
Service Delivery Architecture

Lecture 3

Srinivas Narayana

http://www.cs.rutgers.edu/~sn624/553-S25

1

http://www.cs.rutgers.edu/~sn624/553-S25

2

A global network of web caches

• Provisioned by ISPs and network operators

• Or content providers, like Netflix, Google, etc.

Uses

• Reduce traffic on a network’s Internet connection, e.g.,

Rutgers

• Improve response time for users: CDN nodes are closer to

users than origin servers (servers holding original content)

• Reduce bandwidth requirements on content provider

• Reduce $$ to maintain origin servers

Content Distribution Networks (CDNs)

Without CDN

• Problems:

• Huge bandwidth requirements for Rutgers

• Large propagation delays to reach users

3

128.6.4.2

DOMAIN NAME IP ADDRESS

www.yahoo.com 98.138.253.109

cs.rutgers.edu 128.6.4.2

www.google.com 74.125.225.243

www.princeton.edu 128.112.132.86

Cluster of Rutgers CS origin

servers (located in NJ, USA)

Clients

distributed

all over the

world

Where the CDN comes in
• Distribute content of the origin server over geographically

distributed CDN servers

• But how will users get to these CDN servers?

• Use DNS!
• DNS provides an additional layer of indirection

• Instead of returning IP address, return another DNS server (NS record)
• The second DNS server (run by the CDN) returns IP address to client

• The CDN runs its own DNS servers (CDN name servers)
• Custom logic to send users to the “closest” CDN web server

128.6.4.2

DOMAIN NAME IP ADDRESS

www.yahoo.com 98.138.253.109

cs.rutgers.edu 124.8.9.8 (NS record pointing
to CDN name server)

www.google.com 74.125.225.243

DOMAIN NAME IP ADDRESS

Cs.Rutgers.edu 12.1.2.3

Cs.Rutgers.edu 12.1.2.4

Cs.Rutgers.edu 12.1.2.5

Cs.Rutgers.edu 12.1.2.6

CDN Name Server (124.8.9.8)

12.1.2.3
12.1.2.4

12.1.2.512.1.2.6

Origin server

Client

CDN servers

With CDN

Custom

logic to

map ONE

domain

name to

one of

many IP

addresses!

NS record delegates the

choice of IP address to

the CDN name server.

Most requests go to CDN servers (caches).

CDN servers may request object from origin

Few client requests go directly to origin server

Popular

CDNs:

CloudFlare

Akamai

Level3
…

Seeing a CDN in action

• dig web.mit.edu (or) dig +trace web.mit.edu

• telnet web.mit.edu 80

Application-OS interface

Googlegoogle.com

Link layer

Network

Transport

Applications

Link layer

Network

Transport

Applications
User

Kernel
Socket

Example: connected

socket (TCP)

Googlegoogle.com

connect(

IPB, portB)

send()

bind(IPaddrB, portB)

 listen()

 accept()

recv()

process

socket

process

socketIPA + portA

IPB + portB

Googlegoogle.com

connect(

IPB, portB)

send()

bind(IPaddrB, portB)

 listen()

 accept()

recv()

Googlegoogle.com

Link layer

Network

Transport

Applications

Link layer

Network

Transport

Applications

Socket
User

Kernel

Transport

(1) (De)multiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1

Port 2

…

…

…

…

…

Port 65535

socket() Ports

Src IP, Dst IP,

Tp Protocol

Src port, Dst port

Connection lookup: The

operating system does

a lookup using these

data to determine the

right socket and app.

Denotes an

attachment point

with the network.

Each IP address

comes with a full

copy of its own

ports.

UDP or TCP listening:

(dst IP, dst port, TCP)

TCP established:

(dst IP, dst port, src IP, src port, TCP)

TCP sockets of different types

Listening (bound but
unconnected)

On server side

ls = socket(AF_INET, SOCK_STREAM)

ls.bind(serv_ip, serv_port)

ls.listen() # no accept() yet

Connected (Established)

On server side

cs, addr = ls.accept()

On client side

connect(serv_ip, serv_port)

(src IP, dst IP, src port, dst port)

➔

Socket (cs NOT ls)

(dst IP, dst port)

➔

Socket (ss)

accept()

creates a new

socket with the

4-tuple

(established)
mapping

Enables new connections to be

demultiplexed correctly Enables established connections to be demultiplexed correctly

(2) Reliability: Stop and Wait. 3 Ideas

• ACKs: Sender sends a single packet,
then waits for an ACK to know the
packet was successfully received. Then
the sender transmits the next packet.

• RTO: If ACK is not received until a
timeout, sender retransmits the packet

• Seq: Disambiguate duplicate vs. fresh
packets using sequence numbers that
change on “adjacent” packets

Sender Receiver

R
T

T

RTO

SEQ 0

ACK 0

SEQ 1

Retransmit

Sending one packet per RTT makes the data

transfer rate limited by the time between the

endpoints, rather than the bandwidth.

Ensure you got the (one)

box safely; make N trips

Ensure you get N boxes

safely; make just 1 trip!
Keep many packets in flight

Pipelined reliability

• Data in flight: data that has been sent, but sender hasn’t yet
received ACKs from the receiver
• Note: can refer to packets in flight or bytes in flight

• New packets sent at the same time as older ones still in flight

• New packets sent at the same time as ACKs are returning

• More data moving in same time!

• Improves throughput
• Rate of data transfer

(3) How much data to keep in flight?

• Avoid overwhelming network resources: Congestion control

• Internet: every endpoint makes its own decisions!
• Distributed algorithm: no central authority

• Goal 1: efficiency (use available capacity)

• Goal 2: fairness (distribute capacity equitably)

H C

Feedback Control

Finding the right congestion window

• There is an unknown bottleneck link rate that the sender must
match

• If sender sends more than the bottleneck link rate:
• packet loss, delays, etc.

• If sender sends less than the bottleneck link rate:
• all packets get through; successful ACKs

• Congestion window (cwnd): amount of data in flight

Quickly finding a rate: TCP slow start

• Initially cwnd = 1 MSS
• MSS is “maximum segment size”

• Upon receiving an ACK of each MSS,
increase the cwnd by 1 MSS

• Effectively, double cwnd every RTT

▪ Initial rate is slow but ramps up
exponentially fast

▪On loss (RTO), restart from cwnd := 1
MSS

Host A

R
T

T

Host B

time

PayloadTNL

MSS

Behavior of slow start

1 MSS

Congestion

Window

Time

Packet drops/

RTO

Slow start has problems

• Congestion window increases too rapidly
• Example: suppose the “right” window size cwnd is 17

• cwnd would go from 16 to 32 and then dropping down to 1

• Result: massive packet drops

• Congestion window decreases too rapidly
• Suppose the right cwnd is 31, and there is a loss when cwnd is 32

• Slow start will resume all the way back from cwnd 1

• Result: unnecessarily low speed of sending data

• Instead, perform finer adjustments of cwnd: congestion avoidance

TCP New Reno: Additive Increase

• Remember the recent past to find a
good estimate of link rate

• The last good cwnd without packet
drop is a good indicator
• TCP New Reno calls this the slow start

threshold (ssthresh)

• Increase cwnd by 1 MSS every RTT
after cwnd hits ssthresh

• Effect: increase window additively per
RTT

Host A

R
T

T

Host B

time

R
T

T

say ssthresh=4

…

R
T

T

TCP New Reno: Additive increase

• Start with ssthresh = 64K bytes (TCP default)

• Do slow start until ssthresh

• Once the threshold is passed, do additive increase
• Add one MSS to cwnd for each cwnd worth data ACK’ed

• For each MSS ACK’ed, cwnd = cwnd + (MSS * MSS) / cwnd

• Upon a TCP timeout (RTO),
• Set cwnd = 1 MSS

• Set ssthresh = max(2 * MSS, 0.5 * cwnd)

• i.e., the next linear increase will start at half the current cwnd

Behavior of Additive Increase

1K

Time

Packet drops/

RTO

Congestion

Window

Say MSS = 1 KByte

Default ssthresh = 64KB = 64 MSS

54 MSS

Set ssthresh to

27 MSS

Loss occurs at
cwnd = 40K

Loss occurs at
cwnd = 54K

Set ssthresh to

20 MSS

AI is slow.

Persistent connections

Large window sizes

Different laws to evolve

congestion window

Routing

Googlegoogle.com

Link layer

Network

Transport

Applications

Link layer

Network

Transport

Applications

Socket
User

Kernel

Demultiplexing

Reliability

Congestion control

Two key network-layer functions

• Forwarding: move packets
from router’s input to
appropriate router output

• Routing: determine route
taken by packets from source
to destination

• routing algorithms

• The network layer solves
the routing problem.

Analogy: taking a road
trip

▪ Forwarding: process
of getting through
single exit

▪ Routing: process of
planning trip from
source to destination

28

everywhere

Control/Data Planes

Data plane = Forwarding

• local, per-router function

• determines how datagram
arriving on router input port is
forwarded to router output port

Control plane = Routing

• network-wide logic

• determines how datagram is routed
along end-to-end path from source
to destination endpoint

• two control-plane approaches:

• Distributed routing algorithm
running on each router

• Centralized routing algorithm
running on a (logically)
centralized machine

0111

values in arriving

packet header

1

2
3

	Slide 1: Service Delivery Architecture
	Slide 2: Content Distribution Networks (CDNs)
	Slide 3: Without CDN
	Slide 4: Where the CDN comes in
	Slide 5: With CDN
	Slide 6: Seeing a CDN in action
	Slide 7: Application-OS interface
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Transport
	Slide 13: (1) (De)multiplexing
	Slide 14: TCP sockets of different types
	Slide 15: (2) Reliability: Stop and Wait. 3 Ideas
	Slide 16
	Slide 17: Pipelined reliability
	Slide 18: (3) How much data to keep in flight?
	Slide 19: Finding the right congestion window
	Slide 20: Quickly finding a rate: TCP slow start
	Slide 21: Behavior of slow start
	Slide 22: Slow start has problems
	Slide 23: TCP New Reno: Additive Increase
	Slide 24: TCP New Reno: Additive increase
	Slide 25: Behavior of Additive Increase
	Slide 26: Routing
	Slide 27
	Slide 28: Two key network-layer functions
	Slide 29: Control/Data Planes

