
Internet Services



Introduction

Lecture 1

Srinivas Narayana

http://www.cs.rutgers.edu/~sn624/553-S25

2

http://www.cs.rutgers.edu/~sn624/553-S25


Our life on the Internet



Internet users are everywhere

Source: Mary Meekers, 2019 Internet trends



Internet users

https://ourworldindata.org/grapher/number-of-internet-users



1992 1996 2000 2004 2008 

ftp

Web

email

chat

Games

IM

Yahoo!

news

Blog

Search

Music

itunes

Games

search

Wikipedia

Craiglist

Youtube

2010-2020 

6

Evolution of Internet services

Text-heavy

Multimodal media

User-generated 

content
Augment physical world

2020--

Replace phy world



Pandemic shifts: how we worked

Data shows number of daily sessions in 

the US over a period in 2020. Source: 

nytimes



… and played

Data shows number of daily sessions in the US over a period in 

2020. Source: nytimes



Internet Services

Understand how modern Internet services designed

Learn fundamental concepts in application, system, 
and network design that make them possible

Practice your knowledge



What is an Internet service 
made of?
Applications, systems, interconnecting network, 
abstractions.



Components of an Internet Service

Endpoints

Routers



Components of an Internet Service

Endpoints

Routers

Data Center



Components of an Internet Service

Endpoints

Routers

Data Center



Components of an Internet Service

Endpoints

Routers

Data Center

Server



Components of an Internet Service

Endpoints

Routers

Data Center

Servers

Modular apps

Storage Interconnect: Routers

App compute and 

communication patterns



Components of an Internet Service

Endpoints

Routers

Data CenterApp

Container

Virtual Machine

OS & Net Stack

Policies Performance

Monitoring

Availability



Components of an Internet Service

Endpoints

Routers

Data Center

Name resolution

Content delivery

AT&T

Verizon
Comcast

Internet Routing



Core technical disciplines (incomplete)

Computer 

Networks

Operating 

Systems

Distributed 

Systems

*security

*algorithms

*prog languages

Internet Services

*app abstractions



Why should you study Internet services?

• Intellectual merits
• Interdisciplinary problems, many principles

• Real world utility
• Low barriers: anyone can do something useful

• Pragmatic
• Many job opportunities, timely

• Distinct from other coursework at Rutgers
• OS, distributed systems, databases, networks



Course Content Overview



(1) Internet Arch & Service Delivery

Content delivery

App

Transport

Network



(2) Application architecture

Partition-Aggregate

Microservices Server architecture

Bulk data processing



(3) Infrastructure

App

Container

Virtual Machine

OS & Net Stack

Containerization

Orchestration

Public Cloud

Virtual 

switching

SDN, 

Service mesh

Service communication
(RPCs, qs, …)



(4) Distributed System Design

Coordination services

Distributed consensus

Distributed storage

Load management



(5) Operations

Monitoring
Tracing, logs, metrics

In-band network telemetry

Network stack monitoring

Access control Scaling

Incident management



Course Logistics

26



About this class

• Faculty Instructor: Srinivas Narayana
• http://www.cs.rutgers.edu/~sn624

• sn624@rutgers.edu

• Office hours: by appointment

• Lecture Wed 8:30 – 11:30 in Busch HLL 116

• Canvas and Discord

• Class info: http://www.cs.rutgers.edu/~sn624/553-S25/

• Teaching Assistant: Bhavana Vannarth Shobhana
• bvs17@cs.rutgers.edu 

http://www.cs.rutgers.edu/~sn624
mailto:sn624@rutgers.edu
http://www.cs.rutgers.edu/~sn624/553-S25/
mailto:bvs17@cs.rutgers.edu


Class philosophy

• We want you to learn and to be successful

• Significant technical reading & programming
• Build necessary skills for future tech careers (industry or academic)

• Be proactive: interact, ask, support
• Attend lectures and discuss class material regularly

• Use class Discord

• Happy to provide the necessary background materials
• Ask me or your TA



Course grade components

• Quizzes (32%)

• Programming homework (28%)

• Course project (32%)

• Class participation (8%)

• Absolute grading; no curve



In-class quizzes (32%)

• Every lecture starting 2/12

• Answer questions from the last lecture and assigned reading
• Requires significant engagement with the technical readings

• 5—10 hours per reading

• Typical length: 20 minutes

• We only consider the 8 highest grades (drop lowest 3)



In-class quizzes (32%)

• Open book, but paper-based materials only

• Unlimited quantity: research article, textbook, lecture prints, 
your notes

• No tablet, laptop, smart watch, cell phone use

• No collaboration or Internet use

• No make-up quizzes



You’ll spend significant time reading

• This course has an assigned technical reading per week
• Technical blog posts, accessible survey articles, deep technical papers

• Knowing how to read well technically is worth your time
• Grad students: reading and writing technical papers
• Developers: reading RFCs, protocol specifications, other technical specs
• Implementing any cutting-edge technology requires reading

• Staying broadly technically educated (and employable)

• It’s worth reflecting on how to read effectively



There is no magic

• Reading effectively takes a lot of time and effort

• I’ve been reading technical articles for 14+ years now
• And I still sometimes spend 5+ hours or more

• You will get more effective and better over time

• A few tricks



(1) Three pass approach for papers

• First pass: title, category, context, assumptions, correctness, 
contribution

• Second pass: get into the technical ideas, figures and graphs. 
Explain the new technical idea or design to someone else

• Third pass: starting from assumptions and problem statement, 
reconstruct solution on your own with proof or argument for why 
it works and why it is the right approach (other approaches?)

How to read a paper? -- Keshav Srinivasan



(2) Look for concrete, simple examples

• Good articles often use good examples to explain their ideas

• If the article does not show examples, construct and work 
through your own

• Constructing a good example itself often clarifies the technical 
problems and innovations in the solution

• Discussing with your peers can be substantially helpful



(3) Identify reusable principles

• What do you want to take away from the reading?

• System design or algorithmic techniques

• Existence of a new problem space

• A class of technical solution approaches

• New techniques for empirical evaluation or measurement

• Reading something worthy changes how you think about the 
world from that point



Programming homework (28%)

• 2—3 over the term; tentative submission dates on syllabus

• Work on your own; released and handed in on Canvas

• C/C++ programming language, Python, shell

• Test and run on class VM (access instructions to be provided)



Programming homeworks (28%)

• Please follow all instructions carefully and exactly

• You will lose significant points if:
• We are unable to run your code with the stated commands

• We do not receive your submission in a timely fashion

38



Programming homeworks (28%)

• You can collaborate with others freely, however all submitted 
code must be your own work

• Do not blindly lift code from stack overflow, GitHub, chatGPT, 
etc.

• Incorporate learning from other sources and produce your own 
solutions

• Mandatory to state collaboration & references at the beginning 
of submitted program



Course project (32%)

• A team of up to 3; work on this through April

• Aligned with the course topics

• “Significant” programming component
• Measured by complexity and the size of the source code

• Talk to me to ensure this (next: project specification)



Course project (32%)

• A small open-ended research problem

• Adding new features to an existing open-source codebase

• Reproducing empirical evaluations and benchmarks from a paper 
you read

• Re-implementing an existing technique on a different system

• Building a tool that makes further technical work or research possible 
or easier



Course project (32%)

• I will send out some possible ideas 

• Welcome & encouraged to work on something you find exciting

• Form teams, brainstorm ideas with each other and me early

• I will help you succeed technically: don’t struggle alone

• 3 concrete deliverables: project specification, source code, 
technical report



Project specification

• 1—2 pages, tentatively due 04/02

• Specific, measurable, realistic technical goal

• Existing prior work and why your goal or approach is novel

• Brief description of technical idea and solution approach
• What needs to be built? How will you build it?

• Key performance metrics, qualitative and quantitative, you will 
evaluate your system on

• Technical and other risks



Source code

• Due end of the semester (tentatively 05/05)

• Host source code on a public repository e.g., on GitHub

• Provide clear documentation (README) with commands and 
requirements to run your system

• Provide scripts and commands to reproduce your empirical 
evaluation results



Technical report

• 5—10 pages, due end of the semester (tentatively 5/05)
• Latex template to be provided

• One PDF per team submitted on Canvas

• Clearly and fully describe all the technical details:

• Implementation of the solution

• How you evaluated the system: metrics, workloads, executions

• Why did you observe the numerical results you found?

• Optional: presentations or demonstrations of the system

• Assessed for clarity, comprehensiveness, technical design, 
scientific accuracy



Course project (32%)

• Don’t “just implement” something, also measure and explain it

• Highly coveted technical skills:
• Identifying good performance indicators, representative workloads and 

configurations

• Measuring them accurately

• Explaining them clearly with more detailed measurements

• Rigorously evaluating a system may take as long as 
implementing it



Course project (32%)

• Do not blindly lift code from other sources

• When you use existing software libraries, state the nature and 
scope of their use clearly in your project spec and report

• Do not blindly lift text (e.g., for project report) from other sources

• Please cite references for specific statements and be thorough



Course participation (8%)

• You are welcome to discuss and collaborate extensively
• Get to know each other, and me

• Meaningful class questions and technical discussion

• Insightful Discord/email questions or answers or follow-up 
discussion

• Discussion with me after the lecture or outside

• Supporting and helping each other grow in any way
• e.g., sharing useful materials on class Discord



Course participation (8%)

• Class participation is a consistent and meaningful activity
• Assessed throughout the semester

• Not a one-time event or a checkbox

• Intention to learn and support, not just a grade

• I’m happy to get to know you professionally and engage in 
technical discussions
• If you require professional support from me later (e.g., recommendation 

letters), it’s a great way for me to know you better



Course Policies



Collaboration and Integrity policies

• This course welcomes discussion and collaboration

• Do
• Ask questions on Discord or e-mail

• Discuss projects and readings with me and with each other

• Read references (textbooks, papers, Internet posts) widely

• Acknowledge each other and all the references

• Report collaborations on programming homework & the project
• Include who you talked to, references (including on the web) you consulted

• Be as accurate and complete as possible



Policy on AI

• Specific use with specific attribution

• Use it to resolve specific questions and concerns
• You are not permitted to use it to produce the entire solution for 

homework or your project

• List all your prompts and the service you used
• And discuss how you fix the output



GenAI is experimental

• Do not become a victim of hallucination

• AI makes mistakes: you must learn how to identify problems 
and fix them
• You still need to know what you’re doing

• Learn and understand the fundamentals well

• Use AI as an assist, not to drive your entire solution

• Like anything else on the Internet, you need to think critically



Collaboration and Integrity policies

• All your written (coded) work must be your (team’s) own
• Understand the problem deeply and produce your own solutions

• Do not
• blindly lift or incorporate other student solutions

• look at other people’s code or solutions

• copy solution code from the web (e.g., other people’s GitHub projects)

• use generative AI to produce a full solution

• post programming homeworks or quizzes (questions or solutions) on 
GitHub, Chegg, CourseHero, etc.



Rutgers takes academic dishonesty very seriously.

Violation of academic integrity at the graduate level 

is especially serious. Consequences include 

suspension and expulsion.

We will run plagiarism detection tools on all 

submitted materials. 

If you are ever in doubt, ask me first.



Late policy

• Don’t be late

• If you must be late, inform us in advance

• If you cannot inform us in advance (e.g., medical), provide 
official medical note of absence through the University

• Unexcused late submissions will result in losing significant 
fraction of points



24/7 Grading Policy

• You may not dispute a grade or request a regrade before 24 
hours or after 7 days of receiving it

• Please contact us if you have a legitimate re-grading request:

• After 24 hours of receiving the grade: Please take the time to review 
your case before contacting me

• Before 7 days have elapsed: we don’t want to forget what the 
quiz/homework was all about.



Help, Accommodations, etc.

• I’ll make every effort to accommodate reasonable requests that 
support your learning better

• sn624@cs.rutgers.edu

• I am committed to help you succeed in this course.

mailto:sn624@cs.rutgers.edu


Next steps

• Sign up for class Discord: link on canvas home page

• Warm up on C/C++ programming this week
• e.g., linked lists, basic TCP and UDP socket programming

• Next two lectures (1/29, 2/05) online: Video lectures to be posted 
on the syllabus page

• First quiz on 2/12: covering the first three lectures
• Thereafter every week

• Meet each other and form project teams


	Slide 1
	Slide 2: Introduction
	Slide 3: Our life on the Internet
	Slide 4: Internet users are everywhere
	Slide 5: Internet users
	Slide 6: Evolution of Internet services
	Slide 7: Pandemic shifts: how we worked
	Slide 8: … and played
	Slide 9: Internet Services
	Slide 10: What is an Internet service made of?
	Slide 11: Components of an Internet Service
	Slide 12: Components of an Internet Service
	Slide 13: Components of an Internet Service
	Slide 14: Components of an Internet Service
	Slide 15: Components of an Internet Service
	Slide 16: Components of an Internet Service
	Slide 17: Components of an Internet Service
	Slide 18: Core technical disciplines (incomplete)
	Slide 19: Why should you study Internet services?
	Slide 20: Course Content Overview
	Slide 21: (1) Internet Arch & Service Delivery
	Slide 22: (2) Application architecture
	Slide 23: (3) Infrastructure
	Slide 24: (4) Distributed System Design
	Slide 25: (5) Operations
	Slide 26: Course Logistics
	Slide 27: About this class
	Slide 28: Class philosophy
	Slide 29: Course grade components
	Slide 30: In-class quizzes (32%)
	Slide 31: In-class quizzes (32%)
	Slide 32: You’ll spend significant time reading
	Slide 33: There is no magic
	Slide 34: (1) Three pass approach for papers
	Slide 35: (2) Look for concrete, simple examples
	Slide 36: (3) Identify reusable principles
	Slide 37: Programming homework (28%)
	Slide 38: Programming homeworks (28%)
	Slide 39: Programming homeworks (28%)
	Slide 40: Course project (32%)
	Slide 41: Course project (32%)
	Slide 42: Course project (32%)
	Slide 43: Project specification
	Slide 44: Source code
	Slide 45: Technical report
	Slide 46: Course project (32%)
	Slide 47: Course project (32%)
	Slide 48: Course participation (8%)
	Slide 49: Course participation (8%)
	Slide 50: Course Policies
	Slide 51: Collaboration and Integrity policies
	Slide 52: Policy on AI
	Slide 53: GenAI is experimental
	Slide 54: Collaboration and Integrity policies
	Slide 55
	Slide 56: Late policy
	Slide 57: 24/7 Grading Policy
	Slide 58: Help, Accommodations, etc.
	Slide 59: Next steps

