
mechanisms, often an HTTP resource API. These services are built
around business capabilities and independently deployable by
fully automated deployment machinery. There is a bare minimum
of centralized management of these services, which may be
written in different programming languages and use different data
storage technologies.

-- James Lewis and Martin Fowler (2014)

https://martinfowler.com/articles/microservices.html https://martinfowler.com/microservices/



How to split?

n “ | HTTP
| server

Business Capalbilities

Boundaries of change

Lifetime of the service?
Who should know (or not)?
Changing together vs separately?

Heterogeneity in resource use

Refactoring common functionality



Salient new concern

| HTTP

| server

11111

Communication

No longer a function call
Design good module boundaries

Failures

Networks & components falil
No longer in the same process




Lots of waiting;

Communication Increasing

likelihood of failure

S
™,
S
S
N
N

1 Synchronous blocking
(request-response)
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Remote Procedure Call (RPC)

Serialization format (e.g., protobufs)

struct customer { struct customer {
string name; 01101010101... string name;
int customer id; | JSON int customer 1id;

.7 k: >| XML - .




. N
4 Shared data 3 Event streaming expectingoat

Communication (async) (asynchronous) = response

Z

1 Synchronous blocking
(request-response)

Can do useful
work while  gasbi)
waiting (but still gy
need timeouts) ’

2 Asynchronous
request-response

OMQ

“Building microservices”, Sam Newman

callback ()



Cost of communication: Performance
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Profiling a warehouse-scale computer (Google). ISCA'15.



Cost of comm: Hotspot spreading

A. NGINX Saturation

=

B. Memcached Backpressuring NGINX

read <k,v>
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Deathstarbench. ASPLOS’19.

read <k,v>
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Cost of comm: high level failure handling

(Soft or hard)
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Are microservices always ideal?

 Just an architectural style. Look at solving problems first

* How to evolve the splitting of components?

« Refactoring microservice interfaces later isn’t easy
* Interface changes need buy-in from multiple dev teams
« Components should compose cleanly in the first place

* How to design apps?
« Monolith first, or microservices from the beginning?

 Testing, Observability, Deploy automation
« How significant are dev coordination overheads?
« Complexity



Partition-Aggregate



Web search: some numbers (circa 2003)

 10s of terabytes of web corpus data
 Read 100s of megabytes per query

* 10s of billions of CPU instructions per query
« Data accessed depends on the query; hard to predict
* All results to be returned to users within (say) 300 milliseconds

« Cannot process on a single machine within acceptable time



Example: Google search architecture

:

Google Web server

Spell checker

e =
‘\\\ Ad server
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Index servers

Document servers

Web search for a planet, MICRO’03



Quick Review: Compute & Memory Org

Compute

Eetch Instruction pipeline _ (single threaded core)

(on hit)

Instruction pipeline
(out of order +

Branch predictors

s

—

speculative)

L1 I-cache L1 D-cache I-TLB

Memory
[ Scache ] MW

Main memory

Slower but larg



Measurements from one (index) server

* Not too fast single-threaded B ctoristic Vvalis
* Data dependencies Cycles per instruction 1.1
* Branches often mispredicted Ratios (percentage)
« Small instruction memory B iSpredict o
footprint Level 1 instruction miss* 0.4
: S Level 1 data miss* Qi
 Data locality within a block, but L -
not across blocks Instruction TLB miss* 0.04
* Numbers not much better on a Data TLB miss* 0.7
newer architecture * Cache and TLB ratios are per

instructions retired.

« Can’t drive high single-threaded

performance Use parallelism Web search for a planet, MICRO’03.
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